Great Basin Native Plant Selection and Increase Project

Total Page:16

File Type:pdf, Size:1020Kb

Great Basin Native Plant Selection and Increase Project GREAT BASIN NATIVE PLANT SELECTION AND INCREASE PROJECT 2012 PROGRESS REPORT USDA FOREST SERVICE, ROCKY MOUNTAIN RESEARCH STATION AND USDI BUREAU OF LAND MANAGEMENT, BOISE, ID APRIL 2013 COOPERATORS USDA Forest Service, Rocky Mountain Research Station, Grassland, Shrubland and Desert Ecosystem Research Program, Boise, ID and Provo, UT USDI Bureau of Land Management, Great Basin Restoration Initiative, Boise, ID USDI Bureau of Land Management, Plant Conservation Program, Washington, DC Boise State University, Boise, ID Brigham Young University, Provo, UT College of Western Idaho, Nampa, ID Eastern Oregon Stewardship Services, Prineville, OR Oregon State University, Malheur Experiment Station, Ontario, OR Private Seed Industry Texas Tech University, Lubbock, TX Truax Company, Inc., New Hope, MN University of Idaho, Moscow, ID University of Idaho Parma Research and Extension Center, Parma, ID University of Nevada, Reno, NV University of Nevada Cooperative Extension, Elko and Reno, NV University of Wyoming, Laramie, WY Utah State University, Logan, UT USDA Agricultural Research Service, Bee Biology and Systematics Laboratory, Logan, UT USDA Agricultural Research Service, Eastern Oregon Agricultural Research Center, Burns, OR USDA Agricultural Research Service, Forage and Range Research Laboratory, Logan, UT USDA Agricultural Research Service, Great Basin Rangelands Research Unit, Reno, NV USDA Agricultural Research Service, Western Regional Plant Introduction Station, Pullman, WA USDA Forest Service, National Seed Laboratory, Dry Branch, GA USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR USDA Natural Resources Conservation Service, Aberdeen Plant Materials Center, Aberdeen, ID USDI Bureau of Land Management, Morley Nelson Birds of Prey National Conservation Area, Boise, ID US Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, ID and Corvallis, OR Utah Division of Wildlife Resources, Great Basin Research Center, Ephraim, UT Utah Crop Improvement Association, Logan, UT ii Great Basin Native Plant Selection and Increase Project 2012 Progress Report The Interagency Native Plant Materials Development Program outlined in the 2002 USDA and USDI Report to Congress, USDI Bureau of Land Management programs and policies, and the Great Basin Restoration Initiative encourage the use of native species for rangeland rehabilitation and restoration where feasible. The Great Basin Native Plant Selection and Increase Project was initiated to provide information that will be useful to managers when making decisions about selecting appropriate plant materials and technologies for restoration. The Program is supported by the USDI Bureau of Land Management’s National Native Plant Materials Program and the Great Basin Restoration Initiative and administered by the USDA Rocky Mountain Research Station’s Grassland, Shrubland and Desert Ecosystem Research Program. Research priorities are to 1) provide tools for the selection and development of genetically appropriate plant materials for restoring rangelands impacted by human activities including climate change, 2) develop agricultural practices for seed increase of native forbs and grasses, 3) devise strategies for seeding native forbs and improving the establishment of multi-species native seed mixes, and 4) disseminate science and technology information to advance restoration. We thank our many collaborators for their dedication and their institutions for their in-kind contributions. The wide array of expertise represented by this group has made it possible to address the many challenges involved in this endeavor. We especially thank Robin Bjork for the many hours she spent carefully editing and compiling this report and Jan Gurr for managing our financial reporting. Special thanks also to our resident students: Erin Denney for her artistic ability and development of outreach materials and Matt Fisk and Alexis Malcomb for managing our seed inventory and database. Nancy Shaw Mike Pellant USDA Forest Service USDI Bureau of Land Management Rocky Mountain Research Station Great Basin Restoration Initiative Boise, ID Boise, ID [email protected] [email protected] Great Basin Native Plant Selection and Increase Project http://www.fs.fed.us/rm/boise/research/shrub/greatbasin.shtml Great Basin Restoration Initiative www.blm.gov/id/st/en/prog/gbri.html Citation Shaw, N.; Pellant, M. 2013. Great Basin Native Plant Selection and Increase Project: 2012 Progress Report. Boise, ID: U.S. Department of Agriculture, Rocky Mountain Research Station and U.S. Department of the Interior, Bureau of Land Management. 