Type, Cotype and Convexity Properties of Quasi–Banach Spaces

Total Page:16

File Type:pdf, Size:1020Kb

Type, Cotype and Convexity Properties of Quasi–Banach Spaces Proceedings of the International Symposium on Banach and Function Spaces Kitakyushu, Japan, October 2-4, 2003, pp. 83-120 TYPE, COTYPE AND CONVEXITY PROPERTIES OF QUASI–BANACH SPACES LECH MALIGRANDA Abstract. Results on quasi-Banach spaces, their type and cotype together with the convexity and concavity of quasi- Banach lattices are collected. Several proofs are included. Then the Lebesgue Lp, the Lorentz Lp,q and the Marcinkiewicz Lp,∞ spaces are the special examples. We review also several results of Kami´nska and the author on convexity, concavity, type and cotype of general Lorentz spaces Λp,w. Introduction The notions of type and cotype of Banach spaces emerged from the work of J. Hoffman-J¨orgensen, S. Kwapie´n, B. Maurey, B. Maurey and G. Pisier in early 1970’s. Since then, these notions have found frequent use in geometry of Banach spaces as well as in probability theory in Banach spaces. For the Banach lattices related notions of p-convexity, q-concavity and upper p-estimate, lower q-estimate appeared in Krivine paper and then in classical Lindenstrauss-Tzafriri book [30]. These concepts are natural even in quasi-Banach spaces where we have triangle inequality with a certain constant C ≥ 1 instead of C =1 or in p-Banach spaces (0 <p<1). Many definitions and classical results in Banach spaces can be translated in a natural way to definitions and results in quasi-Banach or p-Banach spaces. These were done initially in eighties by N. J. Kalton ([17, 18]). 2000 subject classification: Primary 46E30, 46B20; Secondary 46B42, 46B25. Key words and phrases: quasi-Banach spaces, type and cotype of quasi-Banach spaces, normability, quasi-Banach lattices, convexity and concavity of quasi-Banach lattices, rearrangement invariant spaces, Lorentz spaces, Marcinkiewicz spaces, Hardy operator, weights, weighted inequalities. 83 84 L. Maligranda We study properties and results on type, cotype, convexity and con- cavity of quasi-Banach spaces. Moreover, we will show how to use some p,q techniques for the classical Lorentz spaces L and Lorentz spaces Λp,w with 0 <p<∞ and arbitrary weight w, which were obtained in the papers [20] and [21]. 1. Quasi-Banach spaces All vector spaces will be real, although most arguments may be mod- ified to the complex case. A quasi-norm on a real vector space X is a map ·: X → [0, ∞) such that (1) x = 0 if and only if x =0, (2) ax = |a|x,a∈ R,x∈ X, (3) x + y≤C(x + y),x,y∈ X, where C ≥ 1 is a constant independent of x, y ∈ X. The smallest possible constant C = CX ≥ 1 is called the quasi-triangle constant of X = (X, ·). A quasi-norm induces a locally bounded topology on X and con- versely any locally bounded topology is given by a quasi-norm. If, in addition, we have for some 0 <p≤ 1, (4) x + yp ≤xp + yp for all x, y ∈ X, then a functional ·is called a p-norm. A complete quasi-normed (or p-normed) space is called a quasi-Banach space (or p-Banach space). Theorem 1.1 (completeness of quasi-normed spaces). A quasi- normed space X =(X, ·) with a quasi-triangle constant C ≥ 1 is complete (quasi-Banach space) if and only if for every series such that ∞ k ∞ k=1 C xk < ∞ we have k=1 xk ∈ X and ∞ ∞ k xk ≤ C C xk. k=1 k=1 Proof. Note that in a quasi-normed space X for natural numbers Type, cotype and convexity properties of quasi-Banach spaces 85 n>mwe have n n xk ≤ C xm + xk k=m k=m+1 n ≤ C xm + C xm+1 + xk k=m+2 n k−m+1 ≤ ...