EUGOGO) on Management of Graves’ Orbitopathy*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cigarette Smoke Extract-Induced Adipogenesis in Graves' Orbital
J S YOON, H J LEE and others Treatment of GO by quercetin, 216:2 145–156 Research an antioxidant Cigarette smoke extract-induced adipogenesis in Graves’ orbital fibroblasts is inhibited by quercetin via reduction in oxidative stress Jin Sook Yoon*, Hyun Jung Lee1,*, Min Kyung Chae, Sang Yeul Lee and Eun Jig Lee1,2,† Departments of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea 1Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Seoul, Korea 2Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea Correspondence *(J S Yoon and H J Lee contributed equally to this work) should be addressed to E J Lee †(E J Lee who is now at Department of Endocrinology, Yonsei University College of Medicine, 50 Yonsei-Ro, Email Seodaemun-Gu, Seoul 120-752, Korea) [email protected] Abstract Cigarette smoking is known to aggravate Graves’ orbitopathy (GO) severity by enhancing Key Words adipogenesis. We investigated the effect of quercetin, an antioxidant, on adipocyte " quercetin differentiation induced by cigarette smoke extract (CSE) in primary cultured orbital " Graves’ orbitopathy fibroblasts (OFs) from GO patients. Freshly prepared CSE was added to the cells and H2O2 was " heme oxygenase-1 used as a positive control. Intracellular reactive oxygen species (ROS) generation and " cigarette smoke extract Journal of Endocrinology adipogenesis were measured. The expressions of proteins peroxisome proliferator-activated " orbital fibroblasts receptor (PPAR) g, CCAAT-enhancer-binding proteins (C/EBP) a and b, and heme oxygenase-1 " adipogenesis (HO-1), an antioxidant enzyme, were examined during adipogenic differentiation. -
Multipurpose Conical Orbital Implant in Evisceration
Ophthalmic Plastic and Reconstructive Surgery Vol. 21, No. 5, pp 376–378 ©2005 The American Society of Ophthalmic Plastic and Reconstructive Surgery, Inc. Multipurpose Conical Orbital Implant in Evisceration Harry Marshak, M.D., and Steven C. Dresner, M.D. Doheny Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, U.S.A. Purpose: To evaluate the safety and efficacy of the porous polyethylene multipurpose conical orbital implant for use in evisceration. Methods: A retrospective review of 31 eyes that underwent evisceration and received the multipurpose conical orbital implant. The orbits were evaluated at 1 week, 1 month, and 6 months after final prosthetic fitting for implant exposure, superior sulcus deformity, and prosthetic motility. Results: There were no cases of extrusion, migration, or infection. All patients had a good cosmetic result after final prosthetic fitting. Prosthetic motility was good in all patients. Exposure developed in one eye (3%) and a superior sulcus deformity developed in one eye (3%). Conclusions: Placement of an multipurpose conical orbital implant in conjunction with evisceration is a safe and effective treatment for blind painful eye that achieves good motility and a good cosmetic result. visceration has proved to be effective for the treat- forms anteriorly to the sclera to be closed over it, without Ement of blind painful eye from phthisis bulbi or crowding the fornices, and extends posteriorly through endophthalmitis. By retaining the sclera in its anatomic the posterior sclerotomies, providing needed volume to natural position, evisceration has the advantage of allow- the posterior orbit. ing the insertions of the extraocular muscles to remain intact, promoting better motility. -
Treatment of Congenital Ptosis
