Short Lecture Notes: Interpolation Theory and Function Spaces

Total Page:16

File Type:pdf, Size:1020Kb

Short Lecture Notes: Interpolation Theory and Function Spaces Short Lecture Notes: Interpolation Theory and Function Spaces Helmut Abels July 27, 2011 1 Introduction In the following let K = R or K = C. Denition 1.1 Let be Banach spaces over . Then the pair X0;X1 K (X0;X1) is called admissible, compatible or an interpolation couple if there is a Hausdor topological vector space Z such that X0;X1 ,! Z with continuous embeddings. Lemma 1.2 Let (X0;X1) be an admissible pair of Banach spaces. Then X0 \ X1 normed by kxkX0\X1 = max(kxkX0 ; kxkX1 ); x 2 X0 \ X1; and X0 + X1 normed by kxkX0+X1 = inf kx0kX0 + kx1kX1 ; x 2 X0 + X1; x=x0+x1;x02X0;x12X1 are Banach spaces. Notation: In the following we write for simplicity T 2 L(Xj;Yj), j = 0; 1, for the condition that T : X0 + X1 ! Y0 + Y1 is a linear operator with for and . T jXj 2 L(Xj;Yj) j = 0 j = 1 Denition 1.3 Let (X0;X1) and (Y0;Y1) be admissible pairs of Banach spaces and let X; Y be Banach spaces. 1. X is called intermediate space with respect to (X0;X1) if X0 \ X1 ,! X,! X0 + X1 with continuous embeddings. 1 2. X and Y are called interpolation spaces with respect to (X0;X1) and (Y0;Y1) if X and Y are intermediate spaces with respect to (X0;X1) and (Y0;Y1), respectively, and if T 2 L(Xj;Yj); j = 0; 1; ) T jX 2 L(X; Y ) for all T : X0 + X1 ! Y0 + Y1 linear. 3. X is called interpolation space with respect to (X0;X1) if the previous conditions hold with X = Y , (X0;X1) = (Y0;Y1). 4. Interpolation spaces X and Y with respect to (X0;X1) and (Y0;Y1) are called of exponent θ 2 [0; 1], if there is some C > 0 such that kT k ≤ CkT k1−θ kT kθ (1.1) L(X;Y ) L(X0;Y0) L(X1;Y1) for all T 2 L(Xj;Yj); j = 0; 1. If (1.1) holds with C = 1, then X and Y are called exact of exponent θ. Analogously, X is an (exact) interpolation space of exponent θ if the previous conditions hold for X = Y , (X0;X1) = (Y0;Y1). Examples 1.4 1. Let , and let 0 < α < 1 k 2 N0 0 n n C (R ) = ff : R ! K continuous and boundedg kfkC0(Rn) = sup jf(x)j x2Rn k n n -times cont. di. α 0 n C (R ) = f : R ! K k : @x f 2 C (R )8jαj ≤ k α kfkCk(Rn) = sup sup j@x f(x)j jα|≤k x2Rn α n n C (R ) = f : R ! K : kfkCα(Rn) < 1 jf(x) − f(y)j α n kfkC (R ) = sup jf(x)j + sup α x2Rn x;y2Rn;x6=y jx − yj Then Cα(Rn) is an intermediate space of C0(Rn) and C1(Rn). More precisely, there is some C > 0 such that 1−α α 1 n kfk α n ≤ Ckfk kfk 1 n for all f 2 C ( ): C (R ) C0(Rn) C (R ) R 2 2. For 1 ≤ p ≤ 1 let Lp(U; µ) denote the usual Lebesgue space on a measure 1 1−θ θ space (U; µ). Then for any 1 ≤ p0; p1; p ≤ 1 such that = + for p p0 p1 some θ 2 [0; 1] the space Lp(U; µ) is an intermediate space of Lp0 (U; µ) and Lp1 (U; µ). This follows from the generalized Hölder inequality 1−θ θ p0 p1 p for all kfkL (U,µ) ≤ kfkLp0 (U;µ)kfkLp1 (U,µ) f 2 L (U; µ) \ L (U; µ); which itself follows easily from the standard Hölder