≤ C xk. k=m ∞ k Let X be a quasi-Banach space and assume that k=1 C xk = S< n ∞. For each n ∈ N let Sn = k=1 xk be the sequence of partial sums. Then n+m n+m k−n Sn+m − Sn = xk ≤ C xk k=n+1 k=n+1 n+m n+m n k k k ≤ C xk = C xk− C xk k=n+1 k=1 k=1 → S − S =0, as n, m →∞, imply that {Sn} is a Cauchy sequence, and so, convergent ∞ in X. Therefore, k=1 xk = x ∈ X. Moreover, n n ∞ k k xk ≤ C xk≤ C xk, k=1 k=1 k=1 ∞ k and so lim supn→∞ Sn≤ k=1 C xk from which we obtain ∞ k x≤C lim sup (x − Sn + Sn) ≤ C C xk. n→∞ k=1 Conversely, assume that (xn) is a Cauchy sequence in X. Then there is a −1 natural number n1 such that for all n>n1 we have xn −xn1 < (2C) . −2 We take n2 ∈ N,n2 >n1 such that for all n>n2 xn − xn2 < (2C) . Inductively we find an increasing sequence n1 <n2 <n3 <... such that − −k for all n>nk we have xn xnk < (2C) . Then (xnk ) is a subsequence of (xn) which satisfies 1 xn − xn < for k =1, 2,..., k+1 k (2C)k 86 L. Maligranda and ∞ ∞ k − ≤ −k ∞ xn1 + C xnk+1 xnk xn1 + 2 = xn1 +1< , k=1 k=1 which by the assumption is convergent in X, that is, N−1 − → ∈ SN−1 = xn1 + (xnk+1 xnk )=xnN y X, k=1 as N →∞. Since − ≤ − − → y xn C( y xnN + xnN xn ) 0, as n, N →∞it follows that (xn) converges to y ∈ X and so X is complete. 2 Two quasi-norms or p-norms ·and · are equivalent if there is a constant A ≥ 1 such that A−1x≤x ≤ Ax for all x ∈ X. We say that a quasi-Banach space X is p-normable (0 <p≤ 1) if there exists in X a p-norm equivalent to the quasi-norm in X or ≥ n ≤ equivalently if there is a constant B 1 such that k=1 xk n p 1/p B ( k=1 xk ) for all x1,x2,...,xn ∈ X. In the case when p =1we simply say that the space is normable. Clearly, any p-norm is a quasi-norm with C =21/p−1. Up to equiva- lence, the converse is also true by the following Aoki-Rolewicz theorem (Aoki [1] in 1942, Rolewicz [42] in 1957). Theorem 1.2 (Aoki-Rolewicz theorem). If (X, ·) is a quasi- normed space, then there is 0 <p≤ 1 and a p-norm · on X equivalent to ·. More precisely, if C is the quasi-triangle constant, then p is determined by C =21/p−1 and x ≤x≤21/px for all x ∈ X. Proof (cf. Gustavsson [11], Kalton-Peck-Roberts [19], Pietsch [37]). If (X, ·) is a quasi-normed space, then ⎧ ⎫ ⎨ n 1/p n ⎬ p ∈ ∈ N x = inf ⎩ xk : x = xk,xk X, n ⎭ k=1 k=1 Type, cotype and convexity properties of quasi-Banach spaces 87 1/p−1 is a p-norm equivalent to ·X, where 2 = C and C is a quasi- triangle constant of X. 2 The important class of quasi-Banach spaces which are not Banach p spaces is the class of L (µ) spaces for 0 <p<1 with the usual quasi- p 1/p norm fp =( Ω |f(t)| dµ) . In this case 1/p−1 f + gp ≤ 2 (fp + gp), i.e., the quasi-triangle constant of Lp(µ)is21/p−1. Also the Lorentz spaces Lp,q (0 <p,q≤∞) and Orlicz spaces Lϕ with not necessary convex Orlicz function ϕ are classical examples of quasi-Banach spaces. Several examples of quasi-norms we can produce already in R2 fol- lowing the special two examples given by Aoki [1] in 1942. Let X = R2 2 and for x =(x1,x2) ∈ R , 1 ≤ p ≤∞and a = 1 consider functionals p p 1/p xp =(|x1| + |x2| ) if x2 =0 , x = a|x1| if x2 =0. Then min(1,a)xp ≤x≤max(1,a)xp 1 and so · is a quasi-norm with the quasi-triangle constant C = max(a, a ) > 1. A linear operator T between quasi-Banach spaces X and Y is contin- uous if and only if it is bounded, and we put, as usual, T = sup{Tx : x≤1}. The standard results depending on Baire category, like the open mapping theorem, are valid also in the context of quasi-Banach spaces (with the same proof). On the other hand, quasi-normed spaces are not necessarily locally convex, and the Hahn-Banach theorem and results depending on it are in general false in this context. For exam- ple, the dual space to a quasi-Banach space can be trivial one, that is, X ∗ = {0}. 2. Type and cotype of quasi-Banach spaces Let rn :[0, 1] → R,n ∈ N, be Rademacher functions, that is, rn(t) = sign (sin 2nπt). The classical Khintchine inequality yields: for any 88 L. Maligranda 0 <p<∞ there are positive constants Ap,Bp such that 1/2 1/p 1/2 n 1 n p n 2 2 Ap |ak| ≤ akrk(t) dt ≤ Bp |ak| k=1 0 k=1 k=1 n for every choice of scalars {ak}k=1 and every n ∈ N. A quasi-Banach space X has type p (0 <p≤ 2), respectively cotype q (q ≥ 2) if there is a constant K>0 such that, for any choice of finitely many vectors x1,...,xn from X, 1 n n 1/p p rk(t)xk dt ≤ K xk , 0 k=1 k=1 respectively n n 1/q 1 q xk ≤ K rk(t)xk dt .
