Columbia Basin Flood Control and Hydropower

Total Page:16

File Type:pdf, Size:1020Kb

Columbia Basin Flood Control and Hydropower Climate and Hydrology Datasets for use in the RMJOC Agencies’ Longer-Term Planning Studies Part III – Reservoir Operations Assessment: Columbia Basin Flood Control and Hydropower Bonneville Power Administration U.S. Army Corps of Engineers U.S. Department of Energy Northwest Division, Portland District Portland, Oregon Portland, Oregon May 31, 2011 BONNEVILLE POWER ADMINSTRATION Vision Statement BPA will be an engine of the Northwest’s economic prosperity and environmental sustainability. BPA’s actions advance a Northwest power system that is a national leader in providing high reliability, low rates consistent with sound business principles, responsible environmental stewardship, and accountability to the region. We deliver on these public responsibilities through a commercially successful business. These four characteristics define our public responsibilities. U.S. Army Corps of Engineers Northwestern Division Mission Statement The Northwestern Division provides engineering services and stewardship of existing water resource infrastructure, conducts water resources development, military construction, environmental protection and restoration, and emergency response operations within our assigned areas of operations to serve the Army and the Nation. On order, the Northwestern Division provides Field Force Engineering services to deployed forces or other USACE elements." Photograph on front cover: Bonneville Dam (BPA Library photo archive). Climate and Hydrology Datasets for use in the RMJOC Agencies’ Longer-Term Planning Studies Part III – Reservoir Operations Assessment: Columbia Basin Flood Control and Hydropower Report Prepared by: Patricia Low Maler Annamalai U.S. Army Corps of Engineers, Northwestern Division Brian Kuepper Eric Nielsen Dan Hua Bonneville Power Administration Contributions: Bruce Glabau - BPA Tony White – BPA Birgit Koehler – BPA Jennie Tran – BPA Toni Turner – Bureau of Reclamation Lori Postlethwait – Bureau of Reclamation James Barton – U.S. Army Corps of Engineers, Northwestern Division Acknowledgements: Nancy Stephan, Bonneville Power Administration Levi Brekke, Bureau of Reclamation RMJOC Sposors Patrick McGrane, Bureau of Reclamation Rick Pendergrass, Bonneville Power Administration James Barton, U.S. Army Corps of Engineers, Northwestern Division Table of Contents 1.0 Introduction ............................................................................................................23 2.0 Description of Reservoir Systems ............................................................................4 2.1 Mainstem Columbia River Basin .............................................................................4 2.2 Columbia River Tributaries: Kootenay, Pend Oreille and Spokane River Basins.............................................................................................................9 2.2.1 Pend Oreille Basin .....................................................................................11 2.2.2 Spokane Basin............................................................................................12 2.3 Snake River Basin ..................................................................................................12 2.4 Non-Federal Projects..............................................................................................14 3.0 Development of Datasets .......................................................................................14 3.1 Hydrologic Input Data............................................................................................14 3.2 The Hybrid-Delta Scenarios...................................................................................16 3.2.1 Annual Volumes ........................................................................................18 3.2.2 Monthly Runoff .........................................................................................20 3.2.3 Seasonal Runoff.........................................................................................23 3.2.4 Forecast and Observed Volumes ...............................................................26 3.3 The Transient Climate Projections .........................................................................28 3.4 Seasonal Runoff Shift: Summer to Winter .............................................................29 3.3 Description of AER and TSR Flood Control Datasets ...........................................33 4.0 Climate Scenarios Naming Convention .................................................................35 5.0 Description of System Flood Control ....................................................................38 5.1 Flood Control Modeling Tools...............................................................................39 5.2 Flood Control Assumptions ...................................................................................39 5.2.1 Evacuation Period ......................................................................................39 5.2.2 Refill ..........................................................................................................40 6.0 Flood Control Analysis ..........................................................................................43 6.1 Graphs ....................................................................................................................44 6.1.1 Mean Monthly Volume – Hybrid-Delta ....................................................44 6.1.2 Seasonal Runoff Volume Exceedance – Hybrid-Delta ..............................44 6.1.3 Seasonal Runoff Volume, Ten-Year