18.102 Introduction to Functional Analysis Spring 2009
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Functional Analysis Lecture Notes Chapter 2. Operators on Hilbert Spaces
FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 2. OPERATORS ON HILBERT SPACES CHRISTOPHER HEIL 1. Elementary Properties and Examples First recall the basic definitions regarding operators. Definition 1.1 (Continuous and Bounded Operators). Let X, Y be normed linear spaces, and let L: X Y be a linear operator. ! (a) L is continuous at a point f X if f f in X implies Lf Lf in Y . 2 n ! n ! (b) L is continuous if it is continuous at every point, i.e., if fn f in X implies Lfn Lf in Y for every f. ! ! (c) L is bounded if there exists a finite K 0 such that ≥ f X; Lf K f : 8 2 k k ≤ k k Note that Lf is the norm of Lf in Y , while f is the norm of f in X. k k k k (d) The operator norm of L is L = sup Lf : k k kfk=1 k k (e) We let (X; Y ) denote the set of all bounded linear operators mapping X into Y , i.e., B (X; Y ) = L: X Y : L is bounded and linear : B f ! g If X = Y = X then we write (X) = (X; X). B B (f) If Y = F then we say that L is a functional. The set of all bounded linear functionals on X is the dual space of X, and is denoted X0 = (X; F) = L: X F : L is bounded and linear : B f ! g We saw in Chapter 1 that, for a linear operator, boundedness and continuity are equivalent. -
Curl, Divergence and Laplacian
Curl, Divergence and Laplacian What to know: 1. The definition of curl and it two properties, that is, theorem 1, and be able to predict qualitatively how the curl of a vector field behaves from a picture. 2. The definition of divergence and it two properties, that is, if div F~ 6= 0 then F~ can't be written as the curl of another field, and be able to tell a vector field of clearly nonzero,positive or negative divergence from the picture. 3. Know the definition of the Laplace operator 4. Know what kind of objects those operator take as input and what they give as output. The curl operator Let's look at two plots of vector fields: Figure 1: The vector field Figure 2: The vector field h−y; x; 0i: h1; 1; 0i We can observe that the second one looks like it is rotating around the z axis. We'd like to be able to predict this kind of behavior without having to look at a picture. We also promised to find a criterion that checks whether a vector field is conservative in R3. Both of those goals are accomplished using a tool called the curl operator, even though neither of those two properties is exactly obvious from the definition we'll give. Definition 1. Let F~ = hP; Q; Ri be a vector field in R3, where P , Q and R are continuously differentiable. We define the curl operator: @R @Q @P @R @Q @P curl F~ = − ~i + − ~j + − ~k: (1) @y @z @z @x @x @y Remarks: 1. -
5 Toeplitz Operators
2008.10.07.08 5 Toeplitz Operators There are two signal spaces which will be important for us. • Semi-infinite signals: Functions x ∈ ℓ2(Z+, R). They have a Fourier transform g = F x, where g ∈ H2; that is, g : D → C is analytic on the open unit disk, so it has no poles there. • Bi-infinite signals: Functions x ∈ ℓ2(Z, R). They have a Fourier transform g = F x, where g ∈ L2(T). Then g : T → C, and g may have poles both inside and outside the disk. 5.1 Causality and Time-invariance Suppose G is a bounded linear map G : ℓ2(Z) → ℓ2(Z) given by yi = Gijuj j∈Z X where Gij are the coefficients in its matrix representation. The map G is called time- invariant or shift-invariant if it is Toeplitz , which means Gi−1,j = Gi,j+1 that is G is constant along diagonals from top-left to bottom right. Such matrices are convolution operators, because they have the form ... a0 a−1 a−2 a1 a0 a−1 a−2 G = a2 a1 a0 a−1 a2 a1 a0 ... Here the box indicates the 0, 0 element, since the matrix is indexed from −∞ to ∞. With this matrix, we have y = Gu if and only if yi = ai−juj k∈Z X We say G is causal if the matrix G is lower triangular. For example, the matrix ... a0 a1 a0 G = a2 a1 a0 a3 a2 a1 a0 ... 1 5 Toeplitz Operators 2008.10.07.08 is both causal and time-invariant. -