13 Review Article Page 1 of 13 Treatment of congenital ptosis Vladimir Kratky1,2^ 1Department of Ophthalmology, Queen’s University, Kingston, Canada; 21st Medical Faculty, Charles University, Prague, Czech Republic Correspondence to: Vladimir Kratky, BSc, MD, FRCSC, DABO. Associate Professor of Ophthalmology, Director of Ophthalmic Plastic and Orbital Surgery, Oculoplastics Fellowship Director, Queen’s University, Kingston, Canada; 1st Medical Faculty, Charles University, Prague, Czech Republic. Email: [email protected]. Abstract: Congenital ptosis is an abnormally low position of the upper eyelid, with respect to the visual axis in the primary gaze. It can be present at birth or manifest itself during the first year of life and can be bilateral or unilateral. Additionally, it may be an isolated finding or part of a constellation of signs of a specific syndrome or systemic associations. Depending on how much it interferes with the visual axis, it may be considered as a functional or a cosmetic condition. In childhood, functional ptosis can lead to deprivation amblyopia and astigmatism and needs to be treated. However, even mild ptosis with normal vision can lead to psychosocial problems and correction is also advised, albeit on a less urgent basis. Although, patching and glasses can be prescribed to treat the amblyopia, the mainstay of management is surgical. There are several types of surgical procedure available depending on the severity and etiology of the droopy eyelid. The first part of this paper will review the different categories of congenital ptosis, including more common associated syndromes. The latter part will briefly cover the different surgical approaches, with emphasis on how to choose the correct condition. -
Special Considerations in Cataract Surgery: Five Cornea Challenges
Clinical Update EXTRA CONTENT AVAILABLE CATARACT Special Considerations in Cataract Surgery: Five Cornea Challenges by linda roach, contributing writer interviewing preston h. blomquist, md, rosa a. braga-mele, md, kimberly a. drenser, md, phd, herbert e. kaufman, md, marguerite mcdonald, md, and roger f. steinert, md s the most common surgical choices, said Marguerite McDonald, IOL Selection procedure in ophthalmol- MD, of Lynbrook, N.Y. The device en- ogy, replacement of a cloudy ables the surgeon to directly measure 1 crystalline lens with an the eye’s aphakic refractive power in intraocular lens (IOL) usu- the operating room. Aally presents the ophthalmologist with Using intraoperative aberrometry is familiar sets of surgical routines. But becoming more commonplace, as “it what about those cases that involve may help in achieving more accuracy comorbidities or other complicating with IOL power selection,” Dr. Mc- factors? Donald said. Several experts shared their per- Tips on IOL selection. The chosen spectives on approaching out-of-the- IOL should be shaped to neutralize After an off-center LASIK procedure ordinary cataract surgeries in ways spherical aberrations, said Rosa A. such as this, the irregularity of the that offer the best chance at optimiz- Braga-Mele, MD, at the University of corneal topography indicates that a ing patient outcomes. This month, Toronto. “In anybody who has had multifocal IOL should be avoided. here’s a look at five challenges involv- myopic LASIK or PRK, I think it’s very ing the cornea. important to use a negatively aspheric prior to cataract surgery. 2) A dysfunc- IOL, because these patients have more tional, unstable tear film will affect the Challenge: Prior Refractive Surgery positively aberrant corneas. -
Changes in Ocular Rigidityin Endocrine Exophthalmos
Br J Ophthalmol: first published as 10.1136/bjo.42.11.680 on 1 November 1958. Downloaded from Brit. J. Ophthal. (1958) 42, 680. CHANGES IN OCULAR RIGIDITY IN ENDOCRINE EXOPHTHALMOS* BY R. WEEKERS AND G. LAVERGNE From the Ophthalmological Clinic, Lie'ge University Two types of endocrine exophthalmos are frequently distinguished, being referred to thyrotoxic or hyperthyroid exophthalmos, and thyrotropic, ophthahnoplegic, or oedematous exophthalmos. (a) Hyperthyroid or Thyrotoxic Exophthalmos.-This accompanies Graves's disease and is, therefore, much more frequently seen in females than in males. In the majority of cases the exophthalmos is quite unobtrusive or there is merely an appearance of exophthalmos due to retraction of the upper lid. It is associated with a decreased frequency of blinking and a fixed stare. The majority of authors agree that these symptoms should be attributed to an increase in tone of the sym- pathetic system. The importance of the pituitary thyrotropic hormone in thiscopyright. clinical picture is not clear. Hyperthyroid exophthalmos is not complicated either by chemosis or by diplopia, but heterophoria and lack of convergence are often seen. (b) Thyrotropic, Ophthalmoplegic, or Oedematous Exophthalmos.