278 p. iii The results in this report should be considered preliminary in nature and should not be quoted or cited without the written consent of the Principal Investigator for the study. The use of trade or firm names in this report is for reader information and does not imply endorsement by the U.S. Department of Agriculture or U.S. Department of the Interior of any product or service. Pesticide Precautionary Statement: This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife—if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. The USDA and USDI are equal opportunity providers and employers. iv 2012 Highlights HIGHLIGHTS FOR 2012 GENETICS AND SEED ZONES Genetic diversity and genecology of bluebunch wheatgrass (Pseudoroegneria spicata), prairie junegrass (Koeleria macrantha), and squirreltail (Elymus elymoides) Brad St. Clair and Francis Kilkenny . Bluebunch wheatgrass (Pseudoroegneria spicata) and prairie junegrass (Koeleria macrantha) populations differ substantially for traits of growth, reproduction, leaf morphology, and floral phenology. Moderate correlations of population means with the climates of seed sources for both bluebunch wheatgrass and prairie junegrass suggest the presence of adaptively significant genetic variation that should be considered when moving populations in restoration projects. Geographic genetic variation for both bluebunch wheatgrass and prairie junegrass was mapped based on the relationships between traits and climate, and seed zones have been delineated for bluebunch wheatgrass that guide the choice of adapted populations for revegetation and restoration of grasslands in the interior Pacific Northwest and Great Basin. A study on squirreltail (Elymus elymoides) has been started, and first-year data have been collected. Conservation, adaptation and seed zones for key Great Basin species Richard C. Johnson, Erin K. Espeland, Matt Horning. Elizabeth A. Leger, Mike Cashman, and Ken Vance-Borland . Seed zones for Indian ricegrass (Achnatherum hymenoides) have been developed, mapped, and published. Sandberg bluegrass (Poa secunda) data analysis revealed substantial genetic variation, indicating a good potential for developing seed zones based on genetic and source climate interactions. Ecological genetics of big sagebrush (Artemisia tridentata): Genetic structure and climate-based seed zone mapping Bryce Richardson, Nancy Shaw, and Joshua Udall Molecular genetics of big sagebrush . Phylogenetic analyses of 24 genes (12,000 base pairs of DNA sequence) suggest diploid Artemisia tridentata ssp. vaseyana (mountain big sagebrush) and A. t. ssp. tridentata (basin big sagebrush) are distinct (monophyletic) subspecies. A. t. ssp. wyomingensis (Wyoming big sagebrush) is not a monophyletic subspecies, originating from different diploid lineages of tridentata and vaseyana. A. t. ssp. wyomingensis is a tetraploid complex with varying affinities to diploid tridentata and vaseyana. Tetraploid lineages are likely formed locally or regionally from nearby populations of diploid A. t. ssp. tridentata and ssp. vaseyana. v 2012 Highlights Big sagebrush common gardens . Final growth measurements were completed for three years. Flower phenology analyses suggest day length and warm temperatures control flowering date: populations with longer summer days and colder temperature flower earlier than short summer days and warmer temperature. Estimates of total seed yield and seed weights are being calculated for the populations in two gardens. This will provide an overall estimate of plant fitness and comparison of seed weights among subspecies. The Ephraim, Utah common garden has substantially more mortality than other gardens. Possible factors are discussed. Selecting sagebrush seed sources for restoration in a variable climate: Ecophysical variation among genotypes Matthew J. Germino . Physiological performance of different seed sources for big sagebrush (Artemisia tridentata) is under evaluation. Comparisons among the many populations (genotypes or provenances) of each subspecies being grown in common gardens will provide results that will fill crucial gaps in the data, enabling the improved development of climatic seed-transfer zones for the restoration of big sagebrush. Physiological variability is generally considerably greater among populations than among subspecies. At mid-summer, preliminary data suggest big sagebrush growing in an Idaho garden demonstrated adaptations in water use efficiency