inequality. Remark 1.5 The last two inequalities are special cases of (1.1) if one chooses . The following theorem shows that p in the latter example is Yj = K L (U; µ) an exact interpolation space with respect to (Lp0 (U; µ);Lp1 (U; µ)) of expo- nent θ. THEOREM 1.6 (Riesz-Thorin) Let 1 ≤ p0; p1; q0; q1 ≤ 1, θ 2 [0; 1], let (U; µ) and (V; ν) be σ-nite measure 1 spaces and let K = C. Then pj qj p q T 2 L(L (U; µ);L (V; ν)); j = 0; 1 ) T jLp(U,µ) 2 L(L (U; µ);L (V; ν)); where 1 1 − θ θ 1 1 − θ θ = + ; = + : p p0 p1 q q0 q1 Moreover, for every T 2 L(Lpj (U; µ);Lqj (V; ν)); j = 0; 1; 1−θ θ p q kT kL(L ;L ) ≤ kT kL(Lp0 ;Lq0 )kT kL(Lp1 ;Lq1 ): The theorem will follow from the results of Section 2 below. Remark 1.7 The proof of the Riesz-Thorin interpolation theorem provided the fundamental ideas for the so-called complex interpolation method. Gener- ally an interpolation method is an functor F from the cathegory of admissible couples of Banach spaces to the cathegory of Banach spaces such that any pair of admissible couples X = (X0;X1), Y = (Y0;Y1) is mapped to an interpolation space F(X; Y ) with respect to X; Y .2 1Meaning that all functions will be complex valued in the following. 2Readers not familiar with the basic notion of cathegory do not have to understand this precisely since no cathegory theory will be needed in the following. 3 In some situations the following theorem due to Marcinkiewicz can be applied, when an application of the Riesz-Thorin theorem fails. THEOREM 1.8 (Marcinkiewicz) Let 1 ≤ p0; p1; q0; q1 ≤ 1 with q0 6= q1, let θ 2 (0; 1), and let (U; µ) and (V; ν) be measure spaces. Moreover, let 1 1 − θ θ 1 1 − θ θ = + ; = + p p0 p1 q q0 q1 and assume that p ≤ q. Then pj qj p q T 2 L(L (U; µ);L∗ (V; ν)); j = 0; 1 ) T jLp(U,µ) 2 L(L (U; µ);L (V; ν)); pj qj Moreover, there is some Cθ such that for every T 2 L(L (U; µ);L∗ (V; ν)); j = 0; 1; 1−θ θ p q q kT kL(L ;L ) ≤ CθkT k p q0 kT k p1 1 : L(L 0 ;L∗ ) L(L ;L∗ ) Here q is the weak q-space, dened by L∗(V; ν) L C Lq(V; ν) = f : V ! measurable : m(t; f) ≤ for all t > 0 and some C > 0 ∗ K tq if 1 ≤ q < 1, where m(t; f) = ν(fx 2 V : jf(x)j > tg); t > 0; denotes the distribution function of . Moreover, if , then 1 f q = 1 L∗ (V; ν) = 1 . We note that q is quasi-normed space with quasi-norm by L (V; ν) L∗(V; ν) 1 q q kfkL∗ = sup t m(t; f) : t>0 Here a quasi-norm k:k on a vector space X satises the same conditions as a norm except that the triangle inequality is replaced by kx + yk ≤ C(kxk + kyk) for all x; y 2 X for some C ≥ 1. The bounded operators and the operator norm is dened in the same way for quasi-normed spaces as for normed spaces. Remark: One also denotes q;1 q . L (V; ν) ≡ L∗(V; ν) 4 A proof of the Marcinkiewicz interpolation theorem in the special case , n n can be found in the appendix. The p0 = q0 = 1; p1 = q1 = r (U; µ) = (R ; λ ) proof provided the basic ideas for the so-called real interpolation method. The real and the complex interpolation methods are the most important methods to construct interpolation spaces and will be one of the central topic of this lecture series. We will start with the complex method since it is easier to understand in the beginning, although the real interpolation method is in some sense more fexible and universal. 