Volume 8 (2007), Issue 4, Article 113, 8 pp. UPPER ESTIMATES FOR GÂTEAUX DIFFERENTIABILITY OF BUMP FUNCTIONS IN ORLICZ-LORENTZ SPACES B. ZLATANOV DEPARTMENT OF MATHEMATICS AND INFORMATICS PLOVDIV UNIVERSITY, 24 “TZAR ASSEN” STR. PLOVDIV, 4000 BULGARIA
[email protected] Received 29 January, 2007; accepted 17 November, 2007 Communicated by C.P. Niculescu ABSTRACT. Upper estimates for the order of Gâteaux smoothness of bump functions in Orlicz– Lorentz spaces d(w, M, Γ), Γ uncountable, are obtained. The best possible order of Gâteaux differentiability in the class of all equivalent norms in d(w, M, Γ) is found. Key words and phrases: Orlicz function, Orlicz–Lorentz space, Smooth bump functions. 2000 Mathematics Subject Classification. 46B25, 40E30. 1. INTRODUCTION The existence of higher order Fréchet smooth norms and bump functions and its impact on the geometrical properties of a Banach space have been subject to many investigations begin- ning with the classical result for Lp–spaces in [1] and [6]. An extensive study and bibliography may be found in [2]. As any negative result on the existence of Gâteaux smooth bump func- tions immediately applies to the problem of existence of Fréchet smooth bump functions and norms, the question arises of estimating the best possible order of Gâteaux smoothness of bump functions in a given Banach space. A variational technique (the Ekeland variational principle) was applied in [2] to show that in `1(Γ), Γ uncountable, there is no continuous Gâteaux dif- ferentiable bump function. Following the same idea and using Stegall’s variational principle, an extension of this result to Banach spaces with uncountable unconditional basis was given in [4] and to Banach spaces with uncountable symmetric basis in [9].