Telecommunications Transmission
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Twisted-Pair Telephone Transmission Line
High Frequency Design From November 2002 High Frequency Electronics Copyright © 2002, Summit Technical Media, LLC TRANSMISSION LINES The Twisted-Pair Telephone Transmission Line By Richard LAO Sumida America Technologies elephone line is a This article reviews the prin- balanced twisted- ciples of operation and Tpair transmission measurement methods for line, and like any electro- twisted pair (balanced) magnetic transmission transmission lines common- line, its characteristic ly used for xDSL and ether- impedance Z0 can be cal- net computer networking culated from manufactur- ers’ data and measured on an instrument such as the Agilent 4395A (formerly Hewlett-Packard HP4395A) net- Figure 1. Lumped element model of a trans- work analyzer. For lowest bit-error-rate mission line. (BER), central office and customer premise equipment should have analog front-end cir- cuitry that matches the telephone line • Category 3: BWMAX <16 MHz. Intended for impedance. This article contains a brief math- older networks and telephone systems in ematical derivation and and a computer pro- which performance over frequency is not gram to generate a graph of characteristic especially important. Used for voice, digital impedance as a function of frequency. voice, older ethernet 10Base-T and commer- Twisted-pair line for telephone and LAN cial customer premise wiring. The market applications is typically fashioned from #24 currently favors CAT5 installations instead. AWG or #26 AWG stranded copper wire and • Category 4: BWMAX <20 MHz. Not much will be in one of several “categories.” The used. Similar to CAT5 with only one-fifth Electronic Industries Association (EIA) and the bandwidth. the Telecommunications Industry Association • Category 5: BWMAX <100 MHz. -
Digital Subscriber Line (DSL) Technologies
CHAPTER21 Chapter Goals • Identify and discuss different types of digital subscriber line (DSL) technologies. • Discuss the benefits of using xDSL technologies. • Explain how ASDL works. • Explain the basic concepts of signaling and modulation. • Discuss additional DSL technologies (SDSL, HDSL, HDSL-2, G.SHDSL, IDSL, and VDSL). Digital Subscriber Line Introduction Digital Subscriber Line (DSL) technology is a modem technology that uses existing twisted-pair telephone lines to transport high-bandwidth data, such as multimedia and video, to service subscribers. The term xDSL covers a number of similar yet competing forms of DSL technologies, including ADSL, SDSL, HDSL, HDSL-2, G.SHDL, IDSL, and VDSL. xDSL is drawing significant attention from implementers and service providers because it promises to deliver high-bandwidth data rates to dispersed locations with relatively small changes to the existing telco infrastructure. xDSL services are dedicated, point-to-point, public network access over twisted-pair copper wire on the local loop (last mile) between a network service provider’s (NSP) central office and the customer site, or on local loops created either intrabuilding or intracampus. Currently, most DSL deployments are ADSL, mainly delivered to residential customers. This chapter focus mainly on defining ADSL. Asymmetric Digital Subscriber Line Asymmetric Digital Subscriber Line (ADSL) technology is asymmetric. It allows more bandwidth downstream—from an NSP’s central office to the customer site—than upstream from the subscriber to the central office. This asymmetry, combined with always-on access (which eliminates call setup), makes ADSL ideal for Internet/intranet surfing, video-on-demand, and remote LAN access. Users of these applications typically download much more information than they send. -
Leased-Line Replacement
Leased-Line REPLACEMENT Utilizing gigabit wireless links to provide fiber-like performance at significant savings compared to leased lines. WHITE PAPER Leased-Line Replacement T1 (1.5 Mbps) line is not enough capacity to handle the need, four T1s When considering high-bandwidth connections between locations, the are ordered from the telco at a monthly rate of $500 each ($2,000 per thinking used to be that the only way to get service was to pick up the month). This twelve month commitment also requires a startup fee of phone, call the Local Exchange Carrier (LEC) and order a circuit. As long $1,000 to cover equipment and provisioning of the circuits. This amounts as the startup costs and monthly recurring charges were within the IT to $25,000 for the one year lease to provide a 6 Mbps connection budget, and the IT manager and business administrators were content between the corporate headquarters and the satellite office. with the level of service provided, writing a monthly check to the LEC was not a problem. If troubles were encountered with the service, a In the second scenario, a DS3 leased line is used to connect a school’s phone call to the provider was all that was necessary to resolve the LAN to the district office backbone three miles away. Services such as problem. voice, data, Internet access, and classroom video are transported over the circuit. To establish service, the local carrier requires a startup fee Businesses relying on leased lines find a wide range of performance of $3,000 that covers the cost of edge devices, as well as installation options tailored to suit their needs, from T1/E1 (1.5/2 Mbps), multiple and commissioning. -