Numerical Operator Calculus in Higher Dimensions
Numerical operator calculus in higher dimensions Gregory Beylkin* and Martin J. Mohlenkamp Applied Mathematics, University of Colorado, Boulder, CO 80309 Communicated by Ronald R. Coifman, Yale University, New Haven, CT, May 31, 2002 (received for review July 31, 2001) When an algorithm in dimension one is extended to dimension d, equation using only one-dimensional operations and thus avoid- in nearly every case its computational cost is taken to the power d. ing the exponential dependence on d. However, if the best This fundamental difficulty is the single greatest impediment to approximate solution of the form (Eq. 1) is not good enough, solving many important problems and has been dubbed the curse there is no way to improve the accuracy. of dimensionality. For numerical analysis in dimension d,we The natural extension of Eq. 1 is the form propose to use a representation for vectors and matrices that generalizes separation of variables while allowing controlled ac- r ͑ ͒ ϭ l ͑ ͒ l ͑ ͒ curacy. Basic linear algebra operations can be performed in this f x1,...,xd sl 1 x1 ··· d xd . [2] representation using one-dimensional operations, thus bypassing lϭ1 the exponential scaling with respect to the dimension. Although not all operators and algorithms may be compatible with this The key quantity in Eq. 2 is r, which we call the separation rank. representation, we believe that many of the most important ones By increasing r, the approximate solution can be made as are. We prove that the multiparticle Schro¨dinger operator, as well accurate as desired. -
L∞ , Let T : L ∞ → L∞ Be Defined by Tx = ( X(1), X(2) 2 , X(3) 3 ,... ) Pr
ASSIGNMENT II MTL 411 FUNCTIONAL ANALYSIS 1. For x = (x(1); x(2);::: ) 2 l1, let T : l1 ! l1 be defined by ( ) x(2) x(3) T x = x(1); ; ;::: 2 3 Prove that (i) T is a bounded linear operator (ii) T is injective (iii) Range of T is not a closed subspace of l1. 2. If T : X ! Y is a linear operator such that there exists c > 0 and 0 =6 x0 2 X satisfying kT xk ≤ ckxk 8 x 2 X; kT x0k = ckx0k; then show that T 2 B(X; Y ) and kT k = c. 3. For x = (x(1); x(2);::: ) 2 l2, consider the right shift operator S : l2 ! l2 defined by Sx = (0; x(1); x(2);::: ) and the left shift operator T : l2 ! l2 defined by T x = (x(2); x(3);::: ) Prove that (i) S is a abounded linear operator and kSk = 1. (ii) S is injective. (iii) S is, in fact, an isometry. (iv) S is not surjective. (v) T is a bounded linear operator and kT k = 1 (vi) T is not injective. (vii) T is not an isometry. (viii) T is surjective. (ix) TS = I and ST =6 I. That is, neither S nor T is invertible, however, S has a left inverse and T has a right inverse. Note that item (ix) illustrates the fact that the Banach algebra B(X) is not in general commutative. 4. Show with an example that for T 2 B(X; Y ) and S 2 B(Y; Z), the equality in the submulti- plicativity of the norms kS ◦ T k ≤ kSkkT k may not hold. -
23. Kernel, Rank, Range