Recommended publications
  • On Quasi Norm Attaining Operators Between Banach Spaces
    ON QUASI NORM ATTAINING OPERATORS BETWEEN BANACH SPACES GEUNSU CHOI, YUN SUNG CHOI, MINGU JUNG, AND MIGUEL MART´IN Abstract. We provide a characterization of the Radon-Nikod´ymproperty in terms of the denseness of bounded linear operators which attain their norm in a weak sense, which complement the one given by Bourgain and Huff in the 1970's. To this end, we introduce the following notion: an operator T : X ÝÑ Y between the Banach spaces X and Y is quasi norm attaining if there is a sequence pxnq of norm one elements in X such that pT xnq converges to some u P Y with }u}“}T }. Norm attaining operators in the usual (or strong) sense (i.e. operators for which there is a point in the unit ball where the norm of its image equals the norm of the operator) and also compact operators satisfy this definition. We prove that strong Radon-Nikod´ymoperators can be approximated by quasi norm attaining operators, a result which does not hold for norm attaining operators in the strong sense. This shows that this new notion of quasi norm attainment allows to characterize the Radon-Nikod´ymproperty in terms of denseness of quasi norm attaining operators for both domain and range spaces, completing thus a characterization by Bourgain and Huff in terms of norm attaining operators which is only valid for domain spaces and it is actually false for range spaces (due to a celebrated example by Gowers of 1990). A number of other related results are also included in the paper: we give some positive results on the denseness of norm attaining Lipschitz maps, norm attaining multilinear maps and norm attaining polynomials, characterize both finite dimensionality and reflexivity in terms of quasi norm attaining operators, discuss conditions to obtain that quasi norm attaining operators are actually norm attaining, study the relationship with the norm attainment of the adjoint operator and, finally, present some stability results.
    [Show full text]
  • Uniform Boundedness Principle for Unbounded Operators
    UNIFORM BOUNDEDNESS PRINCIPLE FOR UNBOUNDED OPERATORS C. GANESA MOORTHY and CT. RAMASAMY Abstract. A uniform boundedness principle for unbounded operators is derived. A particular case is: Suppose fTigi2I is a family of linear mappings of a Banach space X into a normed space Y such that fTix : i 2 Ig is bounded for each x 2 X; then there exists a dense subset A of the open unit ball in X such that fTix : i 2 I; x 2 Ag is bounded. A closed graph theorem and a bounded inverse theorem are obtained for families of linear mappings as consequences of this principle. Some applications of this principle are also obtained. 1. Introduction There are many forms for uniform boundedness principle. There is no known evidence for this principle for unbounded operators which generalizes classical uniform boundedness principle for bounded operators. The second section presents a uniform boundedness principle for unbounded operators. An application to derive Hellinger-Toeplitz theorem is also obtained in this section. A JJ J I II closed graph theorem and a bounded inverse theorem are obtained for families of linear mappings in the third section as consequences of this principle. Go back Let us assume the following: Every vector space X is over R or C. An α-seminorm (0 < α ≤ 1) is a mapping p: X ! [0; 1) such that p(x + y) ≤ p(x) + p(y), p(ax) ≤ jajαp(x) for all x; y 2 X Full Screen Close Received November 7, 2013. 2010 Mathematics Subject Classification. Primary 46A32, 47L60. Key words and phrases.