2 Complex Interpolation Method 2.1 Holomorphic Functions on the Strip For the following let X be a complex Banach space and let S = fz 2 C : 0 ≤ , . A mapping is called Re z ≤ 1g S0 = fz 2 C : 0 < Re z < 1g f : S0 ! X 0 holomorphic if z 7! hf(z); x i, z 2 S0, is holomorphic in the usual sense for all x0 2 X0. THEOREM 2.1 (Maximum Principle/Phragmen-Lindelöf Theorem) Let f : S ! X be continuous, bounded, and holomorphic in the interior of S. Then sup kf(z)kX ≤ max sup kf(it)kX ; sup kf(1 + it)kX : (2.1) z2S t2R t2R Proof: First let and assume that . Consider the X = C f(z) !j Im zj!1 0 mapping h: S ! C with eiπz − i h(z) = ; z 2 S: (2.2) eiπz + i Then h is a bijective mapping from S onto U = fz 2 C : jzj ≤ 1g n {±1g, that is holomorphic in S0 and maps @S onto fjzj = 1g n {±1g. Therefore g(z) := f(h−1(z)) is bounded and continuous on U and analytic in the interior of U. Moreover, because of limj Im zj!1 f(z) = 0, limz→±1 g(z) = 0 and we can extend g to a continuous function on fjzj ≤ 1g. Hence jg(z)j ≤ max jg(w)j = max sup jf(it)j; sup jf(1 + it)j ; jwj=1 t2R t2R 5 which implies the statement in this case. Next, if X = C and f is a general 2 function as in the assumptions, then we consider δ(z−z0) , fδ;z0 (z) = e f(z) 2 2 2 δ(z−z0) δ(x −y ) δ > 0; z0 2 S0.
Recommended publications
  • Symmetry Preserving Interpolation Erick Rodriguez Bazan, Evelyne Hubert
    Symmetry Preserving Interpolation Erick Rodriguez Bazan, Evelyne Hubert To cite this version: Erick Rodriguez Bazan, Evelyne Hubert. Symmetry Preserving Interpolation. ISSAC 2019 - International Symposium on Symbolic and Algebraic Computation, Jul 2019, Beijing, China. 10.1145/3326229.3326247. hal-01994016 HAL Id: hal-01994016 https://hal.archives-ouvertes.fr/hal-01994016 Submitted on 25 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Symmetry Preserving Interpolation Erick Rodriguez Bazan Evelyne Hubert Université Côte d’Azur, France Université Côte d’Azur, France Inria Méditerranée, France Inria Méditerranée, France [email protected] [email protected] ABSTRACT general concept. An interpolation space for a set of linear forms is The article addresses multivariate interpolation in the presence of a subspace of the polynomial ring that has a unique interpolant for symmetry. Interpolation is a prime tool in algebraic computation each instantiated interpolation problem. We show that the unique while symmetry is a qualitative feature that can be more relevant interpolants automatically inherit the symmetry of the problem to a mathematical model than the numerical accuracy of the pa- when the interpolation space is invariant (Section 3).
