National Strategy for the Survival of Released Line-Caught Fish: Tropical Reef Species

Total Page:16

File Type:pdf, Size:1020Kb

National Strategy for the Survival of Released Line-Caught Fish: Tropical Reef Species Queensland the Smart State National strategy for the survival of released line-caught fish: tropical reef species I.W. Brown, W.D. Sumpton, M. McLennan, D.J. Welch, J. Kirkwood, A. Butcher, A. Mapleston1, D. Mayer, G. Begg1, M. Campbell, I. Halliday and W. Sawynok2. Queensland Department of Primary Industries and Fisheries 1 Fish and Fisheries Research Centre, James Cook University, Townsville 2 Australian National Sportfishing Association; Infofish Services, Rockhampton PROJECT REPORT PR07-3313 FRDC Project no. 2003/019 July 2008 National strategy for the survival of released line-caught fish: tropical reef species I.W. Brown, W.D. Sumpton, M. McLennan, D.J. Welch, J. Kirkwood, A. Butcher, A. Mapleston1, D. Mayer, G. Begg1, M. Campbell, I. Halliday and W. Sawynok2 Queensland Department of Primary Industries and Fisheries 1 Fish and Fisheries Research Centre, James Cook University, Townsville 2 Australian National Sportfishing Association; Infofish Services, Rockhampton Project No. 2003/019 National strategy for the survival of released line-caught fish: tropical reef species (FRDC 2003/019) I.W. Brown, W.D. Sumpton, M. McLennan, D.J. Welch, J. Kirkwood, A. Butcher, A. Mapleston, D. Mayer, G. Begg, M. Campbell, I. Halliday and W. Sawynok. Published by the Department of Primary Industries and Fisheries, Queensland. © Fisheries Research and Development Corporation, the Queensland Department of Primary Industries and Fisheries, and the Reef and Rainforest Research Centre Limited (2008). This work is copyright. Except as permitted by the Copyright Act 1968 (Commonwealth), reproduction by any means (photocopying, electronic, mechanical, recording or otherwise), making available on-line, electronic transmission or other publication of this material is prohibited without the specific prior written permission of the copyright owners. Neither may information be stored electronically in any form whatsoever without such permission. The Department of Primary Industries and Fisheries (DPI&F) seeks to maximise the economic potential of Queensland’s primary industries on a sustainable basis. The Fisheries Research and Development Corporation plans, invests in and manages fisheries research and development throughout Australia. It is a statutory authority within the portfolio of the federal Minister for Agriculture, Fisheries and Forestry, jointly funded by the Australian Government and the fishing industry. This publication has been compiled by Dr Ian W Brown (Southern Fisheries Centre, Department of Primary Industries and Fisheries). While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of data, information, statement or advice, expressed or implied, contained in this report. The authors do not warrant that that the information in this publiction is free from errors or omissions. Nor do the authors accept any form of liability, be it contractual, tortious or otherwise, for the contents of this publication or for any consequences arising from its use or any reliance placed upon it. The information, opinions and advice contained in this publication may not relate to, or be relevant to, a reader’s particular circumstances. Opinions expressed by the authors are the individual opinions of those persons and are not necessarily those of the publisher or research provider. PR07-3313 ISBN 978 0 7345 0393 0 Enquiries should be addressed to: Intellectual Property and Commercialisation Unit Department of Primary Industries and Fisheries GPO Box 46 Brisbane Qld 4001 or [email protected] Tel.: +61 7 3404 6999 TABLE OF CONTENTS List of Figures………………………………………………………………………………………………v List of Tables ……………………………………………………………………………………………...ix Objectives ...………………...………………………………………………………………………….... xv Non-Technical Summary…………………...…………………………………………….……………….xv Acknowledgements…………………...……………………...………………………...……………….xviii Background…………………...…………………………………………..…………………………….xviii Need…………………...……………………………………………………………………………….…xix Chapter 1. EFFECT OF BAROTRAUMA-RELIEF PROCEDURES ON THE SHORT-TERM SURVIVAL OF RELEASED LINE-CAUGHT RED EMPEROR (Lutjanus sebae). ...........................1 1.1 ABSTRACT ................................................................................................................................................ 1 1.2 INTRODUCTION....................................................................................................................................... 1 1.3 MATERIALS AND METHODS ................................................................................................................ 4 1.3.1 Experimental site selection...................................................................................................................... 4 1.3.2 Experimental design: small cage and large vertical enclosure comparison............................................. 