Rolling Average – Transient ....................................................................................................46 May 2011 – Part III: Flood Control and Reservoir Operations Assessment i 6.1.4 Flood Control Storage Exceedance – Hybrid-Delta ..................................46 6.1.5 Flood Control April 30th Elevations Comparison – Hybrid- Delta...........................................................................................................47 6.1.6 Flood Control April 30th Elevations Comparison – Transient ..................48 6.2 Columbia River at The Dalles Dam .......................................................................48 6.2.1 Mean Monthly Volume – Hybrid-Delta ....................................................48 6.2.2 Seasonal Runoff Volume Exceedance – Hybrid-Delta ..............................49 6.2.3 Seasonal Runoff Volume, Ten-Year Rolling Average – Transient ....................................................................................................51 6.2.4 Seasonal Runoff Volume Averages: Apr-Aug vs. Mar-Jul .......................51 6.2.5 The Dalles Summary .................................................................................55 6.3 Mica........................................................................................................................55 6.3.1 Flood Control Storage Exceedance – Hybrid-Delta ..................................56 6.3.2 Flood Control April 30th Elevations Comparisons – Hybrid- Delta...........................................................................................................57 6.3.3 Flood Control April 30th Elevations Comparisons – Transient ................59 6.3.4 Mica Summary...........................................................................................60 6.4 Arrow .....................................................................................................................61 6.4.1 Flood Control Storage Exceedance – Hybrid-Delta ..................................61 6.4.2 Flood Control April 30th Elevations Comparisons – Hybrid- Delta...........................................................................................................62 6.4.3 Flood Control April 30th Elevations Comparisons – Transient ................64 6.4.4 Arrow Summary ........................................................................................65 6.5 Grand Coulee .........................................................................................................66 6.5.1 Flood Control Storage Exceedance – Hybrid-Delta ..................................66 6.5.2 Flood Control April 30th Elevations Comparisons – Hybrid- Delta...........................................................................................................67 6.5.3 Flood Control April 30th Elevations Comparisons – Transient ................69 6.5.4 Grand Coulee Summary.............................................................................70 6.6 Brownlee ................................................................................................................71 6.6.1 Mean Monthly Volume – Hybrid-Delta ....................................................71 6.6.2 Seasonal Runoff Volume Exceedance – Hybrid-Delta ..............................72 6.6.3 Seasonal Runoff Volume, Ten-Year Rolling Average – Transient ....................................................................................................73 6.6.4 Flood Control Storage Exceedance – Hybrid-Delta ..................................74 May 2011 – Part III: Flood Control and Reservoir Operations Assessment ii 6.6.5 Flood Control April 30th Elevations Comparisons – Hybrid- Delta...........................................................................................................75 6.6.6 Flood Control April 30th Elevations Comparisons – Transient ................77 6.6.7 Brownlee Summary ...................................................................................78
Recommended publications
  • Bathymetry, Morphology, and Lakebed Geologic Characteristics
    SCIENTIFIC INVESTIGATIONS MAP 3272 Bathymetry, Morphology, and Lakebed Geologic Characteristics Barton, G.J., and Dux, A.M., 2013, Bathymetry, Morphology, and Lakebed Geologic Characteristics of Potential U.S. Department of the Interior Prepared in cooperation with the Kokanee Salmon Spawning Habitat in Lake Pend Oreille, Bayview and Lakeview Quadrangles, Idaho science for a changing world U.S. Geological Survey IDAHO DEPARTMENT OF FISH AND GAME Abstract lake level of 2,062.5 ft above NGVD 1929 (figs. 4–6) has been maintained during the summer (normal maximum summer full Scenic Bay, includes 254 acres and 2.8 mi of shoreline bordered by a gentle-to-moderate-sloping landscape and steep mountains. Methods conditions vary within each study unit: 2,100 photographs were subsampled for Scenic Bay, 1,710 photographs were subsampled lake morphology, lakebed geologic units, and substrate embeddedness. Descriptions of the morphology, lakebed geology, and pool), with drawdowns in autumn to reach a minimum winter level. Before 1966, the winter lake level was variable, and an A second study unit, along the north shore of Idlewild Bay, includes 220 acres and 2.2 mi of shoreline bordered by a gentle-to- for Idlewild Bay, and 245 photographs were subsampled for Echo Bay. These photographs were reviewed, and additional embeddedness in the shore zone, rise zone, and open water in bays and the main stem of the lake are provided in figures 5–6. Kokanee salmon (Oncorhynchus nerka) are a keystone species in Lake Pend Oreille in northern Idaho, historically exceptional fishery continued with the Albeni Falls Dam in operation.