    [Show full text]
  • The Semi-M Property for Normed Riesz Spaces Compositio Mathematica, Tome 34, No 2 (1977), P
    COMPOSITIO MATHEMATICA EP DE JONGE The semi-M property for normed Riesz spaces Compositio Mathematica, tome 34, no 2 (1977), p. 147-172 <http://www.numdam.org/item?id=CM_1977__34_2_147_0> © Foundation Compositio Mathematica, 1977, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions géné- rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infrac- tion pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 34, Fasc. 2, 1977, pag. 147-172 Noordhoff International Publishing Printed in the Netherlands THE SEMI-M PROPERTY FOR NORMED RIESZ SPACES Ep de Jonge 1. Introduction It is well-known that if (0394, F, IL) is a u-finite measure space and if 1 ~ p 00, then the Banach dual L *p of the Banach space Lp = Lp(0394, IL) can be identified with Lq = Lq(L1, 03BC), where p-1 + q-1 = 1. For p =00 the situation is different; the space Li is a linear subspace of L*, and only in a very trivial situation (the finite-dimensional case) we have Li = Lfi. Restricting ourselves to the real case, the Banach dual L *~ is a (real) Riesz space, i.e., a vector lattice, and Li is now a band in L*. The disjoint complement (i.e., the set of all elements in L* disjoint to all elements in LI) is also a band in L*, called the band of singular linear functionals on Loo.
    [Show full text]
  • Burkholder's Inequalities in Noncommutative Lorentz
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 138, Number 7, July 2010, Pages 2431–2441 S 0002-9939(10)10267-6 Article electronically published on March 24, 2010 BURKHOLDER’S INEQUALITIES IN NONCOMMUTATIVE LORENTZ SPACES YONG JIAO (Communicated by Marius Junge) Abstract. We prove Burkholder’s inequalities in noncommutative Lorentz spaces Lp,q(M), 1 <p<∞, 1 ≤ q<∞, associated with a von Neumann algebra M equipped with a faithful normal tracial state. These estimates generalize the classical inequalities in the commutative case. 1. Introduction Martingale inequalities and sums of independent random variables are important tools in classical harmonic analysis. A fundamental result due to Burkholder [1, 2] can be stated as follows. Given a probability space (Ω, F ,P), let {Fn}n≥1 be a nondecreasing sequence of σ-fields of F such that F = ∨Fn and let En be the conditional expectation operator relative to Fn. Given 2 ≤ p<∞ and an p L -bounded martingale f =(fn)n≥1, we have ∞ ∞ 1/2 1/p 2 p (1.1) fLp ≈ Ek−1(|df k| ) + |df k| . Lp Lp k=1 k=1 The first term on the right is called the conditioned square function of f, while the second is called the p-variation of f. Rosenthal’s inequalities [14] can be regarded as the particular case where the sequence df =(df 1,df2, ...) is a family of independent mean-zero random variables df k = ak. In this case it is easy to reduce Rosenthal’s inequalities to ∞ ∞ ∞ 1/2 1/p ≈ 2 p (1.2) ak Lp ak 2 + ak p .
    [Show full text]
  • Arxiv:1712.01188V2 [Math.AP]
    GREEN’S FUNCTION FOR SECOND ORDER ELLIPTIC EQUATIONS WITH SINGULAR LOWER ORDER COEFFICIENTS SEICK KIM AND GEORGIOS SAKELLARIS Abstract. We construct Green’s function for second order elliptic operators of the form Lu = −∇ · (A∇u + bu) + c · ∇u + du in a domain and obtain pointwise bounds, as well as Lorentz space bounds. We assume that the matrix of principal coefficients A is uniformly elliptic and bounded and the lower order coefficients b, c, and d belong to certain Lebesgue classes and satisfy the condition d −∇· b ≥ 0. In particular, we allow the lower order coefficients to be singular. We also obtain the global pointwise bounds for the gradient of Green’s function in the case when the mean oscillations of the coefficients A and b satisfy the Dini conditions and the domain is C1,Dini. 1. Introduction Let Ω be a domain (i.e., an open connected set) in Rn with n ≥ 3. We consider second order elliptic operators in divergence form n n ij i i Lu = − Di(a (x)Dju + b (x)u) + c (x)Diu + d(x)u, iX,j=1 Xi=1 which hereafter shall be abbreviated as Lu = − div(A∇u + bu) + c · ∇u + du. We assume that the principal coefficients A = (aij) are measurable n × n matrices that are bounded and uniformly elliptic; i.e. there is a constant λ> 0 such that n λ|ξ|2 ≤ A(x)ξ · ξ = aij(x)ξiξj, ∀x ∈ Ω, ∀ξ ∈ Rn. (1.1) iX,j=1 We also assume that the lower order coefficients b = (b1,..., bn), c = (c1,..., cn), and d are such that b ∈ Lq(Ω), c ∈ Lr(Ω), d ∈ Ls(Ω) for some q, r ≥ n, s ≥ n/2.