-This may occur either in a subject suffering from verified and treated hyperthyroidism, when the signs of thyrotoxicosis are about to disappear, or in an apparently normal subject free from any thyroid symptom or history of symptoms. The second type http://bjo.bmj.com/ is more frequently seen in males than in females. Thyrotropic exophthalmos is often very marked'and may even lead to irreducible lagophthalmos; it is invariably associated with a disturbance of ocular movements, particularly with elevation of the gaze. -
Eye Disease 1 Eye Disease
Eye disease 1 Eye disease Eye disease Classification and external resources [1] MeSH D005128 This is a partial list of human eye diseases and disorders. The World Health Organisation publishes a classification of known diseases and injuries called the International Statistical Classification of Diseases and Related Health Problems or ICD-10. This list uses that classification. H00-H59 Diseases of the eye and adnexa H00-H06 Disorders of eyelid, lacrimal system and orbit • (H00.0) Hordeolum ("stye" or "sty") — a bacterial infection of sebaceous glands of eyelashes • (H00.1) Chalazion — a cyst in the eyelid (usually upper eyelid) • (H01.0) Blepharitis — inflammation of eyelids and eyelashes; characterized by white flaky skin near the eyelashes • (H02.0) Entropion and trichiasis • (H02.1) Ectropion • (H02.2) Lagophthalmos • (H02.3) Blepharochalasis • (H02.4) Ptosis • (H02.6) Xanthelasma of eyelid • (H03.0*) Parasitic infestation of eyelid in diseases classified elsewhere • Dermatitis of eyelid due to Demodex species ( B88.0+ ) • Parasitic infestation of eyelid in: • leishmaniasis ( B55.-+ ) • loiasis ( B74.3+ ) • onchocerciasis ( B73+ ) • phthiriasis ( B85.3+ ) • (H03.1*) Involvement of eyelid in other infectious diseases classified elsewhere • Involvement of eyelid in: • herpesviral (herpes simplex) infection ( B00.5+ ) • leprosy ( A30.-+ ) • molluscum contagiosum ( B08.1+ ) • tuberculosis ( A18.4+ ) • yaws ( A66.-+ ) • zoster ( B02.3+ ) • (H03.8*) Involvement of eyelid in other diseases classified elsewhere • Involvement of eyelid in impetigo -
Canine Red Eye Elizabeth Barfield Laminack, DVM; Kathern Myrna, DVM, MS; and Phillip Anthony Moore, DVM, Diplomate ACVO
PEER REVIEWED Clinical Approach to the CANINE RED EYE Elizabeth Barfield Laminack, DVM; Kathern Myrna, DVM, MS; and Phillip Anthony Moore, DVM, Diplomate ACVO he acute red eye is a common clinical challenge for tion of the deep episcleral vessels, and is characterized general practitioners. Redness is the hallmark of by straight and immobile episcleral vessels, which run Tocular inflammation; it is a nonspecific sign related 90° to the limbus. Episcleral injection is an external to a number of underlying diseases and degree of redness sign of intraocular disease, such as anterior uveitis and may not reflect the severity of the ocular problem. glaucoma (Figures 3 and 4). Occasionally, episcleral Proper evaluation of the red eye depends on effective injection may occur in diseases of the sclera, such as and efficient diagnosis of the underlying ocular disease in episcleritis or scleritis.1 order to save the eye’s vision and the eye itself.1,2 • Corneal Neovascularization » Superficial: Long, branching corneal vessels; may be SOURCE OF REDNESS seen with superficial ulcerative (Figure 5) or nonul- The conjunctiva has small, fine, tortuous and movable vessels cerative keratitis (Figure 6) that help distinguish conjunctival inflammation from deeper » Focal deep: Straight, nonbranching corneal vessels; inflammation (see Ocular Redness algorithm, page 16). indicates a deep corneal keratitis • Conjunctival hyperemia presents with redness and » 360° deep: Corneal vessels in a 360° pattern around congestion of the conjunctival blood vessels, making the limbus; should arouse concern that glaucoma or them appear more prominent, and is associated with uveitis (Figure 4) is present1,2 extraocular disease, such as conjunctivitis (Figure 1). -