    [Show full text]
  • The Semi-M Property for Normed Riesz Spaces Compositio Mathematica, Tome 34, No 2 (1977), P
    COMPOSITIO MATHEMATICA EP DE JONGE The semi-M property for normed Riesz spaces Compositio Mathematica, tome 34, no 2 (1977), p. 147-172 <http://www.numdam.org/item?id=CM_1977__34_2_147_0> © Foundation Compositio Mathematica, 1977, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions géné- rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infrac- tion pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 34, Fasc. 2, 1977, pag. 147-172 Noordhoff International Publishing Printed in the Netherlands THE SEMI-M PROPERTY FOR NORMED RIESZ SPACES Ep de Jonge 1. Introduction It is well-known that if (0394, F, IL) is a u-finite measure space and if 1 ~ p 00, then the Banach dual L *p of the Banach space Lp = Lp(0394, IL) can be identified with Lq = Lq(L1, 03BC), where p-1 + q-1 = 1. For p =00 the situation is different; the space Li is a linear subspace of L*, and only in a very trivial situation (the finite-dimensional case) we have Li = Lfi. Restricting ourselves to the real case, the Banach dual L *~ is a (real) Riesz space, i.e., a vector lattice, and Li is now a band in L*. The disjoint complement (i.e., the set of all elements in L* disjoint to all elements in LI) is also a band in L*, called the band of singular linear functionals on Loo.
    [Show full text]
  • Burkholder's Inequalities in Noncommutative Lorentz
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 138, Number 7, July 2010, Pages 2431–2441 S 0002-9939(10)10267-6 Article electronically published on March 24, 2010 BURKHOLDER’S INEQUALITIES IN NONCOMMUTATIVE LORENTZ SPACES YONG JIAO (Communicated by Marius Junge) Abstract. We prove Burkholder’s inequalities in noncommutative Lorentz spaces Lp,q(M), 1 <p<∞, 1 ≤ q<∞, associated with a von Neumann algebra M equipped with a faithful normal tracial state. These estimates generalize the classical inequalities in the commutative case. 1. Introduction Martingale inequalities and sums of independent random variables are important tools in classical harmonic analysis. A fundamental result due to Burkholder [1, 2] can be stated as follows. Given a probability space (Ω, F ,P), let {Fn}n≥1 be a nondecreasing sequence of σ-fields of F such that F = ∨Fn and let En be the conditional expectation operator relative to Fn. Given 2 ≤ p<∞ and an p L -bounded martingale f =(fn)n≥1, we have ∞ ∞ 1/2 1/p 2 p (1.1) fLp ≈ Ek−1(|df k| ) + |df k| . Lp Lp k=1 k=1 The first term on the right is called the conditioned square function of f, while the second is called the p-variation of f. Rosenthal’s inequalities [14] can be regarded as the particular case where the sequence df =(df 1,df2, ...) is a family of independent mean-zero random variables df k = ak. In this case it is easy to reduce Rosenthal’s inequalities to ∞ ∞ ∞ 1/2 1/p ≈ 2 p (1.2) ak Lp ak 2 + ak p .
    [Show full text]
  • Functional Analysis Lecture Notes Chapter 3. Banach
    FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 3. BANACH SPACES CHRISTOPHER HEIL 1. Elementary Properties and Examples Notation 1.1. Throughout, F will denote either the real line R or the complex plane C. All vector spaces are assumed to be over the field F. Definition 1.2. Let X be a vector space over the field F. Then a semi-norm on X is a function k · k: X ! R such that (a) kxk ≥ 0 for all x 2 X, (b) kαxk = jαj kxk for all x 2 X and α 2 F, (c) Triangle Inequality: kx + yk ≤ kxk + kyk for all x, y 2 X. A norm on X is a semi-norm which also satisfies: (d) kxk = 0 =) x = 0. A vector space X together with a norm k · k is called a normed linear space, a normed vector space, or simply a normed space. Definition 1.3. Let I be a finite or countable index set (for example, I = f1; : : : ; Ng if finite, or I = N or Z if infinite). Let w : I ! [0; 1). Given a sequence of scalars x = (xi)i2I , set 1=p jx jp w(i)p ; 0 < p < 1; 8 i kxkp;w = > Xi2I <> sup jxij w(i); p = 1; i2I > where these quantities could be infinite.:> Then we set p `w(I) = x = (xi)i2I : kxkp < 1 : n o p p p We call `w(I) a weighted ` space, and often denote it just by `w (especially if I = N). If p p w(i) = 1 for all i, then we simply call this space ` (I) or ` and write k · kp instead of k · kp;w.