    [Show full text]
  • Fourier Analysis in Function Space Theory
    Course No. 401-4463-62L Fourier Analysis in Function Space Theory Dozent: Tristan Rivi`ere Assistant: Alessandro Pigati Contents 1 The Fourier transform of tempered distributions 1 1.1 The Fourier transforms of L1 functions . 1 1.2 The Schwartz Space S(Rn)........................... 4 1.3 Frechet Spaces . 6 1.4 The space of tempered distributions S0(Rn).................. 12 1.5 Convolutions in S0(Rn)............................. 21 2 The Hardy-Littlewood Maximal Function 26 2.1 Definition and elementary properties. 26 2.2 Hardy-Littlewood Lp−theorem for the Maximal Function. 27 2.3 The limiting case p =1. ............................ 30 3 Quasi-normed vector spaces 32 3.1 The Metrizability of quasi-normed vector spaces . 32 3.2 The Lorentz spaces Lp;1 ............................ 36 3.3 Decreasing rearrangement . 37 3.4 The Lorentz spaces Lp;q ............................ 39 3.5 Functional inequalities for Lorentz spaces . 44 3.6 Dyadic characterization of some Lorentz spaces and another proof of Lorentz{ Sobolev embedding (optional) . 49 4 The Lp−theory of Calder´on-Zygmund convolution operators. 52 4.1 Calder´on-Zygmund decompositions. 52 4.2 An application of Calder´on-Zygmund decomposition . 54 4.3 The Marcinkiewicz Interpolation Theorem - The Lp case . 56 4.4 Calderon Zygmund Convolution Operators over Lp ............. 58 4.4.1 A \primitive" formulation . 60 4.4.2 A singular integral type formulation . 64 4.4.3 The case of homogeneous kernels . 69 4.4.4 A multiplier type formulation . 71 4.4.5 Applications: The Lp theory of the Riesz Transform and the Laplace and Bessel Operators . 74 4.4.6 The limiting case p =1........................
    [Show full text]
  • Weak-Type Weights and Normable Lorentz Spaces 1
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 124, Number 3, March 1996 WEAK-TYPE WEIGHTS AND NORMABLE LORENTZ SPACES MAR´IA J. CARRO, ALEJANDRO GARC´IA DEL AMO, AND JAVIER SORIA (Communicated by J. Marshall Ash) Abstract. We show that the Lorentz space Λ1(w) is a Banach space if and only if the Hardy-Littlewood maximal operator M satisfies a certain weak-type estimate. We also consider the case of general measures. Finally, we study some properties of several indices associated to these spaces. 1. Introduction We are going to study weighted Lorentz spaces of functions defined in Rn as follows (for standard notation we refer to [BS] and [GR]): If u is a weight in Rn, + w is a weight in R , fu∗ denotes the decreasing rearrangement of f with respect to the measure u(x) dx and 0 <p< , we define ∞ 1/p ∞ p p p Λu(w)= f; f Λu(w) = fu∗(t) w(t)dt < . k k 0 ∞ Z If u 1, we will only write Λp(w). Classical examples are obtained by choosing ≡ (p/q) 1 p q,p w(t)=t − .InthiscaseΛ(w)=L . A classical result of G.G. Lorentz (see [Lo]) shows that Λ1(w) is a norm, if and only if, w is a decreasing function. The problem of findingk·k conditions on w so that Λp(w) is a Banach space (that is, there exists a norm equivalent to Λp(w)) was solved, for p>1, by E. Sawyer ([Sa]). This condition is that the Hardy-Littlewoodk·k maximal operator is bounded on Λp(w).
