Almost Periodicity in Shifts Delta(+/-) on Time Scales and Its Application to Hopfield Neural Networks

Total Page:16

File Type:pdf, Size:1020Kb

Almost Periodicity in Shifts Delta(+/-) on Time Scales and Its Application to Hopfield Neural Networks Engineering Letters, 29:3, EL_29_3_06 ______________________________________________________________________________________ Almost Periodicity in Shifts Delta(+/-) on Time Scales and Its Application to Hopfield Neural Networks Meng Hu, and Lili Wang Abstract—In this paper, we first give three definitions with the definitions and the properties of shifts δ±, some basic results aid of the shift operators δ, that is, almost periodicity in shifts on almost periodic differential equations in shifts δ± on time δ, almost periodic function in shifts δ and ∆-almost periodic scales are established. Moreover, we applying the obtained function in shifts δ, then by using the theory of calculus on time scales and some mathematical methods, the existence and results to study a class of Hopfield neural networks on time scales as follows uniqueness theorem of solution of linear dynamic system on 8 almost periodic time scale in shifts δ is obtained. Finally, Pn > ∆ − we applying the obtained results to study the existence and > yi (t) = ai(t)yi(t) + cij(t)gj(yj(t)) exponential stability of the almost periodic solution in shifts < j=1 Pn δ of a class of Hopfield neural networks with delays, several (1) > + dij(t)fj(yj(δ−(τij; t))) + Ii(t); examples and numerical simulations are given to illustrate and > j=1 reinforce the main results. : yi(s) = ϕi(s); s 2 [δ−(^τ; t0); t0]T; i 2 N; Index Terms—Almost periodic time scale in shifts δ; Expo- nential dichotomy; Hopfield neural networks; Almost periodic where t 2 T, T is an almost periodic time scale in shifts solution in shifts δ; Global exponential stability. δ±, N = f1; 2; : : : ; ng, the integer n corresponds to the number of units in (1); yi(t) corresponds to the state of the I. INTRODUCTION ith unit at time t; ai(t) > 0 represents the passive decay rate; c and d weight the strength of jth unit on the ith T is well known that almost periodicity plays an im- ij ij unit at time t; I (t) is the input to the ith unit at time t from portant role in dynamic systems both theoretical study i I outside the networks; g and f denote activation functions and practical applications, see [1-6]. In recent years, with i i of transmission; the function δ−(·; t) is a delay function the development of the theory of time scales (see [7,8]), generated by the backward shift operator δ− on time scale the existence and stability of almost periodic solutions of T, τ corresponds to the signal transmission delay along the dynamic equations on time scales received many researchers’ ij axon of the jth unit which is nonnegative and bounded, and special attention; see, for example, [9-12]. In these works, τ^ = maxfτijg. the almost periodic time scale T satisfies the condition i;j2N “t ± s 2 T; 8t 2 T, s is the translation constant”. Under this condition all almost periodic time scales are unbounded II. ALMOST PERIODICITY IN SHIFTS δ± below and above. However, there are many time scales such T R as qZ = fqn : q > 1 is constant and n 2 Zg [ f0g which Let is a nonempty closed subset (time scale) of . The σ; ρ : T ! T is neither closed under the operation t ± s nor unbounded forward and backward jump operators and the µ T ! R+ below. Therefore, almost periodicity on time scales need to graininess : are defined, respectively, by be explored further. σ(t) = inffs 2 T : s > tg; ρ(t) = supfs 2 T : s < tg; In [13-16], Adıvar et al. defined two shift operators, i.e. µ(t) = σ(t) − t: δ+ (forward shift operator) and δ− (backward shift operator), which does not oblige the time scale to be closed under the A point t 2 T is called left-dense if t > inf T and ρ(t) = t, ± operations t s. The applications of the shift operators δ± left-scattered if ρ(t) < t, right-dense if t < sup T and σ(t) = on time scales; see, for example, [17-19]. Motivated by the t, and right-scattered if σ(t) > t. If T has a left-scattered above works, the main purpose of this paper is to define maximum m, then Tk = Tnfmg; otherwise Tk = T. If a new almost periodicity concept with the aid of the shift T has a right-scattered minimum m, then Tk = Tnfmg; operators δ±. We first give three