    [Show full text]
  • The Nonstandard Theory of Topological Vector Spaces
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 172, October 1972 THE NONSTANDARDTHEORY OF TOPOLOGICAL VECTOR SPACES BY C. WARD HENSON AND L. C. MOORE, JR. ABSTRACT. In this paper the nonstandard theory of topological vector spaces is developed, with three main objectives: (1) creation of the basic nonstandard concepts and tools; (2) use of these tools to give nonstandard treatments of some major standard theorems ; (3) construction of the nonstandard hull of an arbitrary topological vector space, and the beginning of the study of the class of spaces which tesults. Introduction. Let Ml be a set theoretical structure and let *JR be an enlarge- ment of M. Let (E, 0) be a topological vector space in M. §§1 and 2 of this paper are devoted to the elementary nonstandard theory of (F, 0). In particular, in §1 the concept of 0-finiteness for elements of *E is introduced and the nonstandard hull of (E, 0) (relative to *3R) is defined. §2 introduces the concept of 0-bounded- ness for elements of *E. In §5 the elementary nonstandard theory of locally convex spaces is developed by investigating the mapping in *JK which corresponds to a given pairing. In §§6 and 7 we make use of this theory by providing nonstandard treatments of two aspects of the existing standard theory. In §6, Luxemburg's characterization of the pre-nearstandard elements of *E for a normed space (E, p) is extended to Hausdorff locally convex spaces (E, 8). This characterization is used to prove the theorem of Grothendieck which gives a criterion for the completeness of a Hausdorff locally convex space.
    [Show full text]
  • Eberlein-Šmulian Theorem and Some of Its Applications
    Eberlein-Šmulian theorem and some of its applications Kristina Qarri Supervisors Trond Abrahamsen Associate professor, PhD University of Agder Norway Olav Nygaard Professor, PhD University of Agder Norway This master’s thesis is carried out as a part of the education at the University of Agder and is therefore approved as a part of this education. However, this does not imply that the University answers for the methods that are used or the conclusions that are drawn. University of Agder, 2014 Faculty of Engineering and Science Department of Mathematics Contents Abstract 1 1 Introduction 2 1.1 Notation and terminology . 4 1.2 Cornerstones in Functional Analysis . 4 2 Basics of weak and weak* topologies 6 2.1 The weak topology . 7 2.2 Weak* topology . 16 3 Schauder Basis Theory 21 3.1 First Properties . 21 3.2 Constructing basic sequences . 37 4 Proof of the Eberlein Šmulian theorem due to Whitley 50 5 The weak topology and the topology of pointwise convergence on C(K) 58 6 A generalization of the Ebrlein-Šmulian theorem 64 7 Some applications to Tauberian operator theory 69 Summary 73 i Abstract The thesis is about Eberlein-Šmulian and some its applications. The goal is to investigate and explain different proofs of the Eberlein-Šmulian theorem. First we introduce the general theory of weak and weak* topology defined on a normed space X. Next we present the definition of a basis and a Schauder basis of a given Banach space. We give some examples and prove the main theorems which are needed to enjoy the proof of the Eberlein-Šmulian theorem given by Pelchynski in 1964.