Recommended publications
  • Research Article Ecological Observations of Native Geocoris Pallens and G
    Hindawi Publishing Corporation Psyche Volume 2013, Article ID 465108, 11 pages http://dx.doi.org/10.1155/2013/465108 Research Article Ecological Observations of Native Geocoris pallens and G. punctipes Populations in the Great Basin Desert of Southwestern Utah Meredith C. Schuman, Danny Kessler, and Ian T. Baldwin Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoll-Straße¨ 8, 07745 Jena, Germany Correspondence should be addressed to Ian T. Baldwin; [email protected] Received 5 November 2012; Accepted 16 April 2013 Academic Editor: David G. James Copyright © 2013 Meredith C. Schuman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Big-eyed bugs (Geocoris spp. Fallen,´ Hemiptera: Lygaeidae) are ubiquitous, omnivorous insect predators whose plant feeding behavior raises the question of whether they benefit or harm plants. However, several studies have investigated both the potential of Geocoris spp. to serve as biological control agents in agriculture and their importance as agents of plant indirect defense in nature. These studies have demonstrated that Geocoris spp. effectively reduce herbivore populations and increase plant yield. Previous work has also indicated that Geocoris spp. respond to visual and olfactory cues when foraging and choosing their prey and that associative learning of prey and plant cues informs their foraging strategies. For these reasons, Geocoris spp. have become models for the study of tritrophic plant-herbivore-predator interactions. Here, we present detailed images and ecological observations of G. pallens Stal˚ and G.
    [Show full text]
  • Great Basin Native Plant Project: 2015 Progress Report
    GREAT BASIN NATIVE PLANT PROJECT 2015 PROGRESS REPORT USDA FOREST SERVICE, ROCKY MOUNTAIN RESEARCH STATION AND USDI BUREAU OF LAND MANAGEMENT, BOISE, ID APRIL 2016 COOPERATORS USDA Forest Service, Rocky Mountain Research Station Grassland, Shrubland and Desert Ecosystem Research Program, Boise, ID, Provo, UT, and Albuquerque, NM USDI Bureau of Land Management, Plant Conservation Program, Washington, DC Boise State University, Boise, ID Brigham Young University, Provo, UT College of Western Idaho, Nampa, ID Eastern Oregon Stewardship Services, Prineville, OR Northern Arizona University, Flagstaff, AZ Oregon State University, Bend, OR Oregon State University Malheur Experiment Station, Ontario, OR Private Contractors and Land Owners Native Seed Industry Texas Tech University, Lubbock, TX University of California, Browns Valley, CA University of Idaho, Moscow, ID University of Nevada, Reno, NV University of Nevada Cooperative Extension, Elko and Reno, NV Utah State University, Logan, UT US Army Corps of Engineers, Junction City, OR USDA Agricultural Research Service, Pollinating Insects Research Center, Logan, UT USDA Agricultural Research Service, Eastern Oregon Agriculture Research Center, Burns, OR USDA Agricultural Research Service, Forage and Range Research Laboratory, Logan, UT USDA Agricultural Research Service, Great Basin Rangelands Research Unit, Reno, NV USDA Agricultural Research Service, Western Regional Plant Introduction Center, Pullman, WA USDA Forest Service, National Seed Laboratory, Dry Branch, GA USDA Forest Service,
    [Show full text]
  • Specific Decorations of 17-Hydroxygeranyllinalool