definitions, that is, almost otherwise Tk = T. periodicity in shifts δ±, almost periodic function in shifts A function f : T ! R is right-dense continuous provided δ± and ∆-almost periodic function in shifts δ±. Under the it is continuous at right-dense point in T and its left-side T Manuscript received January 25, 2021; revised April 26, 2021. This work limits exist at left-dense points in . If f is continuous at was supported in part by the Key Scientific Research Project of Colleges and each right-dense point and each left-dense point, then f is Universities of Henan Province (No.21A110001) and the National Natural said to be a continuous function on T. Science Foundation of China (No.11801011). T ! R Meng Hu is an associate professor in the School of Mathematics and A function p : is called regressive provided 1 + Statistics, Anyang Normal University, Anyang, Henan 455000, China (Cor- µ(t)p(t) =6 0 for all t 2 Tk. The set of all regressive and responding author; e-mail: [email protected]). rd-continuous functions p : T ! R will be denoted by R = Lili Wang is a lecturer in the School of Mathematics and Statistic- R T R R+ R+ T R f 2 R s, Anyang Normal University, Anyang, Henan 455000, China (e-mail: ( ; ). We define the set = ( ; ) = p : ay [email protected]). 1 + µ(t)p(t) > 0; 8 t 2 Tg. Volume 29, Issue 3: September 2021 Engineering Letters, 29:3, EL_29_3_06 ______________________________________________________________________________________ l(") If r is a regressive function, then the generalized expo- that in any interval of length δ± (·), there exists at least a nential function er is defined by p 2 Ef"; fg such that { Z } t p ∗ jf(δ±(t)) − f(t)j < "; 8t 2 T ; er(t; s) = exp ξµ(τ)(r(τ))∆τ s p where δ± := δ±(p; t), p is called the "-translation constant for all s; t 2 T, with the cylinder transformation of f, l(") is called the inclusion length of Ef"; fg. { Log(1+hz) 6 2 1 ∗ h ; if h = 0; Remark 2. In Definition 2, if there exists a ! [!T; + )T ξh(z) = ! ∗ z; if h = 0: and ! 2 Ef"; fg such that f(δ±(t)) = f(t); 8t 2 T , the smallest constant ! is called the period of f. Let p; q : T ! R are two regressive functions, define p p Remark 3. If T = R or T = Z, then the operator δ±(t)) = p ⊕ q = p + q + µp q; ⊖p = − ; p ⊖ q = p ⊕ (⊖q): ± 1 + µp t p associated with the initial point t0 = 0, then Definition 2 is converted to the traditional definition of almost periodic T ! R Lemma 1. ([7]) Assume that p; q : are two regressive function on R or Z. functions, then (i) e0(t; s) ≡ 1 and ep(t; t) ≡ 1; Now, we give two examples to illustrate the Definition 2 (ii) ep(σ(t); s) = (1 + µ(t)p(t))ep(t; s); is more generality. 1 T R (iii) ep(t; s) = = e⊖p(s; t); Example 1. Let = and t0 = 1. The operators ep(s;t) { (iv) ep(t; s)ep(s; r) = ep(t; r); t ; if t ≥ 0; ∆ ⊖ δ−(p; t) = p for p 2 [1; +1) (v) (Re⊖p(t; s)) = ( p)(t)e⊖p(t; s); b pt; if t < 0; (vi) p(t)ep(c; σ(t))∆t = ep(c; a) − ep(c; b). a and { δ± A comprehensive review on the shift operators on time pt; if t ≥ 0; δ (p; t) = for p 2 [1; +1) scales can be found in [13-16]. + t ; if t < 0; Let T∗ is a non-empty subset of the time scale T and p ∗ ∗ t0 2 T is a fixed constant, define operators δ± :[t0; +1)× are backward and forward shift operators (on the set R = ∗ ∗ ∗ T ! T . The operators δ+ and δ− associated with t0 2 T R − f0g) associated with the initial point t0 = 1. (called the initial point) are said to be forward and backward Consider the function ∗ ( ) shift operators on the set T , respectively. The variable s 2 ln jtj f(t) = cos π ; t 2 R∗: [t0; +1)T in δ±(s; t) is called the shift size. The values 1 ∗ ln( 2 ) δ+(s; t) and δ−(s; t) in T indicate s units translation of the 2 T∗ By direct computation, term t to the right and the left, respectively. The sets { ±1 ≥ D f 2 1 × T∗ 2 T∗g p f(tp ); if t 0; ± := (s; t) [t0; + )T : δ±(s; t) f(δ±(t)) = t f( ±1 ); if t < 0; ( p ) are the domains of the shift operator δ±, respectively. Here- j j ± 1 ∗ ln t ln( ) after, T is the largest subset of the time scale T such that = cos p π 1 × T∗ ! T∗ ln( 1 ) the shift operators δ± :[t0; + ) exist. ( 2 ) Next, we give three definitions with the aid of the shift ln jtj ln( 1 ) = cos π ± p π : operators δ±, that is, almost periodicity in shifts δ±, almost 1 1 ln( 2 ) ln( 2 ) periodic function in shifts δ± and ∆-almost periodic function 2n 2 Z in shifts δ±.