    [Show full text]
  • Arxiv:2003.03538V1 [Math.FA] 7 Mar 2020 Ooois Otniy Discontinuity
    CONTINUITY AND DISCONTINUITY OF SEMINORMS ON INFINITE-DIMENSIONAL VECTOR SPACES. II JACEK CHMIELINSKI´ Department of Mathematics, Pedagogical University of Krak´ow Krak´ow, Poland E-mail: [email protected] MOSHE GOLDBERG1 Department of Mathematics, Technion – Israel Institute of Technology Haifa, Israel E-mail: [email protected] Abstract. In this paper we extend our findings in [3] and answer further questions regard- ing continuity and discontinuity of seminorms on infinite-dimensional vector spaces. Throughout this paper let X be a vector space over a field F, either R or C. As usual, a real-valued function N : X → R is a norm on X if for all x, y ∈ X and α ∈ F, N(x) > 0, x =06 , N(αx)= |α|N(x), N(x + y) ≤ N(x)+ N(y). Furthermore, a real-valued function S : X → R is called a seminorm if for all x, y ∈ X and α ∈ F, arXiv:2003.03538v1 [math.FA] 7 Mar 2020 S(x) ≥ 0, S(αx)= |α|S(x), S(x + y) ≤ S(x)+ S(y); hence, a norm is a positive-definite seminorm. Using standard terminology, we say that a seminorm S is proper if S does not vanish identically and S(x) = 0 for some x =6 0 or, in other words, if ker S := {x ∈ X : S(x)=0}, is a nontrivial proper subspace of X. 2010 Mathematics Subject Classification. 15A03, 47A30, 54A10, 54C05. Key words and phrases. infinite-dimensional vector spaces, Banach spaces, seminorms, norms, norm- topologies, continuity, discontinuity. 1Corresponding author. 1 2 JACEK CHMIELINSKI´ AND MOSHE GOLDBERG Lastly, just as for norms, we say that seminorms S1 and S2 are equivalent on X, if there exist positive constants β ≤ γ such that for all x ∈ X, βS1(x) ≤ S2(x) ≤ γS1(x).
    [Show full text]
  • 1 the Principal of Uniform Boundedness
    THE PRINCIPLE OF UNIFORM BOUNDEDNESS 1 The Principal of Uniform Boundedness Many of the most important theorems in analysis assert that pointwise hy- potheses imply uniform conclusions. Perhaps the simplest example is the theorem that a continuous function on a compact set is uniformly contin- uous. The main theorem in this section concerns a family of bounded lin- ear operators, and asserts that the family is uniformly bounded (and hence equicontinuous) if it is pointwise bounded. We begin by defining these terms precisely. Definition 1.1 Let A be a family of linear operators from a normed space X to a normed space Y . We say that A is pointwise bounded if supA2AfkAxkg < 1 for every x 2 X. We say A is uniformly bounded if supA2AfkAkg < 1. It is possible for a single linear operator to be pointwise bounded without being bounded (Exercise), so the hypothesis in the next theorem that each individual operator is bounded is essential. Theorem 1.2 (The Principle of Uniform Boundedness) Let A ⊆ L(X; Y ) be a family of bounded linear operators from a Banach space X to a normed space Y . Then A is uniformly bounded if and only if it is pointwise bounded. Proof We will assume that A is pointwise bounded but not uniformly bounded, and obtain a contradiction. For each x 2 X, define M(x) := supA2AfkAxkg; our assumption is that M(x) < 1 for every x. Observe that if A is not uniformly bounded, then for any pair of positive numbers and C there must exist some A 2 A with kAk > C/, and hence some x 2 X with kxk = but kAxk > C.
    [Show full text]
  • The Banach-Alaoglu Theorem for Topological Vector Spaces
    The Banach-Alaoglu theorem for topological vector spaces Christiaan van den Brink a thesis submitted to the Department of Mathematics at Utrecht University in partial fulfillment of the requirements for the degree of Bachelor in Mathematics Supervisor: Fabian Ziltener date of submission 06-06-2019 Abstract In this thesis we generalize the Banach-Alaoglu theorem to topological vector spaces. the theorem then states that the polar, which lies in the dual space, of a neighbourhood around zero is weak* compact. We give motivation for the non-triviality of this theorem in this more general case. Later on, we show that the polar is sequentially compact if the space is separable. If our space is normed, then we show that the polar of the unit ball is the closed unit ball in the dual space. Finally, we introduce the notion of nets and we use these to prove the main theorem. i ii Acknowledgments A huge thanks goes out to my supervisor Fabian Ziltener for guiding me through the process of writing a bachelor thesis. I would also like to thank my girlfriend, family and my pet who have supported me all the way. iii iv Contents 1 Introduction 1 1.1 Motivation and main result . .1 1.2 Remarks and related works . .2 1.3 Organization of this thesis . .2 2 Introduction to Topological vector spaces 4 2.1 Topological vector spaces . .4 2.1.1 Definition of topological vector space . .4 2.1.2 The topology of a TVS . .6 2.2 Dual spaces . .9 2.2.1 Continuous functionals .