Strabismus: a Decision Making Approach
Strabismus A Decision Making Approach Gunter K. von Noorden, M.D. Eugene M. Helveston, M.D. Strabismus: A Decision Making Approach Gunter K. von Noorden, M.D. Emeritus Professor of Ophthalmology and Pediatrics Baylor College of Medicine Houston, Texas Eugene M. Helveston, M.D. Emeritus Professor of Ophthalmology Indiana University School of Medicine Indianapolis, Indiana Published originally in English under the title: Strabismus: A Decision Making Approach. By Gunter K. von Noorden and Eugene M. Helveston Published in 1994 by Mosby-Year Book, Inc., St. Louis, MO Copyright held by Gunter K. von Noorden and Eugene M. Helveston All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from the authors. Copyright © 2010 Table of Contents Foreword Preface 1.01 Equipment for Examination of the Patient with Strabismus 1.02 History 1.03 Inspection of Patient 1.04 Sequence of Motility Examination 1.05 Does This Baby See? 1.06 Visual Acuity – Methods of Examination 1.07 Visual Acuity Testing in Infants 1.08 Primary versus Secondary Deviation 1.09 Evaluation of Monocular Movements – Ductions 1.10 Evaluation of Binocular Movements – Versions 1.11 Unilaterally Reduced Vision Associated with Orthotropia 1.12 Unilateral Decrease of Visual Acuity Associated with Heterotropia 1.13 Decentered Corneal Light Reflex 1.14 Strabismus – Generic Classification 1.15 Is Latent Strabismus -
Eye Care in the Intensive Care Unit (ICU)
Ophthalmic Services Guidance Eye Care in the Intensive Care Unit (ICU) June 2017 18 Stephenson Way, London, NW1 2HD T. 020 7935 0702 [email protected] rcophth.ac.uk @RCOphth © The Royal College of Ophthalmologists 2017 All rights reserved For permission to reproduce any of the content contained herein please contact [email protected] Contents Section page 1 Summary 3 2 Introduction 3 Protecting the eye of the vulnerable patient 4 3 Identifying disease of the eye 6 Exposure keratopathy and corneal abrasion 6 Chemosis 8 Microbial infections 8 4 Rare eye conditions in ICU 10 Red eye in a septic patient: possible endogenous endophthalmitis 10 Other problems 11 5 Delivering treatment to the eye when it is prescribed 11 Red eye in ICU patient 12 6. Systemic fungal infection and the eye for intensivists 14 7. Tips for ophthalmologists seeing patients in ICU 14 8. Authors 16 9. References 17 Date of review: July 2020 2017/PROF/350 2 1 Summary This document aims to provide advice and information for clinical staff who are involved in eye care in the ICU. It is primarily intended to help non-ophthalmic ICU staff to: 1. protect the eye in vulnerable patients, thus preventing ICU-related eye problems 2. identify disease affecting the eye in ITU patients, and specifically those which might need ophthalmic referral 3. deliver treatment to the eye when it is prescribed It concentrates primarily on the common problems of the eye surface but also touches on other less common conditions. As such, it should also be helpful to those ophthalmologists asked for advice about ICU patients. -
The Management of Congenital Malpositions of Eyelids, Eyes and Orbits
Eye (\988) 2, 207-219 The Management of Congenital Malpositions of Eyelids, Eyes and Orbits S. MORAX AND T. HURBLl Paris Summary Congenital malformations of the eye and its adnexa which are multiple and varied can affect the whole eyeball or any part of it, as well as the orbit, eyelids, lacrimal ducts, extra-ocular muscles and conjunctiva. A classification of these malformations is presented together with the general principles of treatment, age of operating and surgical tactics. The authors give some examples of the anatomo-clinical forms, eyelid malpositions such as entropion, ectropion, ptosis, levator eyelid retraction, medial canthus malposition, congenital eyelid colobomas, and congenital orbital