Recommended publications
  • Functional Analysis Lecture Notes Chapter 2. Operators on Hilbert Spaces
    FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 2. OPERATORS ON HILBERT SPACES CHRISTOPHER HEIL 1. Elementary Properties and Examples First recall the basic definitions regarding operators. Definition 1.1 (Continuous and Bounded Operators). Let X, Y be normed linear spaces, and let L: X Y be a linear operator. ! (a) L is continuous at a point f X if f f in X implies Lf Lf in Y . 2 n ! n ! (b) L is continuous if it is continuous at every point, i.e., if fn f in X implies Lfn Lf in Y for every f. ! ! (c) L is bounded if there exists a finite K 0 such that ≥ f X; Lf K f : 8 2 k k ≤ k k Note that Lf is the norm of Lf in Y , while f is the norm of f in X. k k k k (d) The operator norm of L is L = sup Lf : k k kfk=1 k k (e) We let (X; Y ) denote the set of all bounded linear operators mapping X into Y , i.e., B (X; Y ) = L: X Y : L is bounded and linear : B f ! g If X = Y = X then we write (X) = (X; X). B B (f) If Y = F then we say that L is a functional. The set of all bounded linear functionals on X is the dual space of X, and is denoted X0 = (X; F) = L: X F : L is bounded and linear : B f ! g We saw in Chapter 1 that, for a linear operator, boundedness and continuity are equivalent.
    [Show full text]
  • 18.102 Introduction to Functional Analysis Spring 2009
    MIT OpenCourseWare http://ocw.mit.edu 18.102 Introduction to Functional Analysis Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 108 LECTURE NOTES FOR 18.102, SPRING 2009 Lecture 19. Thursday, April 16 I am heading towards the spectral theory of self-adjoint compact operators. This is rather similar to the spectral theory of self-adjoint matrices and has many useful applications. There is a very effective spectral theory of general bounded but self- adjoint operators but I do not expect to have time to do this. There is also a pretty satisfactory spectral theory of non-selfadjoint compact operators, which it is more likely I will get to. There is no satisfactory spectral theory for general non-compact and non-self-adjoint operators as you can easily see from examples (such as the shift operator). In some sense compact operators are ‘small’ and rather like finite rank operators. If you accept this, then you will want to say that an operator such as (19.1) Id −K; K 2 K(H) is ‘big’. We are quite interested in this operator because of spectral theory. To say that λ 2 C is an eigenvalue of K is to say that there is a non-trivial solution of (19.2) Ku − λu = 0 where non-trivial means other than than the solution u = 0 which always exists. If λ =6 0 we can divide by λ and we are looking for solutions of −1 (19.3) (Id −λ K)u = 0 −1 which is just (19.1) for another compact operator, namely λ K: What are properties of Id −K which migh show it to be ‘big? Here are three: Proposition 26.