23. Kernel, Rank, Range We now study linear transformations in more detail. First, we establish some important vocabulary. The range of a linear transformation f : V ! W is the set of vectors the linear transformation maps to. This set is also often called the image of f, written ran(f) = Im(f) = L(V ) = fL(v)jv 2 V g ⊂ W: The domain of a linear transformation is often called the pre-image of f. We can also talk about the pre-image of any subset of vectors U 2 W : L−1(U) = fv 2 V jL(v) 2 Ug ⊂ V: A linear transformation f is one-to-one if for any x 6= y 2 V , f(x) 6= f(y). In other words, different vector in V always map to different vectors in W . One-to-one transformations are also known as injective transformations. Notice that injectivity is a condition on the pre-image of f. A linear transformation f is onto if for every w 2 W , there exists an x 2 V such that f(x) = w. In other words, every vector in W is the image of some vector in V . An onto transformation is also known as an surjective transformation. Notice that surjectivity is a condition on the image of f. 1 Suppose L : V ! W is not injective. Then we can find v1 6= v2 such that Lv1 = Lv2. Then v1 − v2 6= 0, but L(v1 − v2) = 0: Definition Let L : V ! W be a linear transformation. The set of all vectors v such that Lv = 0W is called the kernel of L: ker L = fv 2 V jLv = 0g: 1 The notions of one-to-one and onto can be generalized to arbitrary functions on sets. -
Operators, Functions, and Systems: an Easy Reading
http://dx.doi.org/10.1090/surv/092 Selected Titles in This Series 92 Nikolai K. Nikolski, Operators, functions, and systems: An easy reading. Volume 1: Hardy, Hankel, and Toeplitz, 2002 91 Richard Montgomery, A tour of subriemannian geometries, their geodesies and applications, 2002 90 Christian Gerard and Izabella Laba, Multiparticle quantum scattering in constant magnetic fields, 2002 89 Michel Ledoux, The concentration of measure phenomenon, 2001 88 Edward Frenkel and David Ben-Zvi, Vertex algebras and algebraic curves, 2001 87 Bruno Poizat, Stable groups, 2001 86 Stanley N. Burris, Number theoretic density and logical limit laws, 2001 85 V. A. Kozlov, V. G. Maz'ya, and J. Rossmann, Spectral problems associated with corner singularities of solutions to elliptic equations, 2001 84 Laszlo Fuchs and Luigi Salce, Modules over non-Noetherian domains, 2001 83 Sigurdur Helgason, Groups and geometric analysis: Integral geometry, invariant differential operators, and spherical functions, 2000 82 Goro Shimura, Arithmeticity in the theory of automorphic forms, 2000 81 Michael E. Taylor, Tools for PDE: Pseudodifferential operators, paradifferential operators, and layer potentials, 2000 80 Lindsay N. Childs, Taming wild extensions: Hopf algebras and local Galois module theory, 2000 79 Joseph A. Cima and William T. Ross, The backward shift on the Hardy space, 2000 78 Boris A. Kupershmidt, KP or mKP: Noncommutative mathematics of Lagrangian, Hamiltonian, and integrable systems, 2000 77 Fumio Hiai and Denes Petz, The semicircle law, free random variables and entropy, 2000 76 Frederick P. Gardiner and Nikola Lakic, Quasiconformal Teichmiiller theory, 2000 75 Greg Hjorth, Classification and orbit equivalence relations, 2000 74 Daniel W. -
Periodic and Almost Periodic Time Scales
Nonauton. Dyn. Syst. 2016; 3:24–41 Research Article Open Access Chao Wang, Ravi P. Agarwal, and Donal O’Regan Periodicity, almost periodicity for time scales and related functions DOI 10.1515/msds-2016-0003 Received December 9, 2015; accepted May 4, 2016 Abstract: In this paper, we study almost periodic and changing-periodic time scales considered by Wang and Agarwal in 2015. Some improvements of almost periodic time scales are made. Furthermore, we introduce a new concept of periodic time scales in which the invariance for a time scale is dependent on an translation direction. Also some new results on periodic and changing-periodic time scales are presented. Keywords: Time scales, Almost periodic time scales, Changing periodic time scales MSC: 26E70, 43A60, 34N05. 