Introduction to Digital Subscriber's Line (DSL) Chapter 2 Telephone
Introduction to Digital Subscriber’s Line (DSL) Professor Fu Li, Ph.D., P.E. © Chapter 2 Telephone Infrastructure · Telephone line dates back to Bell in 1875 · Digital Transmission technology using complex algorithm based on DSP and VLSI to compensate impairments common to phone lines. · Phone line carries the single voice signal with 3.4 KHz bandwidth, DSL conveys 100 Compressed voice signals or a video signals. 1 · 15% phones require upgrade activities. · Phone company spent approximately 1 trillion US dollars to construct lines; · 700 millions are in service in 1997, 900 millions by 2001. · Most lines will support 1 Mb/s for DSL and many will support well above 1Mb/s data rate. Typical Voice Network 2 THE ACCESS NETWORK • DSL is really an access technology, and the associated DSL equipment is deployed in the local access network. • The access network consists of the local loops and associated equipment that connects the service user location to the central office. • This network typically consists of cable bundles carrying thousands of twisted-wire pairs to feeder distribution interfaces (FDIs). Two primary ways traditionally to deal with long loops: • 1.Use loading coils to modify the electrical characteristics of the local loop, allowing better quality voice-frequency transmission over extended distances (typically greater than 18,000 feet). • Loading coils are not compatible with the higher frequency attributes of DSL transmissions and they must be removed before DSL-based services can be provisioned. 3 Two primary ways traditionally to deal with long loops • 2. Set up remote terminals where the signals could be terminated at an intermediate point, aggregated and backhauled to the central office. -
Digital Subscriber Lines and Cable Modems Digital Subscriber Lines and Cable Modems
Digital Subscriber Lines and Cable Modems Digital Subscriber Lines and Cable Modems Paul Sabatino, [email protected] This paper details the impact of new advances in residential broadband networking, including ADSL, HDSL, VDSL, RADSL, cable modems. History as well as future trends of these technologies are also addressed. OtherReports on Recent Advances in Networking Back to Raj Jain's Home Page Table of Contents ● 1. Introduction ● 2. DSL Technologies ❍ 2.1 ADSL ■ 2.1.1 Competing Standards ■ 2.1.2 Trends ❍ 2.2 HDSL ❍ 2.3 SDSL ❍ 2.4 VDSL ❍ 2.5 RADSL ❍ 2.6 DSL Comparison Chart ● 3. Cable Modems ❍ 3.1 IEEE 802.14 ❍ 3.2 Model of Operation ● 4. Future Trends ❍ 4.1 Current Trials ● 5. Summary ● 6. Glossary ● 7. References http://www.cis.ohio-state.edu/~jain/cis788-97/rbb/index.htm (1 of 14) [2/7/2000 10:59:54 AM] Digital Subscriber Lines and Cable Modems 1. Introduction The widespread use of the Internet and especially the World Wide Web have opened up a need for high bandwidth network services that can be brought directly to subscriber's homes. These services would provide the needed bandwidth to surf the web at lightning fast speeds and allow new technologies such as video conferencing and video on demand. Currently, Digital Subscriber Line (DSL) and Cable modem technologies look to be the most cost effective and practical methods of delivering broadband network services to the masses. <-- Back to Table of Contents 2. DSL Technologies Digital Subscriber Line A Digital Subscriber Line makes use of the current copper infrastructure to supply broadband services. -
CALRAD 70 Series - Telephone Accessories
CALRAD 70 series - telephone accessories CALRAD’S NEW TELEPHONE HEADSETS HANDS FREE TELEPHONE HEADSETS Calrad’s telephone headsets help reduce phone fatigue and provides hands-free convenience for working on computer data entry, taking notes, and in fact do the work you need to do and talk on the phone at the same time. Adjustable volume control, telephone/headset selection switch, voice mute button. All units come with base unit, headset, and cables. 70-600 TELEPHONE LINE POWERED This unit works directly when connected to your telephone. Requires two AA batteries, not included. 70-601 BATTERY POWERED This unit works with most home type instruments. A selectable configuration switch is provided on the side of the unit for easy interfacing to your telephone equipment. This unit connects to your handset jack on the telephone. Two AA batteries not included. 70-602 BATTERY / DC POWERED This unit works with most business type instruments. A selectable configuration switch is provided on the side of the unit for easy interfacing to your telephone equipment. This unit easily connects to your handset jack on the telephone. A small opening on the front of the unit is provided so that a small phillips screwdriver can be used to adjust the microphone gain. Two AA batteries/AC adapter not included. AC adapter is 45-756-S. FLUSH MOUNT, SINGLE-JACK FLUSH MOUNT, MODULAR WALL PLATES DECORA STYLE For new construction or conversion to modular instruments. Screw terminals. MODULAR WALL PLATES 70-403 ..................................................4-Wire, Ivory Wall plates designed to accept 70-403-W ..........................................4-Wire, White modular plugs. -