    [Show full text]
  • Real Interpolation of Sobolev Spaces
    MATH. SCAND. 105 (2009), 235–264 REAL INTERPOLATION OF SOBOLEV SPACES NADINE BADR Abstract We prove that W 1 is a real interpolation space between W 1 and W 1 for p>q and 1 ≤ p < p p1 p2 0 1 p<p2 ≤∞on some classes of manifolds and general metric spaces, where q0 depends on our hypotheses. 1. Introduction 1 ∞ Do the Sobolev spaces Wp form a real interpolation scale for 1 <p< ? The aim of the present work is to provide a positive answer for Sobolev spaces on some metric spaces. Let us state here our main theorems for non-homogeneous Sobolev spaces (resp. homogeneous Sobolev spaces) on Riemannian mani- folds. Theorem 1.1. Let M be a complete non-compact Riemannian manifold satisfying the local doubling property (Dloc) and a local Poincaré inequality ≤ ∞ ≤ ≤ ∞ 1 (Pqloc), for some 1 q< . Then for 1 r q<p< , Wp is a real 1 1 interpolation space between Wr and W∞. To prove Theorem 1.1, we characterize the K-functional of real interpola- tion for non-homogeneous Sobolev spaces: Theorem 1.2. Let M be as in Theorem 1.1. Then ∈ 1 + 1 1. there exists C1 > 0 such that for all f Wr W∞ and t>0 1 1 ∗∗ 1 ∗∗ 1 r 1 1 ≥ r | |r r +|∇ |r r ; K f, t ,Wr ,W∞ C1t f (t) f (t) ≤ ≤ ∞ ∈ 1 2. for r q p< , there is C2 > 0 such that for all f Wp and t>0 1 1 q∗∗ 1 q∗∗ 1 r 1 1 ≤ r | | q +|∇ | q K f, t ,Wr ,W∞ C2t f (t) f (t) .
    [Show full text]
  • HARDY-TYPE OPERATORS in LORENTZ-TYPE SPACES DEFINED on MEASURE SPACES1 Qinxiu Sun∗, Xiao Yu∗∗ and Hongliang Li∗∗∗
    Indian J. Pure Appl. Math., 51(3): 1105-1132, September 2020 °c Indian National Science Academy DOI: 10.1007/s13226-020-0453-1 HARDY-TYPE OPERATORS IN LORENTZ-TYPE SPACES DEFINED ON MEASURE SPACES1 Qinxiu Sun¤, Xiao Yu¤¤ and Hongliang Li¤¤¤ ¤Department of Mathematics, Zhejiang University of Science and Technology, Hangzhou 310023, China ¤¤Department of Mathematics, Shangrao Normal University, Shangrao 334001, China ¤¤¤Department of Mathematics, Zhejiang International Studies University, Hangzhou 310012, China e-mail: [email protected] (Received 2 June 2018; accepted 12 June 2019) Weight criteria for the boundedness and compactness of generalized Hardy-type operators Z T f(x) = u1(x) f(y)u2(y)v0(y) d¹(y); x 2 X; (0.1) fÁ(y)·Ã(x)g in Orlicz-Lorentz spaces defined on measure spaces is investigated where the functions Á; Ã; u1; u2; v0 are positive measurable functions. Some sufficient conditions of boundedness of G0 G1 G0 G1;1 T :Λv0 (w0) ! Λv1 (w1) and T :Λv0 (w0) ! Λv1 (w1) are obtained on Orlicz-Lorentz spaces. Furthermore, we achieve sufficient and necessary conditions for T to be bounded and p0 p1;q1 compact from a weighted Lorentz space Λv0 (w0) to another Λv1 (w1). It is notable that the function spaces concerned here are quasi-Banach spaces instead of Banach spaces. Key words : Hardy operator; Orlicz-Lorentz spaces; weighted Lorentz spaces; boundedness; compactness. 2010 Mathematics Subject Classification : 46E30, 46B42. 1. INTRODUCTION R x For the Hardy operator S defined by Sf(x) = 0 f(t)dt, the weighted Lebesgue-norm inequalities have been characterized by many authors (e.g.