1 Introduction Recently, many papers were devoted to almost periodic issues on time scales (see for examples [1–5]). In 2014, to study the approximation property of time scales, Wang and Agarwal introduced some new concepts of almost periodic time scales in [6] and the results show that this type of time scales can not only unify the continuous and discrete situations but can also strictly include the concept of periodic time scales. In 2015, some open problems related to this topic were proposed by the authors (see [4]). Wang and Agarwal addressed the concept of changing-periodic time scales in 2015. This type of time scales can contribute to decomposing an arbitrary time scales with bounded graininess function µ into a countable union of periodic time scales i.e, Decomposition Theorem of Time Scales. The concept of periodic time scales which appeared in [7, 8] can be quite limited for the simple reason that it requires inf T = −∞ and sup T = +∞. -
October 7, 2015 1 Adjoint of a Linear Transformation
Mathematical Toolkit Autumn 2015 Lecture 4: October 7, 2015 Lecturer: Madhur Tulsiani The following is an extremely useful inequality. Prove it for a general inner product space (not neccessarily finite dimensional). Exercise 0.1 (Cauchy-Schwarz-Bunyakowsky inequality) Let u; v be any two vectors in an inner product space V . Then jhu; vij2 ≤ hu; ui · hv; vi Let V be a finite dimensional inner product space and let fw1; : : : ; wng be an orthonormal basis for P V . Then for any v 2 V , there exist c1; : : : ; cn 2 F such that v = i ci · wi. The coefficients ci are often called Fourier coefficients. Using the orthonormality and the properties of the inner product, we get ci = hv; wii. This can be used to prove the following Proposition 0.2 (Parseval's identity) Let V be a finite dimensional inner product space and let fw1; : : : ; wng be an orthonormal basis for V . Then, for any u; v 2 V n X hu; vi = hu; wii · hv; wii : i=1 1 Adjoint of a linear transformation Definition 1.1 Let V; W be inner product spaces over the same field F and let ' : V ! W be a linear transformation. A transformation '∗ : W ! V is called an adjoint of ' if h'(v); wi = hv; '∗(w)i 8v 2 V; w 2 W: n Pn Example 1.2 Let V = W = C with the inner product hu; vi = i=1 ui · vi. Let ' : V ! V be represented by the matrix A. Then '∗ is represented by the matrix AT . Exercise 1.3 Let 'left : Fib ! Fib be the left shift operator as before, and let hf; gi for f; g 2 Fib P1 f(n)g(n) ∗ be defined as hf; gi = n=0 Cn for C > 4. -
Operator Calculus
Pacific Journal of Mathematics OPERATOR CALCULUS PHILIP JOEL FEINSILVER Vol. 78, No. 1 March 1978 PACIFIC JOURNAL OF MATHEMATICS Vol. 78, No. 1, 1978 OPERATOR CALCULUS PHILIP FEINSILVER To an analytic function L(z) we associate the differential operator L(D), D denoting differentiation with respect to a real variable x. We interpret L as the generator of a pro- cess with independent increments having exponential mar- tingale m(x(t), t)= exp (zx(t) — tL{z)). Observing that m(x, —t)—ezCl where C—etLxe~tL, we study the operator calculus for C and an associated generalization of the operator xD, A—CD. We find what functions / have the property n that un~C f satisfy the evolution equation ut~Lu and the eigenvalue equations Aun—nun, thus generalizing the powers xn. We consider processes on RN as well as R1 and discuss various examples and extensions of the theory. In the case that L generates a Markov semigroup, we have transparent probabilistic interpretations. In case L may not gene- rate a probability semigroup, the general theory gives some insight into what properties any associated "processes with independent increments" should have. That is, the purpose is to elucidate the Markov case but in such a way that hopefully will lead to practi- cable definitions and will present useful ideas for defining more general processes—involving, say, signed and/or singular measures. IL Probabilistic basis. Let pt(%} be the transition kernel for a process p(t) with stationary independent increments. That is, ί pί(a?) = The Levy-Khinchine formula says that, generally: tξ tL{ίξ) e 'pt(x) = e R where L(ίξ) = aiξ - σψ/2 + [ eiξu - 1 - iζη(u)-M(du) with jΛ-fO} u% η(u) = u(\u\ ^ 1) + sgn^(M ^ 1) and ί 2M(du)< <*> . -