Glossary of Communications Terms for Relay Engineers
Glossary of Communications Terms For Relay Engineers A Working Group Report from the H14 WG Of the H – Relaying Communications Subcommittee May 2008 Participants Roger Ray, Chairman Ray Young, Vice Chairman Marc Benou Oscar Bolado Jim Huddelston Stan Klein Ken Martin John Miller Tim Phillippe Mark Simon Mal Swanson Disclaimer This document has been prepared in order to give the Protective Relay Engineer an insight and understanding of communication terms that they may encounter in their work. It is not meant to be a substitute for or replace the IEEE Dictionary. Glossary of Communications Terms For Relay Engineers AAL - ATM Adaptation Layer The standards layer that allows multiple applications to have data converted to and from the ATM cell. A protocol used that translates higher layer services into the size and format of an ATM cell. ACCUNET Switched 56 An AT&T digital service providing switched (dialup) digital service at 56 Kbps. ACCUNET T1.5 An AT&T tariffed data oriented digital service that provides leased end-to-end customer premises terminated T-1 links. ACCUNET T1.5 Reserved A disaster recovery service whereby a switched 1.544 Mbps link is available between COs and is activated when AT&T is notified of the T-1 link failure. ACCUNET T45 An AT&T tariffed service that provides 45 Mbps, DS3 service which can carry 28 T-1 connections (672 voice channels). ACD - Automatic Call Distributor A telephone facility that manages incoming calls and handles them based on the number called and an associated database of handling instructions. ADPCM - Adaptive Differential Pulse Code Modulation A speech coding method which uses fewer bits than the traditional PCM (Pulse Code Modulation). -
Guide to Leased Lines
Guide to Leased Lines 1 WHAT IS A LEASED LINE? The term ‘leased line’ refers to a dedicated connection that allows communication between two sites (a point‐to‐point leased line) or between a site and the Internet (an internet leased line). Leased lines typically deliver bandwidth over a leased fibre connection, although copper local tails can sometimes be used as well. Leased lines are considered a premium connectivity product because unlike various broadband services leased lines are dedicated, uncontended data lines with symmetrical bandwidth speeds. With dedicated lines, users can get higher speeds of service and a higher service level guarantee. 2 WHAT ARE THE BENEFITS OF A LEASED LINE? More bandwidth – leased lines can deliver between 2Mbit/s to 1,000Mbit/s of connectivity to most UK businesses, and up to 10Gbit/s in some urban locations. Consistent speeds – your bandwidth is reserved exclusively for your use, so you can experience a consistently high data throughput at all times – even during peak usage periods. Fast upload speeds – leased lines are symmetrical, meaning you get the same high speed upstream as you get ownstream. This is ideal for VoIP, terminal services, online data backup, video conferencing, server hosting and the sending of large files. Unlimited data transfer – you can use your connection flat out, all the time. You can do whatever you like with it (subject to the law). There are no extra charges if you go over some arbitrary monthly usage quota. No‐one’s going to slow down your connection if you exceed an unspecified ‘fair usage’ limit. -
Wide Area Network
Wide area network A wide area network (WAN) is a telecommunications network or computer network that extends over a large geographical distance. Wide area networks are often established with leased telecommunication circuits.[1] Business, education and government entities use wide area networks to relay data to staff, students, clients, buyers, and suppliers from various locations across the world. In essence, this mode of telecommunication allows a business to effectively carry out its daily function regardless of location. The Internet may be considered a WAN.[2] Related terms for other types of networks are personal area networks (PANs), local area networks (LANs), campus area networks (CANs), or metropolitan area networks (MANs) which are usually limited to a room, building, campus or specific metropolitan area respectively. Contents Design options Connection technology List of WAN types See also References External links Design options The textbook definition of a WAN is a computer network spanning regions, countries, or even the world.[3] However, in terms of the application of computer networking protocols and concepts, it may be best to view WANs as computer networking technologies used to transmit data over long distances, and between different LANs, MANs and other localised computer networking architectures. This distinction stems from the fact that common LAN technologies operating at lower layers of the OSI model (such as the forms of Ethernet or Wi-Fi) are often designed for physically proximal networks, and thus cannot transmit data over tens, hundreds or even thousands of miles or kilometres. WANs do not just necessarily connect physically disparate LANs. A CAN, for example, may have a localized backbone of a WAN technology, which connects different LANs within a campus. -
