Research Article Ecological Observations of Native Geocoris Pallens and G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Research Article Ecological Observations of Native Geocoris Pallens and G
Hindawi Publishing Corporation Psyche Volume 2013, Article ID 465108, 11 pages http://dx.doi.org/10.1155/2013/465108 Research Article Ecological Observations of Native Geocoris pallens and G. punctipes Populations in the Great Basin Desert of Southwestern Utah Meredith C. Schuman, Danny Kessler, and Ian T. Baldwin Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoll-Straße¨ 8, 07745 Jena, Germany Correspondence should be addressed to Ian T. Baldwin; [email protected] Received 5 November 2012; Accepted 16 April 2013 Academic Editor: David G. James Copyright © 2013 Meredith C. Schuman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Big-eyed bugs (Geocoris spp. Fallen,´ Hemiptera: Lygaeidae) are ubiquitous, omnivorous insect predators whose plant feeding behavior raises the question of whether they benefit or harm plants. However, several studies have investigated both the potential of Geocoris spp. to serve as biological control agents in agriculture and their importance as agents of plant indirect defense in nature. These studies have demonstrated that Geocoris spp. effectively reduce herbivore populations and increase plant yield. Previous work has also indicated that Geocoris spp. respond to visual and olfactory cues when foraging and choosing their prey and that associative learning of prey and plant cues informs their foraging strategies. For these reasons, Geocoris spp. have become models for the study of tritrophic plant-herbivore-predator interactions. Here, we present detailed images and ecological observations of G. pallens Stal˚ and G. -
Insecticideinduced Hormesis and Arthropod Pest Management
Review Received: 31 August 2013 Revised: 7 October 2013 Accepted article published: 23 October 2013 Published online in Wiley Online Library: 2 December 2013 (wileyonlinelibrary.com) DOI 10.1002/ps.3669 Insecticide-induced hormesis and arthropod pest management Raul Narciso C Guedesa∗ and G Christopher Cutlerb Abstract Ecological backlashes such as insecticide resistance, resurgence and secondary pest outbreaks are frequent problems associated with insecticide use against arthropod pest species. The last two have been particularly important in sparking interest in the phenomenon of insecticide-induced hormesis within entomology and acarology. Hormesis describes a biphasic dose–response relationship that is characterized by a reversal of response between low and high doses of a stressor (e.g. insecticides). Although the concept of insecticide-induced hormesis often does not receive sufficient attention, or has been subject to semantic confusion, it has been reported in many arthropod pest species and natural enemies, and has been linked to pest outbreaks and potential problems with insecticide resistance. The study of hormesis remains largely neglected in entomology and acarology. Here, we examined the concept of insecticide-induced hormesis in arthropods, its functional basis and potential fitness consequences, and its importance in arthropod pest management and other areas. c 2013 Society of Chemical Industry Keywords: biphasic concentration–response; hormoligosis; insecticidal stress; insecticide ecotoxicology; pesticide-mediated homeostatic regulation; sublethal effects 1 HORMESIS: ANCIENT ADAGES, OLD LAWS group recognized the general nature of the phenomenon in a suc- AND CURRENT THEORY cession of meta-analyses.9–13 They suggested that the hormetic Friedrich Nietzsche in his Twilight of the Idols (1888) expressed dose–response model is more common in toxicology than the threshold model (Fig. -
Great Basin Native Plant Project: 2015 Progress Report
GREAT BASIN NATIVE PLANT PROJECT 2015 PROGRESS REPORT USDA FOREST SERVICE, ROCKY MOUNTAIN RESEARCH STATION AND USDI BUREAU OF LAND MANAGEMENT, BOISE, ID APRIL 2016 COOPERATORS USDA Forest Service, Rocky Mountain Research Station Grassland, Shrubland and Desert Ecosystem Research Program, Boise, ID, Provo, UT, and Albuquerque, NM USDI Bureau of Land Management, Plant Conservation Program, Washington, DC Boise State University, Boise, ID Brigham Young University, Provo, UT College of Western Idaho, Nampa, ID Eastern Oregon Stewardship Services, Prineville, OR Northern Arizona University, Flagstaff, AZ Oregon State University, Bend, OR Oregon State University Malheur Experiment Station, Ontario, OR Private Contractors and Land Owners Native Seed Industry Texas Tech University, Lubbock, TX University of California, Browns Valley, CA University of Idaho, Moscow, ID University of Nevada, Reno, NV University of Nevada Cooperative Extension, Elko and Reno, NV Utah State University, Logan, UT US Army Corps of Engineers, Junction City, OR USDA Agricultural Research Service, Pollinating Insects Research Center, Logan, UT USDA Agricultural Research Service, Eastern Oregon Agriculture Research Center, Burns, OR USDA Agricultural Research Service, Forage and Range Research Laboratory, Logan, UT USDA Agricultural Research Service, Great Basin Rangelands Research Unit, Reno, NV USDA Agricultural Research Service, Western Regional Plant Introduction Center, Pullman, WA USDA Forest Service, National Seed Laboratory, Dry Branch, GA USDA Forest Service, -
Venoms of Heteropteran Insects: a Treasure Trove of Diverse Pharmacological Toolkits