    doi:10.1093/plcell/koab048 THE PLANT CELL 2021: 0: 1–23 Specific decorations of 17-hydroxygeranyllinalool Downloaded from https://academic.oup.com/plcell/advance-article/doi/10.1093/plcell/koab048/6131791 by guest on 15 March 2021 diterpene glycosides solve the autotoxicity problem of chemical defense in Nicotiana attenuata Sven Heiling ,1,*,† Lucas Cortes Llorca,1 Jiancai Li ,1 Klaus Gase ,1 Axel Schmidt ,2 Martin Scha¨fer,1 Bernd Schneider ,3 Rayko Halitschke ,1 Emmanuel Gaquerel 4,5,*,† and Ian Thomas Baldwin 1,*,† 1 Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany 2 Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany Research Article 3 Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany 4 Centre for Organismal Studies Heidelberg, 69120 Heidelberg, Germany 5 InstitutdeBiologieMole´culaire des Plantes, CNRS UPR 2357 Universite´ de Strasbourg, 67084 Strasbourg, France *Author for correspondence: [email protected] (I.T.B.), [email protected] (E.G.), [email protected] (S.H.) †Senior authors. The authors responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) are Ian T. Baldwin ([email protected]), Emmanuel Gaquerel (http://[email protected] stra.fr), and Sven Heiling ([email protected]). Abstract The native diploid tobacco Nicotiana attenuata produces abundant, potent anti-herbivore defense metabolites known as 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) whose glycosylation and malonylation biosynthetic steps are regulated by jasmonate signaling.
    [Show full text]
  • Regulation and Evolution of Alternative Splicing in Plants
    Regulation and evolution of alternative splicing in plants DISSERTATION zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Rat der Biologisch-Pharmazeutischen Fakultät der Friedrich-Schiller-Universität Jena von Zhihao Ling, M.S. geboren am 10.08.1988 in China Max-Planck-Institut für chemische Ökologie Gutachter: Prof. Ian T. Baldwin, Max Planck Institut für Chemische Ökologie, Jena Prof. Günter Theissen, Friedrich Schiller Universität Jena Prof. Dorothee Staiger, Universität Bielefeld Beginn der Promotion: 26. September 2012 Dissertation eingereicht am: 25. November 2016 Tag der Verteidigung: 28. June 2017 Table of Contents 1. General Introduction ................................................................................................................ 1 1.1 Alternative splicing is widespread in plants .......................................................................... 1 1.2 AS contributes to biological regulation processes in plants .................................................. 2 1.3 Abiotic stresses induced AS changes in plants ..................................................................... 4 1.4 Biotic stresses induced AS changes in plants ....................................................................... 7 1.5 The splicing code and determinants of AS in plants is largely unknown ............................. 8 1.6 The rapid evolution of AS ................................................................................................... 10 1.7 Thesis outline .....................................................................................................................
    [Show full text]
  • Recent and Contemporary Foraging Practices of the Harney Valley Paiute
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 1-1-1978 Recent and contemporary foraging practices of the Harney Valley Paiute Marilyn Dunlap Couture Portland State University Let us know how access to this document benefits ouy . Follow this and additional works at: http://pdxscholar.library.pdx.edu/open_access_etds Part of the Native American Studies Commons, and the Social and Cultural Anthropology Commons Recommended Citation Couture, Marilyn Dunlap, "Recent and contemporary foraging practices of the Harney Valley Paiute" (1978). Dissertations and Theses. Paper 480. This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. For more information, please contact [email protected]. RECENT AND CONTEMPORARY FORAGING PRACTICES OF THE HARNEY VALLEY PAIUTE by MARILYN DUNLAP COUTURE A thesis suoolitted in partial fulfillment of the requirements for the degree of MASTER OF ARTS in ANTHROPOLOGY Portland State University @ r1arilyn Dunl ap Couture 1978 TO THE OFFICE OF GRADUATE STUDIES AND RESEARCH: The members of the Committee approve the thesis of Marilyn Dunlap Couture presented 27 January 1978. Wayne Sut~les, Chairman Thomas M. Newman Byron ~ppert Daniel J. Scheans, He Sta udies and Research AN ABSTRACT OF THE THESIS OF Marilyn Dunlap Couture for the Master of Arts in Anthropology presented 27 January 1978, Portland State University, Portland, Oregon. Title: Recent and Contemporary Foraging Practices of the Harney Valley Paiute. Native plants still play an important part in the lives of some American Indians. This thesis describes recent foraging practices which persist among the Harney Valley Paiute, a group of Northern Paiute Indians which formerly occupied all of Harney Valley in southeastern Oregon.