    [Show full text]
  • BRIDGEPORT STATE PARK Chief Joseph Dam, Washington
    BRIDGEPORT STATE PARK Chief Joseph Dam, Washington Sun Shelter and Play Area Group Camp Fire Circle Bridgeport State Park, located on systems; landscaping; and the Columbia River at Chief Joseph sprinkler irrigation. Osborn Pacific Dam, was an existing development Group provided complete design composed of a boat launch, services followed by completion campground, temporary of bid documents for the park and administration area, and day-use recreation amenity features, and group-use areas. The park was buildings, landscape architecture, created subsequent to the Chief and sprinkler irrigation. Joseph Dam construction and was Subconsultants provided civil, Picnic Shelter built by the U.S. Army Corps of structural, mechanical, and Engineers. The park is maintained electrical engineering. Site: Approximately 400 acres of rolling and operated by Washington State arid topography on shore of Rufus Parks. Woods Lake. Approximately 30 acres Project: is developed. Osborn Pacific Group Inc. was Bridgeport State Park Services: Client: retained by the U.S. Army Corps of Final design, construction documents, US Army Corps of Engineers, Seattle and cost estimate of park and Engineers to provide design District recreation amenity features, buildings, services and prepared construction Location: landscape architecture, and sprinkler documents for a $1.4 million park Chief Joseph Dam, Columbia River, irrigation. Contract administration expansion project. Features Washington and coordination for civil, structural, mechanical, and electrical included: upgrading and expanding engineering. recreation vehicle campground area, day-use picnic area and swim beach development; group camp area development; pedestrian and handicapped access trails; ranger residence; maintenance building; restrooms and shelters; roads; water, sanitary, and electrical .
    [Show full text]
  • INDC TR-2018-02, "Exterior Lighting for Navigation Locks and Dams
    03 - 2018 - INDC TR Standardization and Sustainability Initiative Renewable Energy Applications for Locks and Dams Standardization and Sustainability Charlie Allen, Nicholas M. Josefik, Edith Martinez-Guerra, March 2018 and Stefan Miller Center McNary Dam, Oregon Inland Navigation Design Design Navigation Inland Approved for public release; distribution is unlimited. The Inland Navigation Design Center (INDC) develops solutions to complex en- gineering problems for the nation’s inland waterways to serve the Army, the Depart- ment of Defense, Federal Agencies and the Nation. To find out more about the Inland Navigation Design Center please visit: https://apps.usace.army.mil/sites/TEN/IND/Pages/default.aspx Standardization and Sustainability Initiative INDC TR-2018-03 March 2018 Renewable Energy Applications for Locks and Dams Standardization and Sustainability Gerald C. Allen Hydroelectric Design Center U.S. Army Corps of Engineers Portland District 333 SW 1st Ave Portland, OR 97204-1290 Nicholas M. Josefik U.S. Army Engineer Research and Development Center (ERDC) Cold Regions Research and Engineering Laboratory (CRREL) 72 Lyme Road Hanover, NH 03755-1290 Edith Martinez-Guerra U.S. Army Engineer Research and Development Center (ERDC) Environmental Laboratory (EL) Waterways Experiment Station, 3909 Halls Ferry Road Vicksburg, MS 39180-6199 Stefan M. Miller U.S. Army Corps of Engineers Mississippi Valley Division New Orleans District 7400 Leake Ave. New Orleans, LA 70118-3651 Final Report Approved for public release; distribution is unlimited. Prepared for U.S. Army Corps of Engineers Washington, DC 20314-1000 Monitored by USACE Inland Navigation Design Center INDC TR-2018-03 ii Abstract This report provides a standardized approach for gauging the feasibility of potential solar, wind, and hydropower projects for application at U.S.