5 1.3.3 Apparatus design..................................................................................................................................... 5 Experiment A: Comparison of cages and vertical enclosures.......................................................................... 6 Experiment B: Effect of release method on survival. ...................................................................................... 7 1.3.4 Data analysis ........................................................................................................................................... 8 1.4 RESULTS.................................................................................................................................................... 8 1.4.1 Experiment A: Comparison of cages and vertical enclosures. ................................................................ 8 Deployment of apparatus ................................................................................................................................. 8 Experimental apparatus comparison ................................................................................................................ 9 1.4.2 Experiment B: Effect of release method on survival............................................................................... 9 Comparison of barotrauma-relief release methods .......................................................................................... 9 Effect of capture depth and body size on barotrauma.................................................................................... 11 Multiple recaptures of tagged red emperor .................................................................................................... 14 1.5 DISCUSSION............................................................................................................................................ 14 1.6 ACKNOWLEDGEMENTS....................................................................................................................... 16 1.7 REFERENCES.......................................................................................................................................... 16 Chapter 2. DOES BAROTRAUMA-RELIEF REDUCE SHORT TERM POST-RELEASE MORTALITY OF LINE-CAUGHT REEF FISH?................................................................................20 2.1 ABSTRACT .............................................................................................................................................. 20 2.2 INTRODUCTION..................................................................................................................................... 21 2.3 MATERIALS AND METHODS .............................................................................................................. 22 2.3.1 Site selection ......................................................................................................................................... 22 2.3.2 Experimental design.............................................................................................................................. 22 2.3.3 Apparatus design................................................................................................................................... 22 2.3.4 Operational details ................................................................................................................................ 22 2.3.5 Data analysis ......................................................................................................................................... 24 2.3.6 Release capsule – preliminary trials...................................................................................................... 24 ____________________________________________________________________________________________________________________ Page i FRDC Project 2003/019 2.4 RESULTS ................................................................................................................................................. 25 2.4.1 General overview of sample characteristics.......................................................................................... 25 2.4.2 Sample sizes and losses ........................................................................................................................ 25 2.4.3 Size-structure of experimental samples ................................................................................................ 26 2.4.4 Capture depth of samples.....................................................................................................................
Recommended publications
  • View/Download