    [Show full text]
  • Molecular and Ecological Analysis of LOX3- and NPR1-Dependent Defense Responses in Plant-Herbivore Interactions
    ___________________________________________________________________________ Molecular and ecological analysis of LOX3- and NPR1-dependent defense responses in plant-herbivore interactions Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) Vorgelegt dem Rat der Biologisch-Pharmazeutischen Facultät der Friedrich-Schiller-Universität Jena Von Master of Science in Agriculture Channabasavangowda Rayapuram geboren am 02.02.1976 in Raichur/India ___________________________________________________________________________ Referees 1. Prof. Dr. Ian T. Baldwin (Dept. Molecular ecology, Max-Planck Institute for Chemical Ecology, Jena, Germany) 2. Prof. Dr. Ralf Oelmüller (Institute of General Botany and Plant Physiology, Friedrich-Schiller-University, Jena, Germany) 3. Prof. Dr. Maurice W. Sabelis (Institute for Biodiversity and Ecosystem Dynamics, Population Biology section Universiteit van Amsterdam, Amsterdam, Netherlands) Date of oral examination: 13.11.2007 Date of oral presentation: 12.12.2007 ___________________________________________________________________________ Table of contents I Table of contents…………………………………………………………………... I Manuscript overview……………………………………………………………… II 1. Introduction…………………………………………………………………….. 1 2. Manuscripts 2.1. Manuscript I Using nutritional indices to study LOX3-dependent insect resistance Plant Cell and Environment, 29: 1585-1594 (2006)………………… 11 1.2. Manuscript II Increased SA in NPR1–silenced plants antagonizes JA and JA-dependent direct and indirect defenses in
    [Show full text]
  • Silencing Nicotiana Attenuata LHY and ZTL Alters Circadian Rhythms in Flowers
    Research Silencing Nicotiana attenuata LHY and ZTL alters circadian rhythms in flowers Felipe Yon1, Youngsung Joo1, Lucas Cortes Llorca1, Eva Rothe1, Ian T. Baldwin1 and Sang-Gyu Kim1,2 1Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Kn€oll-Straße 8, Jena D-07745, Germany; 2Center for Genome Engineering, Institute for Basic Science, Yuseong-gu, Daejeon 305-811, South Korea Summary Authors for correspondence: The rhythmic opening/closing and volatile emissions of flowers are known to attract polli- Sang-Gyu Kim nators at specific times. That these rhythms are maintained under constant light or dark condi- Tel: +82 042 878 8301 tions suggests a circadian clock involvement. Although a forward and reverse genetic Email: [email protected] approach has led to the identification of core circadian clock components in Arabidopsis Ian T. Baldwin (for transformed lines) thaliana, the involvement of these clock components in floral rhythms has remained untested, Tel: +49 03641 57 1100 probably because of the weak diurnal rhythms in A. thaliana flowers. Email: [email protected] Here, we addressed the role of these core clock components in the flowers of the wild Received: 2 June 2015 tobacco Nicotiana attenuata, whose flowers open at night, emit benzyl acetone (BA) scents Accepted: 22 August 2015 and move vertically through a 140° arc. We first measured N. attenuata floral rhythms under constant light conditions. The results New Phytologist (2016) 209: 1058–1066 suggest that the circadian clock controls flower opening, BA emission and pedicel movement, doi: 10.1111/nph.13681 but not flower closing. We generated transgenic N.