    [Show full text]
  • Coe Portland District (Nwp) Hydropower Projects
    Updated March 30, 2021. Use the appropriate district distribution list below when submitting a System Operational Request (SOR). COE PORTLAND DISTRICT (NWP) HYDROPOWER PROJECTS COE SEATTLE DISTRICT (NWS) HYDROPOWER PROJECTS Bonneville Dam & Lake on Columbia River Libby Dam & Lake Koocanusa on Kootenai River The Dalles Dam & Lake Celilo on Columbia River Hungry Horse Dam & Lake on South Fork Flathead River John Day Dam & Lake Umatilla on Columbia River Albeni Falls Dam & Pend Oreille Lake on Pend Oreille River Chief Joseph Dam and Rufus Woods Lake on Columbia River Corps of Engineers Northwestern Division (NWD) Corps of Engineers Northwestern Division (NWD) SEATTLE DISTRICT (NWS) PORTLAND DISTRICT (NWP) TO: TO: BG Pete Helmlinger COE-NWD-ZA Commander BG Pete Helmlinger COE-NWD-ZA Commander COL Alexander Bullock COE-NWS Commander COL Mike Helton COE-NWP Commander Jim Fredericks COE-NWD-PDD Chief Jim Fredericks COE-NWD-PDD Chief Steven Barton COE-NWD-PDW Chief Steven Barton COE-NWD-PDW Chief Tim Dykstra COE-NWD-PDD Tim Dykstra COE-NWD-PDD Julie Ammann COE-NWD-PDW-R Julie Ammann COE-NWD-PDW-R Doug Baus COE-NWD-PDW-R Doug Baus COE-NWD-PDW-R Aaron Marshall COE-NWD-PDW-R Aaron Marshall COE-NWD-PDW-R Lisa Wright COE-NWD-PDW-R Lisa Wright COE-NWD-PDW-R Jon Moen COE-NWS-ENH-W Tammy Mackey COE-NWP-OD Mary Karen Scullion COE-NWP-EC-HR Lorri Gray USBR-PN Regional Director Lorri Gray USBR-PN Regional Director John Roache USBR-PN-6208 John Roache USBR-PN-6208 Joel Fenolio USBR-PN-6204 Joel Fenolio USBR-PN-6204 John Hairston BPA Administrator Kieran Connolly BPA-PG-5 John Hairston BPA Administrator Scott Armentrout BPA-E-4 Kieran Connolly BPA-PG-5 Jason Sweet BPA-PGB-5 Scott Armentrout BPA-E-4 Eve James BPA-PGPO-5 Jason Sweet BPA-PGB-5 Tony Norris BPA-PGPO-5 Eve James BPA-PGPO-5 Scott Bettin BPA-EWP-4 Tony Norris BPA-PGPO-5 Tribal Liaisons: Jr.
    [Show full text]
  • SECTION 1: Pend Oreille COUNTY
    SECTION 1: Pend Oreille COUNTY DESCRIPTION OF PEND OREILLE COUNTY Just as the Rocky Mountains plunge into the United States on their majestic march from British Columbia, a western range called the Selkirk Mountains, runs in close parallel down into Idaho and Washington. This rugged spur offers exposed segments of the North American Continent and the Kootenay Arc, tectonic plates that began colliding over a billion years ago, and provides exceptional year-round settings for a variety of recreational opportunities. This lesser range is home to bighorn sheep, elk, moose, deer, bear, cougar, bobcats, mountain caribou, and several large predatory birds such as bald eagles and osprey. Not far from where these Selkirk Mountains end, Pend Oreille County begins its association with the Pend Oreille River. Pend Oreille County is a relatively small county that looks like the number “1” set in the northeast corner of the State of Washington. Pend Oreille County is 66 miles long and 22 miles wide. British Columbia is across the international border to the north. Spokane County and the regional trade center, the City of Spokane, lie to the south. Idaho’s Bonner and Boundary counties form the eastern border, and Stevens County, Washington forms the western border. (For a map of Pend Oreille County, see Appendix A) Encompassing more than 1400 square miles, most of Pend Oreille County takes the form of a long, forested river valley. This area, known as the Okanogan Highlands, is unique since it is the only area in the country where plant and animal species from both the Rocky Mountain Region and the Cascade Mountain region can be found.
    [Show full text]
  • 2018 Integrated Resource Plan
    DRAFT 2018 Integrated Resource Plan Public Utility District No. 1 of Benton County PREPARED IN COLLABORATION WITH Resolution No. XXXX Contents Chapter 1: Executive Summary ..................................................................................................................... 1 Obligations and Resources ........................................................................................................................ 1 Preferred Portfolio .................................................................................................................................... 4 Chapter 2: Load Forecast .............................................................................................................................. 6 Chapter 3: Current Resources ....................................................................................................................... 7 Overview of Existing Long-term Purchased Power Agreements ............................................................... 7 Frederickson 1 Generating Station ........................................................................................................ 7 Nine Canyon Wind ................................................................................................................................. 7 White Creek Wind Generation Project .................................................................................................. 8 Packwood Lake Hydro Project ..............................................................................................................