    SPARIFORMES · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 4.0 - 13 Feb. 2021 Order SPARIFORMES 3 families · 49 genera · 283 species/subspecies Family LETHRINIDAE Emporerfishes and Large-eye Breams 5 genera · 43 species Subfamily Lethrininae Emporerfishes Lethrinus Cuvier 1829 from lethrinia, ancient Greek name for members of the genus Pagellus (Sparidae) which Cuvier applied to this genus Lethrinus amboinensis Bleeker 1854 -ensis, suffix denoting place: Ambon Island, Molucca Islands, Indonesia, type locality (occurs in eastern Indian Ocean and western Pacific from Indonesia east to Marshall Islands and Samoa, north to Japan, south to Western Australia) Lethrinus atkinsoni Seale 1910 patronym not identified but probably in honor of William Sackston Atkinson (1864-ca. 1925), an illustrator who prepared the plates for a paper published by Seale in 1905 and presumably the plates in this 1910 paper as well Lethrinus atlanticus Valenciennes 1830 Atlantic, the only species of the genus (and family) known to occur in the Atlantic Lethrinus borbonicus Valenciennes 1830 -icus, belonging to: Borbon (or Bourbon), early name for Réunion island, western Mascarenes, type locality (occurs in Red Sea and western Indian Ocean from Persian Gulf and East Africa to Socotra, Seychelles, Madagascar, Réunion, and the Mascarenes) Lethrinus conchyliatus (Smith 1959) clothed in purple, etymology not explained, probably referring to “bright mauve” area at central basal part of pectoral fins on living specimens Lethrinus crocineus
    [Show full text]
  • Lethrinus Reticulatus Valenciennes, 1830 Frequent Synonyms / Misidentifications: None / None
    click for previous page Perciformes: Percoidei: Lethrinidae 3041 Lethrinus reticulatus Valenciennes, 1830 Frequent synonyms / misidentifications: None / None. FAO names: En - Redsnout emperor. Diagnostic characters: Body moderately elongate, its depth 2.8 to 3.3 times in standard length. Head length 1.1 to 1.2 times in body depth, 2.5 to 2.8 times in standard length, dorsal profile near eye convex or nearly straight; snout length about 1.9 to 2.4 times in head length, measured without the lip the snout is 0.8 to 0.9 times in cheek height, its dorsal profile concave, snout angle relative to upper jaw between 50° and 60°; interorbital space flat or concave; posterior nostril a longitudinal oblong opening, closer to orbit than anterior nostril; eye situated close to dorsal profile, its length 3.3 to 4.3 times in head length; cheek height 2.7 to 3.4 times in head length; lateral teeth in jaws conical; outer surface of maxilla usually smooth. Dorsal fin with X spines and 9 soft rays, the third dorsal-fin spine the longest, its length 2 to 2.8 times in body depth; anal fin with III spines and 8 soft rays, the first soft ray usually the longest, its length almost equal to, shorter, or slightly longer than length of base of soft-rayed portion of anal fin and 1.4 to 1.8 times in length of entire anal-fin base; pectoral-fin rays 13; pelvic-fin membranes between rays closest to body without dense melanophores. Lateral-line scales 46 to 48; cheek without scales; 4 ½ scale rows between lateral line and base of middle dorsal-fin spines; 15 or 16 scale rows in transverse series between origin of anal fin and lateral line; usually 15 rows in lower series of scales around caudal peduncle; 7 to 10 scales in supratemporal patch; inner surface of pectoral-fin base without scales; posterior angle of operculum fully scaly.
    [Show full text]
  • Catch and Effort Data
    Chapter 11: The Inland Waters River Fishery Information System CHAPTER 11: INLAND WATERS RIVER FISHERY INFORMATION SYSTEM 11.1 Background The Inland Waters River fishery is a multi-species, multi-gear fishery encompassing the South Australian sector of the River Murray and its backwaters (Map 11.1). Historically, the fishery was based on harvesting Murray cod (Maccullochella peelii peelii), golden perch (Macquaria ambigua), and bony bream (Nematalosa erebi). The fishery was restructured in July 2003 to a non-native dominate fishery and the commercial fishing for significant native species is now prohibited. The fishery is now based predominantly on the taking European carp (Cyprinus carpio) and redfin perch (Perca fluviatilis). There are a total of 6 licence holders who operate within the fishery. Prior to the restructure 30 license holders fished the river, each with a designated reach. Up to December 2007 SARDI production tables hold in excess of 270,000 daily records. Data is held from 1984/85 to current and is continually being updated. Refer to Figure 11.3 for an entity relationship diagram of the inland waters system that encompasses the River Fishery. South Australian Aquatic Sciences: Information Systems and Database Support Program SARDI Aquatic Sciences Information Systems Quality Assurance and Data Integrity Report (June 2009) 81 Chapter 11: The Inland Waters River Fishery Information System Map 11.1: The inland waters river fishery – River Murray area designations. South Australian Aquatic Sciences: Information Systems and Database Support Program SARDI Aquatic Sciences Information Systems Quality Assurance and Data Integrity Report (June 2009) 82 Chapter 11: The Inland Waters River Fishery Information System 11.2 Research Logbook Information Each licence holder is required to submit a daily fishing return by the 15th day of each month detailing their fishing activities for the previous month (Figure 11.1).