    [Show full text]
  • Generalized Lorentz Spaces and Köthe Duality
    Generalized Lorentz spaces and Köthe duality Anna Kaminska´ and Yves Raynaud University of Memphis, Paris University VI Conference on Non Linear Functional Analysis, Universitat Politecnica de Valencia, Spain, 17-20 October 2017 Anna Kaminska´ and Yves Raynaud Generalized Lorentz spaces and Köthe duality µ measure on the the measure space (Ω; A; µ) L0(Ω) = L0(Ω; A; µ) , µ-measurable real valued functions on Ω 0 0 L+(Ω) non-negative functions from L (Ω). L1 = L1(Ω), kf k1, L1 = L1(Ω), kf k1 L1 + L1(Ω), kf kL1+L1(Ω) = inffkgk1 + khk1 : f = g + hg < 1 L1 \ L1(Ω), kf kL1\L1(Ω) = maxfkf k1; kf k1g < 1. A Banach function space E over (Ω; A), is a complete vector space 0 E ⊂ L (Ω) equipped with a norm k · kE such that if 0 ≤ f ≤ g, where 0 g 2 E and f 2 L (Ω), then f 2 E and kf kE ≤ kgkE . The space E satisfies the Fatou property whenever for any 0 f 2 L (Ω), fn 2 E such that fn " f a.e. and sup kfnkE < 1 it follows that f 2 E and kfnkE " kf kE . µ distribution of f with respect to µ, df (s) = µfjf j > sg, s ≥ 0, and its ∗,µ µ decreasing rearrangement f (t) = inffs > 0 : dg (s) ≤ tg, 0 < t < µ(Ω). f ; g are equimeasurable (with respect to the measures µ and ν) if µ ν ∗,µ ∗,ν df (s) = dg (s), s ≥ 0; equivalently, f = g . Anna Kaminska´ and Yves Raynaud Generalized Lorentz spaces and Köthe duality A Banach function space E is symmetric space (with respect to µ) whenever kf kE = kgkE for every µ-equimeasurable functions f ; g 2 E.
    [Show full text]
  • Arxiv:Math/9912098V1 [Math.CA] 13 Dec 1999 Otelrnzspace Lorentz the to H Ouinkresspotdo Uvsi H Ln [0,[7) Hs O These [27])
    SHARP LORENTZ SPACE ESTIMATES FOR ROUGH OPERATORS Andreas Seeger and Terence Tao Abstract. We demonstrate the (H1,L1,2) or (Lp,Lp,2) mapping properties of several rough operators. In all cases these estimates are sharp in the sense that the Lorentz exponent 2 cannot be replaced by any lower number. 1. Introduction In this paper we consider the endpoint behaviour on Hardy spaces of two classes of operators, namely singular integral operators with rough homogeneous kernels [4] and singular integral operators with con- volution kernels supported on curves in the plane ([20], [27]). These operators fall outside the Calder´on- Zygmund theory; however weak type (L1,L1,∞) or (H1,L1,∞) inequalities have been established in the previous literature ([7], [9], [16] [18], [25], [29]) We shall show that the target space L1,∞ can be improved to the Lorentz space L1,2, possibly at the cost of moving to a stronger type of Hardy space (e.g. product H1). Examples of Christ [8], [17] show that these types of results are optimal in the sense that one cannot replace L1,2 by L1,q for any q< 2. The space L1,2 arises naturally as the interpolation space halfway between L1,∞ and L1. As a gross caricature of how this space arises, suppose that we have a collection of functions fi which are uniformly bounded in L1, and whose maximal function sup f is in weak L1, and we wish to estimate the quantity i | i| γifi L1,2 Xi 2 for some l co-efficients γi. If the fi are sufficiently orthogonal, we may hope to control this quantity by the square function 2 1/2 (1.1) γifi .