    [Show full text]
  • Chief Joseph Hatchery Program
    Chief Joseph Hatchery Program Draft Environmental Impact Statement DOE/EIS-0384 May 2007 Chief Joseph Hatchery Program Responsible Agency: U.S. Department of Energy, Bonneville Power Administration (BPA) Title of Proposed Project: Chief Joseph Hatchery Program Cooperating Tribe: Confederated Tribes of the Colville Reservation State Involved: Washington Abstract: The Draft Environmental Impact Statement (DEIS) describes a Chinook salmon hatchery production program sponsored by the Confederated Tribes of the Colville Reservation (Colville Tribes). BPA proposes to fund the construction, operation and maintenance of the program to help mitigate for anadromous fish affected by the Federal Columbia River Power System dams on the Columbia River. The Colville Tribes want to produce adequate salmon to sustain tribal ceremonial and subsistence fisheries and enhance the potential for a recreational fishery for the general public. The DEIS discloses the environmental effects expected from facility construction and program operations and a No Action alternative. The Proposed Action is to build a hatchery near the base of Chief Joseph Dam on the Columbia River for incubation, rearing and release of summer/fall and spring Chinook. Along the Okanogan River, three existing irrigation ponds, one existing salmon acclimation pond, and two new acclimation ponds (to be built) would be used for final rearing, imprinting and volitional release of chinook smolts. The Chief Joseph Dam Hatchery Program Master Plan (Master Plan, Northwest Power and Conservation Council, May 2004) provides voluminous information on program features. The US Army Corps of Engineers, Washington Department of Fish and Wildlife, Washington State Parks and Recreation Commission, Oroville-Tonasket Irrigation District, and others have cooperated on project design and siting.
    [Show full text]
  • The Revelstoke Dam: a Case Study of the Selection, Licensing and Implementation of a Large Scale Hydroelectric Project in British Columbia
    THE REVELSTOKE DAM: A CASE STUDY OF THE SELECTION, LICENSING AND IMPLEMENTATION OF A LARGE SCALE HYDROELECTRIC PROJECT IN BRITISH COLUMBIA By HEIDI ERIKA MISSLER B.A., The University of British Columbia, 1984 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF ARTS i n THE FACULTY OF GRADUATE STUDIES (Department of Geography) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA September 1988 QHeidi Erika Missler, 1988 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department The University of British Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date DE-6G/81) ABSTRACT Procedures for the selection, licensing and implementation of large scale energy projects must evolve with the escalating complexity of such projects and. the changing public value system. Government appeared unresponsive to rapidly changing conditions in the 1960s and 1970s. Consequently, approval of major hydroelectric development projects in British Columbia under the Water Act became increasingly more contentious. This led, in 1980, to the introduction of new procedures—the Energy Project Review Process (EPRP)— under the B.C. Utilities Commission Act.
    [Show full text]
  • Columbia River Treaty History and 2014/2024 Review
    U.S. Army Corps of Engineers • Bonneville Power Administration Columbia River Treaty History and 2014/2024 Review 1 he Columbia River Treaty History of the Treaty T between the United States and The Columbia River, the fourth largest river on the continent as measured by average annual fl ow, Canada has served as a model of generates more power than any other river in North America. While its headwaters originate in British international cooperation since 1964, Columbia, only about 15 percent of the 259,500 square miles of the Columbia River Basin is actually bringing signifi cant fl ood control and located in Canada. Yet the Canadian waters account for about 38 percent of the average annual volume, power generation benefi ts to both and up to 50 percent of the peak fl ood waters, that fl ow by The Dalles Dam on the Columbia River countries. Either Canada or the United between Oregon and Washington. In the 1940s, offi cials from the United States and States can terminate most of the Canada began a long process to seek a joint solution to the fl ooding caused by the unregulated Columbia provisions of the Treaty any time on or River and to the postwar demand for greater energy resources. That effort culminated in the Columbia River after Sept.16, 2024, with a minimum Treaty, an international agreement between Canada and the United States for the cooperative development 10 years’ written advance notice. The of water resources regulation in the upper Columbia River U.S. Army Corps of Engineers and the Basin.