Understanding Wide Area Networks
Understanding Wide Area Networks Module 7 Objectives Skills/Concepts Objective Domain Objective Domain Description Number Understanding routing Understanding routers 2.2 Defining common WAN Understanding wide area 1.3 technologies and networks (wan’s) connections Routing • Routing is the process of managing the flow of data between network segments and between hosts or routers • Data is sent along a path according to the IP networks and individual IP addresses of the hosts • A router is a network device that maintains tables of information about other routers on the network or internetwork Static and Dynamic Routing • A static route is a path that is manually configured and remains constant throughout the router’s operation • A dynamic route is a path that is generated dynamically by using special routing protocols Static Dynamic Dynamic Routing • Dynamic routing method has two conceptual parts: • Routing protocol used to convey information about the network environment • Routing Algorithm that determines paths through the network • Common Dynamic routing protocols: • Distance vector routing protocols: Advertise the number of hops to a network destination (distance) and the direction a packet can reach a network destination (vector). Sends updates at regularly scheduled intervals, and can take time for route changes to be updated • Link state routing protocols: Provide updates only when a network link changes state • Distance Vector Routing • Routing Information Protocol (RIP) • Link State Routing • Open Shortest Path First (OSPF) Interior -
Voip My House -- How to Quickly Distribute a Voip Phone Line to Your Entire House Voip My House How to Quickly Distribute a Voip Phone Line to Your Entire House
VoIP My House -- How to quickly distribute a VoIP phone line to your entire house VoIP My House How to quickly distribute a VoIP phone line to your entire house - Unlimited calling to U.S. and over 60 other countries - $10/month for 6 months, then $28/month - Sign up and get a $50 e-gift card - Get full details TIP: Review this entire web page article before working on your house, especially the DSL warning [§20] and Disclaimer [§23]. 1. VoIP - the new way 10. Ringer Equivalence 20. DSL warning 2. POTS - the old way Number 21. The cost of 'always 3. VoIP advantages 11. Twisted Pairs on' 4. VoIP disadvantages 12. Structured Wiring 22. More Information 5. POTS network 13. Alarm systems 23. Disclaimer interface 14. Color coding standards 24. Feedback 6. POTS phone jack 15. Safest VoIP solution 7. VoIP phone jack 17. Phone line polarity 8. The VoIP solution 18. Splicing wires 9. An ounce of 19. Verizon sucks prevention 1. VoIP - Phone service the new way VoIP = Voice over IP (internet) Most of us have high speed Internet in our homes -- so why not use the Internet to connect your whole house directly to a new (and cheaper) phone company's network? Quite simply, that is what VoIP can do for you. VoIP: 'Voice over IP': Connecting to a newer phone company's network directly (via the Internet instead of by dedicated copper wire), providing you with a device which provides phone service (a dial tone). And yes, you can connect your whole house to VoIP [§8], and you can continue to use all of the phones that you are using right now. -
The Internet Development Process: Observations and Reflections
The Internet Development Process: Observations and Reflections Pål Spilling University Graduate Center (UNIK), Kjeller, Norway [email protected] Abstract. Based on the experience of being part of the team that developed the internet, the author will look back and provide a history of the Norwegian participation. The author will attempt to answer a number of questions such as why was The Norwegian Defense Research Establishment (FFI) invited to participate in the development process, what did Norway contribute to in the project, and what did Norway benefit from its participation? Keywords: ARPANET, DARPA, Ethernet, Internet, PRNET. 1 A Short Historical Résumé The development of the internet went through two main phases. The first one laid the foundation for packet switching in a single network called ARPANET. The main idea behind the development of ARPANET was resource sharing [1]. At that time computers, software, and communication lines were very expensive, meaning that these resources had to be shared among as many users as possible. The development started at the end of 1968. The U.S. Defense Advanced Research Project Agency (DARPA) funded and directed it in a national project. It became operational in 1970; in a few years, it spanned the U.S. from west to east with one arm westward to Hawaii and one arm eastward to Kjeller, Norway, and then onwards to London. The next phase, the “internet project,” started in the latter half of 1974 [2]. The purpose of the project was to develop technologies to interconnect networks based on different communication principles, enabling end-to-end communications between computers connected to different networks.