    [Show full text]
  • Wild Tobacco Genomes Reveal the Evolution of Nicotine Biosynthesis
    Wild tobacco genomes reveal the evolution of nicotine biosynthesis Shuqing Xua,1,2, Thomas Brockmöllera,1, Aura Navarro-Quezadab, Heiner Kuhlc, Klaus Gasea, Zhihao Linga, Wenwu Zhoua, Christoph Kreitzera,d, Mario Stankee, Haibao Tangf, Eric Lyonsg, Priyanka Pandeyh, Shree P. Pandeyi, Bernd Timmermannc, Emmanuel Gaquerelb,2, and Ian T. Baldwina,2 aDepartment of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; bCentre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany; cSequencing Core Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; dInstitute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria; eInstitute for Mathematics and Computer Science, Universität Greifswald, 17489 Greifswald, Germany; fCenter for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China; gSchool of Plant Sciences, BIO5 Institute, CyVerse, University of Arizona, Tucson, AZ 85721; hNational Institute of Biomedical Genomics, Kalyani, 741251 West Bengal, India; and iDepartment of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, 700064 West Bengal, India Edited by Joseph R. Ecker, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, and approved April 27, 2017 (received for review January 4, 2017) Nicotine, the signature alkaloid of Nicotiana
    [Show full text]
  • Nicotiana Attenuata Protein Kinases Mediate Plant Growth and Resistance to Insect Herbivores
    Nicotiana attenuata protein kinases mediate plant growth and resistance to insect herbivores Dissertation Zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Rat der Biologisch-Pharmazeutischen Fakultät der Friedrich-Schiller-Universität Jena von Diplom Biologin Maria Heinrich geboren am 26.07.1984 in Kiew, Ukraine Gutachter 1. Prof. Ian T. Baldwin, Max Planck Institute für chemische Ökologie, Jena 2. Prof. Dr. Ralf Oelmüller, Institut für Pflanzenphysiologie, FSU Jena 3. Prof. Dr. Markus Teige, Universität Wien Datum der öffentlichen Verteidigung: 16.07.2012 Table of contents Table of contents Chapter 1: General Introduction ................................................................................................. 1 Chapter 2: Manuscript overview ................................................................................................ 6 Manuscript 1 ........................................................................................................................... 6 Manuscript 2 ........................................................................................................................... 7 Manuscript 3 ........................................................................................................................... 8 Chapter 3: ................................................................................................................................. 10 Two mitogen-activated protein kinase kinases, MKK1 and MEK2, are involved in wounding- and specialist
    [Show full text]
  • The Roles of Threonine Deaminase in Nicotiana Attenuata
    The Roles of Threonine Deaminase in Nicotiana attenuata Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Rat der Biologisch-Pharmazeutischen Fakultät der Friedrich-Schiller Universität Jena von Master of Science in Agriculture Jin-Ho Kang geboren am 10. März 1969 in Korea Gutachter 1. Prof. Dr. Ian T. Baldwin (Max-Planck-Institut für Chemische Ökologie, Jena) 2. Prof. Dr. Ralf Oelmüller (Friedrich-Schiller-Universität, Jena) 3. Prof. Dr. Greg A. Howe (MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA) Tag der Doktorprüfung: 22/03/2006 Tag der öffentlichen Verteidigung: 29/03/2006 Table of Contents I Table of Contents Table of Contents I Manuscript Overview II 1. Introduction 1 2. Manuscripts 2.1. Manuscript I The role of threonine deaminase in development 10 2.2. Manuscript II Threonine deaminase promoter analysis 50 2.3. Manuscript III The role of threonine deaminase in defense 68 3. Discussion 129 4. Conclusion 141 5. Zusammenfassung 143 6. Literature Cited 145 7. Acknowledgements 152 8. Curriculum Vitae 153 9. Selbständigkeitserklärung 155 Manuscript Overview I Manuscript I The role of threonine deaminase in seedling growth and flower development in Nicotiana attenuata This manuscript demonstrates that threonine deaminase (TD), which catalyzes the first committed step in the biosynthesis of isoleucine (Ile), plays a role in plant development. The involvement of TD in development was determined by characterizing antisense TD (asTD) transgenic plants that had short roots; delayed opening of cotyledons, and leaf and flower senescence; and retarded growth. I demonstrated that the phenotypes of asTD transgenic plants could be partially recovered by adding α-keto butyrate, which is the first product of TD activity, Ile, or jasmonic acid-Ile conjugate.