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Appendices Appendices
    APPENDICES APPENDICES APPENDIX 1 – PUBLICATIONS SCIENTIFIC PAPERS Aidoo EN, Ute Mueller U, Hyndes GA, and Ryan Braccini M. 2015. Is a global quantitative KL. 2016. The effects of measurement uncertainty assessment of shark populations warranted? on spatial characterisation of recreational fishing Fisheries, 40: 492–501. catch rates. Fisheries Research 181: 1–13. Braccini M. 2016. Experts have different Andrews KR, Williams AJ, Fernandez-Silva I, perceptions of the management and conservation Newman SJ, Copus JM, Wakefield CB, Randall JE, status of sharks. Annals of Marine Biology and and Bowen BW. 2016. Phylogeny of deepwater Research 3: 1012. snappers (Genus Etelis) reveals a cryptic species pair in the Indo-Pacific and Pleistocene invasion of Braccini M, Aires-da-Silva A, and Taylor I. 2016. the Atlantic. Molecular Phylogenetics and Incorporating movement in the modelling of shark Evolution 100: 361-371. and ray population dynamics: approaches and management implications. Reviews in Fish Biology Bellchambers LM, Gaughan D, Wise B, Jackson G, and Fisheries 26: 13–24. and Fletcher WJ. 2016. Adopting Marine Stewardship Council certification of Western Caputi N, de Lestang S, Reid C, Hesp A, and How J. Australian fisheries at a jurisdictional level: the 2015. Maximum economic yield of the western benefits and challenges. Fisheries Research 183: rock lobster fishery of Western Australia after 609-616. moving from effort to quota control. Marine Policy, 51: 452-464. Bellchambers LM, Fisher EA, Harry AV, and Travaille KL. 2016. Identifying potential risks for Charles A, Westlund L, Bartley DM, Fletcher WJ, Marine Stewardship Council assessment and Garcia S, Govan H, and Sanders J.
    [Show full text]
  • Elephant Fish
    Best Fish Guide 2009-2010 How sustainable is New Zealand seafood? (Ecological Assessments) Produced and Published by Royal Forest and Bird Protection Society of New Zealand, Inc. PO Box 631, Level One, 90 Ghuznee Street, Wellington. www.forestandbird.org.nz November 2009 Acknowledgements Forest & Bird with to thank anonymous reviewers for their peer review comments on this draft. We also thank Peta Methias, Annabel Langbein, Martin Bosely, Margaret Brooker, Lois Daish, Kelder Haines, Dobie Blaze, Rohan Horner and Ray McVinnie for permission to use their recipes on the website. Special thanks to our Best Fish Guide Ambassador Dobie Blaze, keyboard player with Fat Freddy’s Drop. Editing: Kirstie Knowles, Barry Weeber and Helen Bain Technical Advisor: Barry Weeber Cover Design: Rob Deliver Cover fish (Tarakihi): Malcolm Francis Photography: Malcolm Francis: blue cod, blue moki, blue shark, butterfish, groper/hapuku, hoki, jack mackerel, john dory, kahawai, kingfish, leather jacket, moonfish, paua, porbeagle shark, red gurnard, red snapper, scallop, school shark, sea perch, snapper, spiny dogfish, tarakihi, trevally and trumpeter. Peter Langlands: blue warehou, cockles, elephantfish, frostfish, lookdown dory, oyster, pale ghost shark, queen scallops, red cod, rig/lemonfish, rubyfish and scampi. Ministry of Fisheries: albacore tuna, bigeye tuna, blue mackerel, pacific bluefin tuna, skipjack tuna, southern bluefin tuna and swordfish. John Holdsworth: gemfish, striped marlin and yellowfin tuna. Kirstie Knowles: sand flounder and rock lobster. Department of Conservation: kina and skate. Quentin Bennett: mako shark. Scott Macindoe: garfish. Jim Mikoz: yellow-eyed mullet. Forest & Bird: arrow squid, dark ghost shark, orange roughy, smooth oreo, packhorse lobster, paddle crabs, stargazer and white warehou.