abnormalities (Craniofacial stenosis, orbi tal plagiocephalies, hypertelorism, anophthalmos, microphthalmos and cryptophthalmos) . Congenital malformations of the eye and its as echography, CT-scan and NMR, enzymatic adnexa are multiple and varied. They can work-up or genetic studies (Table I). affect the whole eyeball or any part of it, as Surgical treatment when feasible will well as the orbit, eyelids, lacrimal ducts extra encounter numerous problems; age will play a ocular muscles and conjunctiva. role, choice of a surgical protocol directly From the anatomical point of view, the fol related to the existing complaints, and coop lowing can be considered. eration between several surgical teams Position abnormalities (malpositions) of (ophthalmologic, plastic, cranio-maxillo-fac one or more elements and formation abnor ial and neurosurgical), the ideal being to treat malities (malformations) of the same organs. Some of these abnormalities are limited to Table I The manag ement of cong enital rna/positions one organ and can be subjected to a relatively of eyelid s, eyes and orbits simple and well recognised surgical treat Ocular Findings: ment. -
Paula M. Lantz
1 Curriculum Vitae Paula M. Lantz Paula M. Lantz, PhD, MS, MA James B. Hudak Professor of Health Policy Associate Dean for Academic Affairs Professor of Public Policy Professor of Health Management and Policy (by courtesy) Gerald R. Ford School of Public Policy University of Michigan 4215 Weill Hall, 735 S. State Street Ann Arbor, MI 48109 E-mail: [email protected] Telephone: 734.764.8976 Twitter: @paulalantz Education 1991 Ph.D. in Sociology Areas of Concentration: Social Demography, Medical Sociology, Social Epidemiology M.S. in Preventive Medicine-Epidemiology University of Wisconsin, Madison, Wisconsin 1983 M.A. in Sociology, Washington University, St. Louis, Missouri 1981 B.A. cum laude (Sociology and English), St. Olaf College, Northfield, Minnesota Positions Held July, 2016 – Present Professor and Associate Dean for Academic Affairs, Gerald R. Ford School of Public Policy, University of Michigan, Ann Arbor, MI April, 2019 - Present James B. Hudak Professor of Health Policy July, 2015–June, 2016 Professor and Associate Dean for Research and Policy Engagement, Gerald R. Ford School of Public Policy, University of Michigan, Ann Arbor, MI July, 2015 - Present Professor (courtesy), Health Management and Policy, School of Public Health, University of Michigan, Ann Arbor, MI 2011 – 2015 Professor and Chair, Department of Health Policy and Management, Milken Institute School of Public Health, George Washington University, Washington, DC Professor, Trachtenberg School of Public Policy and Public Administration, George Washington University, Washington, DC 2008 – 2011 S.J. Axelrod Collegiate Professor of Health Management and Policy, School of Public Health, University of Michigan, Ann Arbor, MI 2 2005 – 2011 Chair, Department of Health Management and Policy, School of Public Health, University of Michigan 2010 – 2011 Professor, Gerald R. -
Neoliberalizing the Streets of Urban India: Engagements of a Free Market Think Tank in the Politics of Street Hawking
University of Kentucky UKnowledge Theses and Dissertations--Geography Geography 2013 NEOLIBERALIZING THE STREETS OF URBAN INDIA: ENGAGEMENTS OF A FREE MARKET THINK TANK IN THE POLITICS OF STREET HAWKING Priyanka Jain University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Jain, Priyanka, "NEOLIBERALIZING THE STREETS OF URBAN INDIA: ENGAGEMENTS OF A FREE MARKET THINK TANK IN THE POLITICS OF STREET HAWKING" (2013). Theses and Dissertations--Geography. 14. https://uknowledge.uky.edu/geography_etds/14 This Doctoral Dissertation is brought to you for free and open access by the Geography at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Geography by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained and attached hereto needed written permission statements(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine). I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless a preapproved embargo applies.