The Holomorphic Functional Calculus Approach to Operator Semigroups
THE HOLOMORPHIC FUNCTIONAL CALCULUS APPROACH TO OPERATOR SEMIGROUPS CHARLES BATTY, MARKUS HAASE, AND JUNAID MUBEEN In honour of B´elaSz.-Nagy (29 July 1913 { 21 December 1998) on the occasion of his centenary Abstract. In this article we construct a holomorphic functional calculus for operators of half-plane type and show how key facts of semigroup theory (Hille- Yosida and Gomilko-Shi-Feng generation theorems, Trotter-Kato approxima- tion theorem, Euler approximation formula, Gearhart-Pr¨usstheorem) can be elegantly obtained in this framework. Then we discuss the notions of bounded H1-calculus and m-bounded calculus on half-planes and their relation to weak bounded variation conditions over vertical lines for powers of the resolvent. Finally we discuss the Hilbert space case, where semigroup generation is char- acterised by the operator having a strong m-bounded calculus on a half-plane. 1. Introduction The theory of strongly continuous semigroups is more than 60 years old, with the fundamental result of Hille and Yosida dating back to 1948. Several monographs and textbooks cover material which is now canonical, each of them having its own particular point of view. One may focus entirely on the semigroup, and consider the generator as a derived concept (as in [12]) or one may start with the generator and view the semigroup as the inverse Laplace transform of the resolvent (as in [2]). Right from the beginning, functional calculus methods played an important role in semigroup theory. Namely, given a C0-semigroup T = (T (t))t≥0 which is uni- formly bounded, say, one can form the averages Z 1 Tµ := T (s) µ(ds) (strong integral) 0 for µ 2 M(R+) a complex Radon measure of bounded variation on R+ = [0; 1). -
Functional Analysis (WS 19/20), Problem Set 8 (Spectrum And
Functional Analysis (WS 19/20), Problem Set 8 (spectrum and adjoints on Hilbert spaces)1 In what follows, let H be a complex Hilbert space. Let T : H ! H be a bounded linear operator. We write T ∗ : H ! H for adjoint of T dened with hT x; yi = hx; T ∗yi: This operator exists and is uniquely determined by Riesz Representation Theorem. Spectrum of T is the set σ(T ) = fλ 2 C : T − λI does not have a bounded inverseg. Resolvent of T is the set ρ(T ) = C n σ(T ). Basic facts on adjoint operators R1. | Adjoint T ∗ exists and is uniquely determined. R2. | Adjoint T ∗ is a bounded linear operator and kT ∗k = kT k. Moreover, kT ∗T k = kT k2. R3. | Taking adjoints is an involution: (T ∗)∗ = T . R4. Adjoints commute with the sum: ∗ ∗ ∗. | (T1 + T2) = T1 + T2 ∗ ∗ R5. | For λ 2 C we have (λT ) = λ T . R6. | Let T be a bounded invertible operator. Then, (T ∗)−1 = (T −1)∗. R7. Let be bounded operators. Then, ∗ ∗ ∗. | T1;T2 (T1 T2) = T2 T1 R8. | We have relationship between kernel and image of T and T ∗: ker T ∗ = (im T )?; (ker T ∗)? = im T It will be helpful to prove that if M ⊂ H is a linear subspace, then M = M ??. Btw, this covers all previous results like if N is a nite dimensional linear subspace then N = N ?? (because N is closed). Computation of adjoints n n ∗ M1. ,Let A : R ! R be a complex matrix. Find A . 2 M2. | ,Let H = l (Z). For x = (:::; x−2; x−1; x0; x1; x2; :::) 2 H we dene the right shift operator −1 ∗ with (Rx)k = xk−1: Find kRk, R and R .