    [Show full text]
  • Evaluation of Blade-Strike Modelsfor Estimating the Biological Performance Large Ofkaplan Hydro Turbines 3.3
    DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830 Printed in the United States of America Available to DOE and DOE contactors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: [email protected] Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161 ph: (800) 553-6847 fax: (703) 605-6900 email: [email protected] online ordering: http://www.ntis.gov/ordering.htm This document was printed on recycled paper. (9/2003) PNNL-15370 Evaluation of Blade-Strike Models for Estimating the Biological Performance of Large Kaplan Hydro Turbines Z.
    [Show full text]
  • Use of Passage Structures at Bonneville and John Day Dams by Pacific Lamprey, 2013 and 2014
    Technical Report 2015-11-DRAFT USE OF PASSAGE STRUCTURES AT BONNEVILLE AND JOHN DAY DAMS BY PACIFIC LAMPREY, 2013 AND 2014 by M.A. Kirk, C.C. Caudill, C.J. Noyes, E.L. Johnson, S.R. Lee, and M.L. Keefer Department of Fish and Wildlife Sciences University of Idaho, Moscow, ID 83844-1136 and H. Zobott, J.C. Syms, R. Budwig, and D. Tonina Center for Ecohydraulics Research University of Idaho Boise, ID 83702 for U.S. Army Corps of Engineers Portland District 2015 Technical Report 2015-11-DRAFT USE OF PASSAGE STRUCTURES AT BONNEVILLE AND JOHN DAY DAMS BY PACIFIC LAMPREY, 2013 AND 2014 by M.A. Kirk, C.C. Caudill, C.J. Noyes, E.L. Johnson, S.R. Lee, and M.L. Keefer Department of Fish and Wildlife Sciences University of Idaho, Moscow, ID 83844-1136 and H. Zobott, J.C. Syms, R. Budwig, and D. Tonina Center for Ecohydraulics Research University of Idaho Boise, ID 83702 for U.S. Army Corps of Engineers Portland District 2015 i Acknowledgements This project was financed by the U.S. Army Corps of Engineers, Portland District and was facilitated by Sean Tackley. We would like to thank Andy Traylor, Brian Bissell, Ida Royer, Ben Hausman, Miro Zyndol, Dale Klindt and the additional project biologists at Bonneville and John Day dams who provided on-site support. We would like to thank Dan Joosten, Kaan Oral, Inga Aprans, Noah Hubbard, Mike Turner, Robert Escobar, Kate Abbott, Matt Dunkle, Chuck Boggs, Les Layng, and Jeff Garnett from the University of Idaho for assisting with the construction, maintenance, and field sampling associated with both Lamprey Passage Structures (LPSs).
    [Show full text]
  • Hydropower Technologies Program — Harnessing America’S Abundant Natural Resources for Clean Power Generation
    U.S. Department of Energy — Energy Efficiency and Renewable Energy Wind & Hydropower Technologies Program — Harnessing America’s abundant natural resources for clean power generation. Contents Hydropower Today ......................................... 1 Enhancing Generation and Environmental Performance ......... 6 Large Turbine Field-Testing ............................... 9 Providing Safe Passage for Fish ........................... 9 Improving Mitigation Practices .......................... 11 From the Laboratories to the Hydropower Communities ..... 12 Hydropower Tomorrow .................................... 14 Developing the Next Generation of Hydropower ............ 15 Integrating Wind and Hydropower Technologies ............ 16 Optimizing Project Operations ........................... 17 The Federal Wind and Hydropower Technologies Program ..... 19 Mission and Goals ...................................... 20 2003 Hydropower Research Highlights Alden Research Center completes prototype turbine tests at their facility in Holden, MA . 9 Laboratories form partnerships to develop and test new sensor arrays and computer models . 10 DOE hosts Workshop on Turbulence at Hydroelectric Power Plants in Atlanta . 11 New retrofit aeration system designed to increase the dissolved oxygen content of water discharged from the turbines of the Osage Project in Missouri . 11 Low head/low power resource assessments completed for conventional turbines, unconventional systems, and micro hydropower . 15 Wind and hydropower integration activities in 2003 aim to identify potential sites and partners . 17 Cover photo: To harness undeveloped hydropower resources without using a dam as part of the system that produces electricity, researchers are developing technologies that extract energy from free flowing water sources like this stream in West Virginia. ii HYDROPOWER TODAY Water power — it can cut deep canyons, chisel majestic mountains, quench parched lands, and transport tons — and it can generate enough electricity to light up millions of homes and businesses around the world.
    [Show full text]