    [Show full text]
  • Arxiv:1712.01188V2 [Math.AP]
    GREEN’S FUNCTION FOR SECOND ORDER ELLIPTIC EQUATIONS WITH SINGULAR LOWER ORDER COEFFICIENTS SEICK KIM AND GEORGIOS SAKELLARIS Abstract. We construct Green’s function for second order elliptic operators of the form Lu = −∇ · (A∇u + bu) + c · ∇u + du in a domain and obtain pointwise bounds, as well as Lorentz space bounds. We assume that the matrix of principal coefficients A is uniformly elliptic and bounded and the lower order coefficients b, c, and d belong to certain Lebesgue classes and satisfy the condition d −∇· b ≥ 0. In particular, we allow the lower order coefficients to be singular. We also obtain the global pointwise bounds for the gradient of Green’s function in the case when the mean oscillations of the coefficients A and b satisfy the Dini conditions and the domain is C1,Dini. 1. Introduction Let Ω be a domain (i.e., an open connected set) in Rn with n ≥ 3. We consider second order elliptic operators in divergence form n n ij i i Lu = − Di(a (x)Dju + b (x)u) + c (x)Diu + d(x)u, iX,j=1 Xi=1 which hereafter shall be abbreviated as Lu = − div(A∇u + bu) + c · ∇u + du. We assume that the principal coefficients A = (aij) are measurable n × n matrices that are bounded and uniformly elliptic; i.e. there is a constant λ> 0 such that n λ|ξ|2 ≤ A(x)ξ · ξ = aij(x)ξiξj, ∀x ∈ Ω, ∀ξ ∈ Rn. (1.1) iX,j=1 We also assume that the lower order coefficients b = (b1,..., bn), c = (c1,..., cn), and d are such that b ∈ Lq(Ω), c ∈ Lr(Ω), d ∈ Ls(Ω) for some q, r ≥ n, s ≥ n/2.
    [Show full text]
  • Fourier Analysis in Function Space Theory
    Course No. 401-4463-62L Fourier Analysis in Function Space Theory Dozent: Tristan Rivi`ere Assistant: Alessandro Pigati Contents 1 The Fourier transform of tempered distributions 1 1.1 The Fourier transforms of L1 functions . 1 1.2 The Schwartz Space S(Rn)........................... 4 1.3 Frechet Spaces . 6 1.4 The space of tempered distributions S0(Rn).................. 12 1.5 Convolutions in S0(Rn)............................. 21 2 The Hardy-Littlewood Maximal Function 26 2.1 Definition and elementary properties. 26 2.2 Hardy-Littlewood Lp−theorem for the Maximal Function. 27 2.3 The limiting case p =1. ............................ 30 3 Quasi-normed vector spaces 32 3.1 The Metrizability of quasi-normed vector spaces . 32 3.2 The Lorentz spaces Lp;1 ............................ 36 3.3 Decreasing rearrangement . 37 3.4 The Lorentz spaces Lp;q ............................ 39 3.5 Functional inequalities for Lorentz spaces . 44 3.6 Dyadic characterization of some Lorentz spaces and another proof of Lorentz{ Sobolev embedding (optional) . 49 4 The Lp−theory of Calder´on-Zygmund convolution operators. 52 4.1 Calder´on-Zygmund decompositions. 52 4.2 An application of Calder´on-Zygmund decomposition . 54 4.3 The Marcinkiewicz Interpolation Theorem - The Lp case . 56 4.4 Calderon Zygmund Convolution Operators over Lp ............. 58 4.4.1 A \primitive" formulation . 60 4.4.2 A singular integral type formulation . 64 4.4.3 The case of homogeneous kernels . 69 4.4.4 A multiplier type formulation . 71 4.4.5 Applications: The Lp theory of the Riesz Transform and the Laplace and Bessel Operators . 74 4.4.6 The limiting case p =1........................
    [Show full text]