    [Show full text]
  • Targeted Review of Biological and Ecological Information from Fisheries Research in the South East Marine Region
    TARGETED REVIEW OF BIOLOGICAL AND ECOLOGICAL INFORMATION FROM FISHERIES RESEARCH IN THE SOUTH EAST MARINE REGION FINAL REPORT B. D. Bruce, R. Bradford, R. Daley, M. Green and K. Phillips December 2002 Client: National Oceans Office Targeted review of biological and ecological information from fisheries research in the South East Marine Region Final Report B. D. Bruce, R. Bradford, R. Daley M. Green and K. Phillips* CSIRO Marine Research, Hobart * National Oceans Office December 2002 2 Table of Contents: Table of Contents:...................................................................................................................................3 Introduction.............................................................................................................................................5 Objective of review.............................................................................................................................5 Structure of review..............................................................................................................................5 Format.................................................................................................................................................6 General ecological/biological issues and uncertainties for the South East Marine Region ....................9 Specific fishery and key species accounts ............................................................................................10 South East Fishery (SEF) including the South East Trawl
    [Show full text]
  • Table of Fishes of Sydney Harbour 2019
    Table of Fishes of Sydney Harbour 2019 Family Family/Com Species Species Common Notes mon Name Name Acanthuridae Surgeonfishe Acanthurus Eyestripe close s dussumieri Surgeonfish to southern li mit Acanthuridae Acanthurus Orangebloch close to olivaceus Surgeonfish southern limit Acanthuridae Acanthurus Convict close to triostegus Surgeonfish southern limit Acanthuridae Acanthurus Yellowmask xanthopterus Surgeonfish Acanthuridae Paracanthurus Blue Tang not included hepatus in species count Acanthuridae Prionurus Spotted Sawtail maculatus Acanthuridae Prionurus Australian Sawtail microlepidotus Ambassidae Glassfishes Ambassis Port Jackson jacksoniensis glassfish Ambassidae Ambassis marianus Estuary Glassfish Anguillidae Freshwater Anguilla australis Shortfin Eel Eels Anguillidae Anguilla reinhardtii Longfinned Eel Antennariidae Anglerfishes Antennarius Freckled Anglerfish southern limit coccineus Antennariidae Antennarius Giant Anglerfish close to commerson southen limit Antennariidae Antennarius Shaggy Anglerfish southern limit hispidus Antennariidae Antennarius pictus Painted Anglerfish Antennariidae Antennarius striatus Striate Anglerfish Table of Fishes of Sydney Harbour 2019 Antennariidae Histrio histrio Sargassum close to Anglerfish southen limit Antennariidae Porophryne Red-fingered erythrodactylus Anglerfish Aploactinidae Velvetfishes Aploactisoma Southern Velvetfish milesii Aploactinidae Cocotropus Patchwork microps Velvetfish Aploactinidae Paraploactis Bearded Velvetfish trachyderma Aplodactylidae Seacarps Aplodactylus Rock Cale
    [Show full text]
  • A Sampling Programme to Construct and Quantify Fish Food-Webs on the Chatham Rise
    A sampling programme to construct and quantify fish food-webs on the Chatham Rise Mary Livingston Matt Pinkerton Final Research Report for Ministry of Fisheries Research Project ENV2002-07 Objective 1 National Institute of Water and Atmospheric Research September 2004 Final Research Report Report Title: A sampling programme to construct and quantify food-webs on the Chatham Rise Authors: Mary Livingston, Matt Pinkerton 1. Date: 23 September 2004 2. Contractor: NIWA 3. Project Title: Energetics and trophic relationships of fish and invertebrate species. 4. Project Code: ENV2002-07 5. Project Leader: Dr Mary Livingston 6. Duration of Project: Start date: March 2003 Completion date: September 2004 7. Executive Summary The energetics and trophic interactions of fish and invertebrates are not well studied in New Zealand, particularly in offshore fish communities. This report presents the rationale for determining the diet of hoki and other species that form 95% of the middle depth fish biomass on the Chatham Rise, an area of relatively high commercial fishing activity, rich biodiversity and high productivity. The ontogenetic, seasonal, annual, and spatial variation in predator-prey relationships will be investigated through the reconstruction of fish diet compositions and daily consumption for major predators, based primarily on stomach contents of fish on the Chatham Rise. The resulting information will provide baseline biological information on the feeding habits and annual consumption rates of the more abundant fish species found in middle depths (200-800 m) on the Chatham Rise. This diet composition and consumption information will be used to estimate dietary overlap and potential competition between predators. It will also be used as input to ecosystem models that describe temporal and spatial variation in energy fluxes on the Chatham Rise.