    [Show full text]
  • 5 Toeplitz Operators
    2008.10.07.08 5 Toeplitz Operators There are two signal spaces which will be important for us. • Semi-infinite signals: Functions x ∈ ℓ2(Z+, R). They have a Fourier transform g = F x, where g ∈ H2; that is, g : D → C is analytic on the open unit disk, so it has no poles there. • Bi-infinite signals: Functions x ∈ ℓ2(Z, R). They have a Fourier transform g = F x, where g ∈ L2(T). Then g : T → C, and g may have poles both inside and outside the disk. 5.1 Causality and Time-invariance Suppose G is a bounded linear map G : ℓ2(Z) → ℓ2(Z) given by yi = Gijuj j∈Z X where Gij are the coefficients in its matrix representation. The map G is called time- invariant or shift-invariant if it is Toeplitz , which means Gi−1,j = Gi,j+1 that is G is constant along diagonals from top-left to bottom right. Such matrices are convolution operators, because they have the form ... a0 a−1 a−2 a1 a0 a−1 a−2 G = a2 a1 a0 a−1 a2 a1 a0 ... Here the box indicates the 0, 0 element, since the matrix is indexed from −∞ to ∞. With this matrix, we have y = Gu if and only if yi = ai−juj k∈Z X We say G is causal if the matrix G is lower triangular. For example, the matrix ... a0 a1 a0 G = a2 a1 a0 a3 a2 a1 a0 ... 1 5 Toeplitz Operators 2008.10.07.08 is both causal and time-invariant.
    [Show full text]
  • L∞ , Let T : L ∞ → L∞ Be Defined by Tx = ( X(1), X(2) 2 , X(3) 3 ,... ) Pr
    ASSIGNMENT II MTL 411 FUNCTIONAL ANALYSIS 1. For x = (x(1); x(2);::: ) 2 l1, let T : l1 ! l1 be defined by ( ) x(2) x(3) T x = x(1); ; ;::: 2 3 Prove that (i) T is a bounded linear operator (ii) T is injective (iii) Range of T is not a closed subspace of l1. 2. If T : X ! Y is a linear operator such that there exists c > 0 and 0 =6 x0 2 X satisfying kT xk ≤ ckxk 8 x 2 X; kT x0k = ckx0k; then show that T 2 B(X; Y ) and kT k = c. 3. For x = (x(1); x(2);::: ) 2 l2, consider the right shift operator S : l2 ! l2 defined by Sx = (0; x(1); x(2);::: ) and the left shift operator T : l2 ! l2 defined by T x = (x(2); x(3);::: ) Prove that (i) S is a abounded linear operator and kSk = 1. (ii) S is injective. (iii) S is, in fact, an isometry. (iv) S is not surjective. (v) T is a bounded linear operator and kT k = 1 (vi) T is not injective. (vii) T is not an isometry. (viii) T is surjective. (ix) TS = I and ST =6 I. That is, neither S nor T is invertible, however, S has a left inverse and T has a right inverse. Note that item (ix) illustrates the fact that the Banach algebra B(X) is not in general commutative. 4. Show with an example that for T 2 B(X; Y ) and S 2 B(Y; Z), the equality in the submulti- plicativity of the norms kS ◦ T k ≤ kSkkT k may not hold.
    [Show full text]
  • Operators, Functions, and Systems: an Easy Reading
    http://dx.doi.org/10.1090/surv/092 Selected Titles in This Series 92 Nikolai K. Nikolski, Operators, functions, and systems: An easy reading. Volume 1: Hardy, Hankel, and Toeplitz, 2002 91 Richard Montgomery, A tour of subriemannian geometries, their geodesies and applications, 2002 90 Christian Gerard and Izabella Laba, Multiparticle quantum scattering in constant magnetic fields, 2002 89 Michel Ledoux, The concentration of measure phenomenon, 2001 88 Edward Frenkel and David Ben-Zvi, Vertex algebras and algebraic curves, 2001 87 Bruno Poizat, Stable groups, 2001 86 Stanley N. Burris, Number theoretic density and logical limit laws, 2001 85 V. A. Kozlov, V. G. Maz'ya, and J. Rossmann, Spectral problems associated with corner singularities of solutions to elliptic equations, 2001 84 Laszlo Fuchs and Luigi Salce, Modules over non-Noetherian domains, 2001 83 Sigurdur Helgason, Groups and geometric analysis: Integral geometry, invariant differential operators, and spherical functions, 2000 82 Goro Shimura, Arithmeticity in the theory of automorphic forms, 2000 81 Michael E. Taylor, Tools for PDE: Pseudodifferential operators, paradifferential operators, and layer potentials, 2000 80 Lindsay N. Childs, Taming wild extensions: Hopf algebras and local Galois module theory, 2000 79 Joseph A. Cima and William T. Ross, The backward shift on the Hardy space, 2000 78 Boris A. Kupershmidt, KP or mKP: Noncommutative mathematics of Lagrangian, Hamiltonian, and integrable systems, 2000 77 Fumio Hiai and Denes Petz, The semicircle law, free random variables and entropy, 2000 76 Frederick P. Gardiner and Nikola Lakic, Quasiconformal Teichmiiller theory, 2000 75 Greg Hjorth, Classification and orbit equivalence relations, 2000 74 Daniel W.