    [Show full text]
  • Characterizations of Screened Sobolev Spaces Noah Stevenson and Ian Tice DEPARTMENTOF MATHEMATICAL SCIENCES,CARNEGIE MELLON UNIVERSITY
    Characterizations of Screened Sobolev Spaces Noah Stevenson and Ian Tice DEPARTMENT OF MATHEMATICAL SCIENCES,CARNEGIE MELLON UNIVERSITY An approach which is promising in the resolution of this issue is to swap the inhomogeneous Sobolev spaces for their homogeneous counterparts, Does the topology on the screened Sobolev spaces Background W_ k;p (Ω). The upshot is that the latter families allow for a larger variety of Research admit a Fourier space characterization? behaviors at infinity. For this approach to have any chance of being fruitful in the Leoni and Tice gave the following partial frequency & Motivation study of boundary value problems, it is essential to identify and understand the Questions n characterization of these spaces: for f 2 S R it holds Partial differential equations (PDEs) are trace spaces associated to the homogeneous Sobolev spaces. Recall that the trace Z 1 2s 2 ^ 2 2 central to the modeling of natural space associated to a Sobolev space on a domain is a space of functions holding Can the screened Sobolev spaces be [f]W~ s;2 minfjξj ; jξj g f (ξ) dξ ; (2) (σ) n understood through interpolation theory? R phenomena. As a result, the study of these the possible boundary values and, for higher order Sobolev spaces, powers of the where 0 < s < 1 and constant screening function σ = 1. equations and their solutions has held a normal derivative. Interpolation theory is a set of tools which This expression suggests that the high-mode part of a prominent place in mathematics for For functions of finite energy in planar strips these trace spaces were first s;2 take certain pairs of topological vector member of W~ behaves like a member of the centuries.
    [Show full text]
  • Interpolation of Compact Operators by the Methods of Calderon and Gustavsson-Peetre
    Proceedings of the Edinburgh Mathematical Society (1995) 38, 261-276 I INTERPOLATION OF COMPACT OPERATORS BY THE METHODS OF CALDERON AND GUSTAVSSON-PEETRE by M. CWIKEL* and N. J. KALTONf (Received 15th July 1993) Let X = (X0,A'i) and \ = {Y0, V,) be Banach couples and suppose T:X-»Y is a linear operator such that T:X0-+ Yo is compact. We consider the question whether the operator T:[X0, A'1]fl->[T0> y,]e is compact and show a positive answer under a variety of conditions. For example it suffices that Xo be a UMD-space or that Xo is reflexive and there is a Banach space so that X0 = [W,Xl~\I for some 0<ot< 1. 1991 Mathematics subject classification: 46M35. 1. Introduction Let X=(X0,Xi) and \ = (Y0,Y1) be Banach couples and let T be a linear opeator such that T:X->Y (meaning, as usual, that T:XQ + X^ YO+ 7, and T:Xj-*Yj boun- dedly for y=0,1). Interpolation theory supplies us with a variety of interpolation functors F for generating interpolation spaces, i.e. functors F which when applied to the couples X and Y yield spaces F(X) and F(Y) having the property that each T as above maps F(X) into F(Y) with bound for some absolute constant C depending only on the functor F. It will be convenient here to use the customary notation ||T||x_v=max(||7'||Xo,||T||;ri). Further general background about interpolation theory and Banach couples can be found e.g.
    [Show full text]