    [Show full text]
  • Australia: Reconstructing Estimates of Total Fisheries Removal, 1950-2010
    Fisheries Centre The University of British Columbia Working Paper Series Working Paper #2015 - 02 Australia: Reconstructing estimates of total fisheries removal, 1950-2010 Kristin Kleisner, Ciara Brennan, Anna Garland, Stephanie Lingard, Sean Tracey, Phil Sahlqvist, Angelo Tsolos, Daniel Pauly, and Dirk Zeller Year: 2015 Email: [email protected] ; [email protected] This working paper is made available by the Fisheries Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada. Australia - Kleisner et al. 1 AUSTRALIA: RECONSTRUCTING ESTIMATES OF TOTAL FISHERIES REMOVALS 1950-2010 Kristin Kleisnera, Ciara Brennana, Anna Garlandb, Stephanie Lingarda, Sean Traceyc, Phil Sahlqvistd, Angelo Tsolose, Daniel Paulya, and Dirk Zellera a Sea Around Us, Fisheries Centre, University of British Columbia, 2202 Main Mall, Vancouver, V6T 1Z4, Canada b Fisheries Queensland, Department of Agriculture, Fisheries and Forestry, GPO Box 46, Brisbane, Qld 4001, Australia c Institute for Marine and Antarctic Studies, University of Tasmania, Private bag 49, Hobart, Tasmania 7001, Australia d Fisheries and Risk Analysis Branch, ABARES, GPO Box 1563, Canberra ACT 2601, Australia e SARDI SA Aquatic Sciences Centre, Fisheries – Information Services, PO Box 120, Henley Beach, SA 5022 Australia [email protected]; kristen.kleisner @noaa.gov; c [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected] ; [email protected] ABSTRACT Australia’s commercial fisheries are of significant value to the Australian economy, with the twenty Commonwealth fisheries alone worth around AUD$320 million in production value.
    [Show full text]
  • Commercial Fish ELISA Kits Have a Limited Capacity to Detect Different Fish Species and Their Products
    Ruethers Thimo (Orcid ID: 0000-0002-0856-3452) Koeberl Martina (Orcid ID: 0000-0002-1790-743X) Commercial fish ELISA kits have a limited capacity to detect different fish species and their products Short title: Limited capacity of detecting fish utilizing ELISA technology Authorship: Thimo Ruethersa,b,c,d, Aya C. Takia,b,c,d, Jasmit Khangurhae, James Robertse, Saman Buddhadasae, Dean Clarkee, Claire E. Hedgese, Dianne E. Campbellb,f,g, Sandip D. Kamatha,b,c,d, Andreas L. Lopataa,b,c,d, Martina Koeberle† Authors’ Affiliation aMolecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, 1 James Cook Dr, Douglas, Queensland 4814, Australia; bCentre for Food and Allergy Research, Murdoch Children’s Research Institute, Flemington Rd, Parkville, Victoria 3052, Australia; cAustralian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Dr, Douglas, Queensland 4814, Australia; dCentre for Sustainable Tropical Fisheries and Aquaculture, Faculty of Science and Engineering, James Cook University, 1 James Cook Dr, Douglas, Queensland 4814, Australia; eNational Measurement Institute, 1/153 Bertie Street, Port Melbourne, Victoria 3207, Australia fChildren’s Hospital at Westmead, Allergy and Immunology, Locked Bag, Westmead, New South Wales 2145, Australia; This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences
    [Show full text]
  • Using a Collaborative Data Collection Method to Update Life-History Values for Snapper And
    bioRxiv preprint doi: https://doi.org/10.1101/655571; this version posted May 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Using a collaborative data collection method to update life-history values for snapper and 2 grouper in Indonesia’s deep-slope demersal fishery 3 4 Elle Wibisono1*, Peter Mous2, Austin Humphries1,3 5 1 Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, 6 Kingston, Rhode Island, USA 7 2 The Nature Conservancy Indonesia Fisheries Conservation Program, Bali, Indonesia 8 3 Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, 9 USA 10 11 12 *Corresponding author 13 E-mail: [email protected] (EW) 14 15 1 bioRxiv preprint doi: https://doi.org/10.1101/655571; this version posted May 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 16 Abstract 17 The deep-slope demersal fishery that targets snapper and grouper species is an important fishery 18 in Indonesia. Boats operate at depths between 50-500 m using drop lines and bottom long lines. 19 There are few data, however, on the basic characteristics of the fishery which impedes accurate 20 stock assessments and the establishment of harvest control rules.
    [Show full text]