    [Show full text]
  • Periodic and Almost Periodic Time Scales
    Nonauton. Dyn. Syst. 2016; 3:24–41 Research Article Open Access Chao Wang, Ravi P. Agarwal, and Donal O’Regan Periodicity, almost periodicity for time scales and related functions DOI 10.1515/msds-2016-0003 Received December 9, 2015; accepted May 4, 2016 Abstract: In this paper, we study almost periodic and changing-periodic time scales considered by Wang and Agarwal in 2015. Some improvements of almost periodic time scales are made. Furthermore, we introduce a new concept of periodic time scales in which the invariance for a time scale is dependent on an translation direction. Also some new results on periodic and changing-periodic time scales are presented. Keywords: Time scales, Almost periodic time scales, Changing periodic time scales MSC: 26E70, 43A60, 34N05. 1 Introduction Recently, many papers were devoted to almost periodic issues on time scales (see for examples [1–5]). In 2014, to study the approximation property of time scales, Wang and Agarwal introduced some new concepts of almost periodic time scales in [6] and the results show that this type of time scales can not only unify the continuous and discrete situations but can also strictly include the concept of periodic time scales. In 2015, some open problems related to this topic were proposed by the authors (see [4]). Wang and Agarwal addressed the concept of changing-periodic time scales in 2015. This type of time scales can contribute to decomposing an arbitrary time scales with bounded graininess function µ into a countable union of periodic time scales i.e, Decomposition Theorem of Time Scales. The concept of periodic time scales which appeared in [7, 8] can be quite limited for the simple reason that it requires inf T = −∞ and sup T = +∞.
    [Show full text]
  • Functional Analysis (WS 19/20), Problem Set 8 (Spectrum And
    Functional Analysis (WS 19/20), Problem Set 8 (spectrum and adjoints on Hilbert spaces)1 In what follows, let H be a complex Hilbert space. Let T : H ! H be a bounded linear operator. We write T ∗ : H ! H for adjoint of T dened with hT x; yi = hx; T ∗yi: This operator exists and is uniquely determined by Riesz Representation Theorem. Spectrum of T is the set σ(T ) = fλ 2 C : T − λI does not have a bounded inverseg. Resolvent of T is the set ρ(T ) = C n σ(T ). Basic facts on adjoint operators R1. | Adjoint T ∗ exists and is uniquely determined. R2. | Adjoint T ∗ is a bounded linear operator and kT ∗k = kT k. Moreover, kT ∗T k = kT k2. R3. | Taking adjoints is an involution: (T ∗)∗ = T . R4. Adjoints commute with the sum: ∗ ∗ ∗. | (T1 + T2) = T1 + T2 ∗ ∗ R5. | For λ 2 C we have (λT ) = λ T . R6. | Let T be a bounded invertible operator. Then, (T ∗)−1 = (T −1)∗. R7. Let be bounded operators. Then, ∗ ∗ ∗. | T1;T2 (T1 T2) = T2 T1 R8. | We have relationship between kernel and image of T and T ∗: ker T ∗ = (im T )?; (ker T ∗)? = im T It will be helpful to prove that if M ⊂ H is a linear subspace, then M = M ??. Btw, this covers all previous results like if N is a nite dimensional linear subspace then N = N ?? (because N is closed). Computation of adjoints n n ∗ M1. ,Let A : R ! R be a complex matrix. Find A . 2 M2. | ,Let H = l (Z). For x = (:::; x−2; x−1; x0; x1; x2; :::) 2 H we dene the right shift operator −1 ∗ with (Rx)k = xk−1: Find kRk, R and R .