    [Show full text]
  • The Sequenced Angiosperm Genomes and Genome Databases
    REVIEW published: 13 April 2018 doi: 10.3389/fpls.2018.00418 The Sequenced Angiosperm Genomes and Genome Databases Fei Chen 1†, Wei Dong 1†, Jiawei Zhang 1, Xinyue Guo 1, Junhao Chen 2, Zhengjia Wang 2, Zhenguo Lin 3, Haibao Tang 1 and Liangsheng Zhang 1* 1 State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Ministry of Education Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Fujian Agriculture and Forestry University, Fuzhou, China, 2 State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, China, 3 Department of Biology, Saint Louis University, St. Louis, MO, United States Angiosperms, the flowering plants, provide the essential resources for human life, such as food, energy, oxygen, and materials. They also promoted the evolution of human, animals, and the planet earth. Despite the numerous advances in genome reports or sequencing technologies, no review covers all the released angiosperm genomes and the genome databases for data sharing. Based on the rapid advances and innovations in the database reconstruction in the last few years, here we provide a comprehensive Edited by: review for three major types of angiosperm genome databases, including databases Santosh Kumar Upadhyay, Panjab University, India for a single species, for a specific angiosperm clade, and for multiple angiosperm Reviewed by: species. The scope, tools, and data of each type of databases and their features Sumit Kumar Bag, are concisely discussed. The genome databases for a single species or a clade of National Botanical Research Institute species are especially popular for specific group of researchers, while a timely-updated (CSIR), India Xiyin Wang, comprehensive database is more powerful for address of major scientific mysteries at North China University of Science and the genome scale.
    [Show full text]
  • Research Article Ecological Observations of Native Geocoris Pallens and G
    Hindawi Publishing Corporation Psyche Volume 2013, Article ID 465108, 11 pages http://dx.doi.org/10.1155/2013/465108 Research Article Ecological Observations of Native Geocoris pallens and G. punctipes Populations in the Great Basin Desert of Southwestern Utah Meredith C. Schuman, Danny Kessler, and Ian T. Baldwin Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoll-Straße¨ 8, 07745 Jena, Germany Correspondence should be addressed to Ian T. Baldwin; [email protected] Received 5 November 2012; Accepted 16 April 2013 Academic Editor: David G. James Copyright © 2013 Meredith C. Schuman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Big-eyed bugs (Geocoris spp. Fallen,´ Hemiptera: Lygaeidae) are ubiquitous, omnivorous insect predators whose plant feeding behavior raises the question of whether they benefit or harm plants. However, several studies have investigated both the potential of Geocoris spp. to serve as biological control agents in agriculture and their importance as agents of plant indirect defense in nature. These studies have demonstrated that Geocoris spp. effectively reduce herbivore populations and increase plant yield. Previous work has also indicated that Geocoris spp. respond to visual and olfactory cues when foraging and choosing their prey and that associative learning of prey and plant cues informs their foraging strategies. For these reasons, Geocoris spp. have become models for the study of tritrophic plant-herbivore-predator interactions. Here, we present detailed images and ecological observations of G. pallens Stal˚ and G.
    [Show full text]