    [Show full text]
  • Bounded Operators
    (April 3, 2019) 09a. Operators on Hilbert spaces Paul Garrett [email protected] http:=/www.math.umn.edu/egarrett/ [This document is http:=/www.math.umn.edu/egarrett/m/real/notes 2018-19/09a-ops on Hsp.pdf] 1. Boundedness, continuity, operator norms 2. Adjoints 3. Stable subspaces and complements 4. Spectrum, eigenvalues 5. Generalities on spectra 6. Positive examples 7. Cautionary examples 8. Weyl's criterion for continuous spectrum 1. Boundedness, continuity, operator norms A linear (not necessarily continuous) map T : X ! Y from one Hilbert space to another is bounded if, for all " > 0, there is δ > 0 such that jT xjY < " for all x 2 X with jxjX < δ. [1.1] Proposition: For a linear, not necessarily continuous, map T : X ! Y of Hilbert spaces, the following three conditions are equivalent: (i) T is continuous (ii) T is continuous at 0 (iii) T is bounded 0 Proof: For T continuous as 0, given " > 0 and x 2 X, there is small enough δ > 0 such that jT x − 0jY < " 0 00 for jx − 0jX < δ. For jx − xjX < δ, using the linearity, 00 00 jT x − T xjX = jT (x − x) − 0jX < δ That is, continuity at 0 implies continuity. Since jxj = jx − 0j, continuity at 0 is immediately equivalent to boundedness. === [1.2] Definition: The kernel ker T of a linear (not necessarily continuous) linear map T : X ! Y from one Hilbert space to another is ker T = fx 2 X : T x = 0 2 Y g [1.3] Proposition: The kernel of a continuous linear map T : X ! Y is closed.
    [Show full text]
  • Spectrum (Functional Analysis) - Wikipedia, the Free Encyclopedia
    Spectrum (functional analysis) - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Spectrum_(functional_analysis) Spectrum (functional analysis) From Wikipedia, the free encyclopedia In functional analysis, the concept of the spectrum of a bounded operator is a generalisation of the concept of eigenvalues for matrices. Specifically, a complex number λ is said to be in the spectrum of a bounded linear operator T if λI − T is not invertible, where I is the identity operator. The study of spectra and related properties is known as spectral theory, which has numerous applications, most notably the mathematical formulation of quantum mechanics. The spectrum of an operator on a finite-dimensional vector space is precisely the set of eigenvalues. However an operator on an infinite-dimensional space may have additional elements in its spectrum, and may have no eigenvalues. For example, consider the right shift operator R on the Hilbert space ℓ2, This has no eigenvalues, since if Rx=λx then by expanding this expression we see that x1=0, x2=0, etc. On the other hand 0 is in the spectrum because the operator R − 0 (i.e. R itself) is not invertible: it is not surjective since any vector with non-zero first component is not in its range. In fact every bounded linear operator on a complex Banach space must have a non-empty spectrum. The notion of spectrum extends to densely-defined unbounded operators. In this case a complex number λ is said to be in the spectrum of such an operator T:D→X (where D is dense in X) if there is no bounded inverse (λI − T)−1:X→D.
    [Show full text]
  • Ergodic Theory in the Perspective of Functional Analysis
    Ergodic Theory in the Perspective of Functional Analysis 13 Lectures by Roland Derndinger, Rainer Nagel, GÄunther Palm (uncompleted version) In July 1984 this manuscript has been accepted for publication in the series \Lecture Notes in Mathematics" by Springer-Verlag. Due to a combination of unfortunate circumstances none of the authors was able to perform the necessary ¯nal revision of the manuscript. TÄubingen,July 1987 1 2 I. What is Ergodic Theory? The notion \ergodic" is an arti¯cial creation, and the newcomer to \ergodic theory" will have no intuitive understanding of its content: \elementary ergodic theory" neither is part of high school- or college- mathematics (as does \algebra") nor does its name explain its subject (as does \number theory"). Therefore it might be useful ¯rst to explain the name and the subject of \ergodic theory". Let us begin with the quotation of the ¯rst sentence of P. Walters' introductory lectures (1975, p. 1): \Generally speaking, ergodic theory is the study of transformations and flows from the point of view of recurrence properties, mixing properties, and other global, dynamical, properties connected with asymptotic behavior." Certainly, this de¯nition is very systematic and complete (compare the beginning of our Lectures III. and IV.). Still we will try to add a few more answers to the question: \What is Ergodic Theory ?" Naive answer: A container is divided into two parts with one part empty and the other ¯lled with gas. Ergodic theory predicts what happens in the long run after we remove the dividing wall. First etymological answer: ergodhc=di±cult. Historical answer: 1880 - Boltzmann, Maxwell - ergodic hypothesis 1900 - Poincar¶e - recurrence theorem 1931 - von Neumann - mean ergodic theorem 1931 - Birkho® - individual ergodic theorem 1958 - Kolmogorov - entropy as an invariant 1963 - Sinai - billiard flow is ergodic 1970 - Ornstein - entropy classi¯es Bernoulli shifts 1975 - Akcoglu - individual Lp-ergodic theorem Naive answer of a physicist: Ergodic theory proves that time mean equals space mean.
    [Show full text]
  • Fredholm Operators and Atkinson's Theorem
    1 A One Lecture Introduction to Fredholm Operators Craig Sinnamon 250380771 December, 2009 1. Introduction This is an elementary introdution to Fredholm operators on a Hilbert space H. Fredholm operators are named after a Swedish mathematician, Ivar Fredholm(1866-1927), who studied integral equations. We will introduce two definitions of a Fredholm operator and prove their equivalance. We will also discuss briefly the index map defined on the set of Fredholm operators. Note that results proved in 4154A Functional Analysis by Prof. Khalkhali may be used without proof. Definition 1.1: A bounded, linear operator T : H ! H is said to be Fredholm if 1) rangeT ⊆ H is closed 2) dimkerT < 1 3) dimketT ∗ < 1 Notice that for a bounded linear operator T on a Hilbert space H, kerT ∗ = (ImageT )?. Indeed: x 2 kerT ∗ , T ∗x = 0 ,< T ∗x; y >= 0 for all y 2 H ,< x:T y >= 0 , x 2 (ImageT )? A good way to think about these Fredholm operators is as operators that are "almost invertible". This notion of "almost invertible" will be made pre- cise later. For now, notice that that operator is almost injective as it has only a finite dimensional kernal, and almost surjective as kerT ∗ = (ImageT )? is also finite dimensional. We will now introduce some algebraic structure on the set of all bounded linear functionals, L(H) and from here make the above discussion precise. 2 2. Bounded Linear Operators as a Banach Algebra Definition 2.1:A C algebra is a ring A with identity along with a ring homomorphism f : C ! A such that 1 7! 1A and f(C) ⊆ Z(A).
    [Show full text]
  • Functional Analysis, BSM, Spring 2012 Exercise Sheet: Spectra of Operators
    Functional Analysis, BSM, Spring 2012 Exercise sheet: Spectra of operators Let X be a complex Banach space and let T 2 B(X) = B(X; X), that is, T : X ! X is a bounded operator. T is invertible if it has a bounded inverse T −1 2 B(X). By the inverse mapping theorem T is invertible if and only if it is bijective, that is, T is injective (ker T = f0g) and surjective (ran T = X). The resolvent set of T is def %(T ) = fλ 2 C : λI − T is invertibleg = fλ : λI − T is bijectiveg : The spectrum of T is def σ(T ) = C n %(T ) = fλ : λI − T is not invertibleg = fλ : λI − T is not bijectiveg : The point spectrum of T (the set of eigenvalues) is def σp(T ) = fλ : λI − T is not injectiveg = fλ : 9x 2 X n f0g such that T x = λxg : The residual spectrum of T is def σr(T ) = fλ : λI − T is injective and ran(λI − T ) is not denseg : It can be shown that the spectrum σ(T ) is a non-empty closed set for which σ(T ) ⊂ fλ 2 C : jλj ≤ kT kg , moreover, σ(T ) ⊂ fλ 2 C : jλj ≤ r(T )g ; def pk k where r(T ) denotes the spectral radius of T : r(T ) = infk kT k. If T is invertible, then σ(T −1) = fλ−1 : λ 2 σ(T )g. Pm i def Pm i If p(z) = i=0 αiz is a polynomial, then for p(T ) = i=0 αiT 2 B(X) we have σ(p(T )) = fp(λ): λ 2 σ(T )g.
    [Show full text]