Review Venoms of Heteropteran Insects: A Treasure Trove of Diverse Pharmacological Toolkits Andrew A. Walker 1,*, Christiane Weirauch 2, Bryan G. Fry 3 and Glenn F. King 1 Received: 21 December 2015; Accepted: 26 January 2016; Published: 12 February 2016 Academic Editor: Jan Tytgat 1 Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; [email protected] (G.F.K.) 2 Department of Entomology, University of California, Riverside, CA 92521, USA; [email protected] (C.W.) 3 School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia; [email protected] (B.G.F.) * Correspondence: [email protected]; Tel.: +61-7-3346-2011 Abstract: The piercing-sucking mouthparts of the true bugs (Insecta: Hemiptera: Heteroptera) have allowed diversification from a plant-feeding ancestor into a wide range of trophic strategies that include predation and blood-feeding. Crucial to the success of each of these strategies is the injection of venom. Here we review the current state of knowledge with regard to heteropteran venoms. Predaceous species produce venoms that induce rapid paralysis and liquefaction. These venoms are powerfully insecticidal, and may cause paralysis or death when injected into vertebrates. Disulfide- rich peptides, bioactive phospholipids, small molecules such as N,N-dimethylaniline and 1,2,5- trithiepane, and toxic enzymes such as phospholipase A2, have been reported in predatory venoms. However, the detailed composition and molecular targets of predatory venoms are largely unknown. In contrast, recent research into blood-feeding heteropterans has revealed the structure and function of many protein and non-protein components that facilitate acquisition of blood meals. -
Specific Decorations of 17-Hydroxygeranyllinalool
doi:10.1093/plcell/koab048 THE PLANT CELL 2021: 0: 1–23 Specific decorations of 17-hydroxygeranyllinalool Downloaded from https://academic.oup.com/plcell/advance-article/doi/10.1093/plcell/koab048/6131791 by guest on 15 March 2021 diterpene glycosides solve the autotoxicity problem of chemical defense in Nicotiana attenuata Sven Heiling ,1,*,† Lucas Cortes Llorca,1 Jiancai Li ,1 Klaus Gase ,1 Axel Schmidt ,2 Martin Scha¨fer,1 Bernd Schneider ,3 Rayko Halitschke ,1 Emmanuel Gaquerel 4,5,*,† and Ian Thomas Baldwin 1,*,† 1 Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany 2 Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany Research Article 3 Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany 4 Centre for Organismal Studies Heidelberg, 69120 Heidelberg, Germany 5 InstitutdeBiologieMole´culaire des Plantes, CNRS UPR 2357 Universite´ de Strasbourg, 67084 Strasbourg, France *Author for correspondence: [email protected] (I.T.B.), [email protected] (E.G.), [email protected] (S.H.) †Senior authors. The authors responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) are Ian T. Baldwin ([email protected]), Emmanuel Gaquerel (http://[email protected] stra.fr), and Sven Heiling ([email protected]). Abstract The native diploid tobacco Nicotiana attenuata produces abundant, potent anti-herbivore defense metabolites known as 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) whose glycosylation and malonylation biosynthetic steps are regulated by jasmonate signaling. -
Datura Quids at Pinwheel Cave, California, Provide Unambiguous Confirmation of the Ingestion of Hallucinogens at a Rock Art Site
Datura quids at Pinwheel Cave, California, provide unambiguous confirmation of the ingestion of hallucinogens at a rock art site David W. Robinsona,1, Kelly Brownb, Moira McMenemyb, Lynn Dennanyb, Matthew J. Bakerb, Pamela Allanb, Caroline Cartwrightc, Julienne Bernardd, Fraser Sturte, Elena Kotoulaf, Christopher Jazwag, Kristina M. Gillh, Patrick Randolph-Quinneyi,j, Thomas Asha, Clare Bedforda, Devlin Gandyk, Matthew Armstrongl, James Milesm, and David Havilandn aSchool of Forensic and Applied Sciences, University of Central Lancashire, PR1 2HE Preston, United Kingdom; bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, G1 1RD Glasgow, United Kingdom; cDepartment of Scientific Research, British Museum, WC1B 3DG London, United Kingdom; dDepartment of Anthropology, Geography, and Geology, East Los Angeles Community College, Monterey Park, CA 91754; eDepartment of Archaeology, University of Southampton, SO17 1BJ Southampton, United Kingdom; fInformation Services Group, University of Edinburgh, EH8 9YL Edinburgh, United Kingdom; gHuman Paleoecology and Archaeometry Laboratory, Department of Anthropology, University of Nevada, Reno, NV 89557-0096; hMuseum of Natural and Cultural History, University of Oregon, Eugene, OR 97403; iDepartment of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, NE1 8ST Newcastle Upon-Tyne, United Kingdom; jDepartment of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Aukland Park 2006, South Africa; kDepartment of -
Kobor Peter Dissertation.Pdf
1 PANNON EGYETEM GEORGIKON KAR KESZTHELY Festetics Doktori Iskola Iskolavezető: Dr. Anda Angéla, DSc. Állattudományi Tanszék DOKTORI (PH.D.) ÉRTEKEZÉS INVESTIGATIONS ON THE TAXONOMY AND SYSTEMATICS OF BIG-EYED BUGS (HETEROPTERA: LYGAEOIDEA: GEOCORIDAE) Témavezető: Dr. habil. Kondorosy Előd CSc, egyetemi tanár Készítette: Kóbor Péter Keszthely, 2020 2 INVESTIGATIONS ON THE TAXONOMY AND SYSTEMATICS OF BIG-EYED BUGS (HETEROPTERA: LYGAEOIDEA: GEOCORIDAE) Értekezés doktori (PhD) fokozat elnyerése érdekében Írta: Kóbor Péter Készült a Pannon Egyetem Festetics Doktori Iskola keretében Témavezető: Dr. Kondorosy Előd Elfogadásra javaslom (igen / nem) ……………………………….(aláírás) A jelölt a doktori szigorlaton ........%-ot ért el, Az értekezést bírálóként elfogadásra javaslom: Bíráló neve: …........................ …................. igen /nem ………………………. (aláírás) Bíráló neve: …........................ ….................) igen /nem ………………………. (aláírás) ***Bíráló neve: …........................ ….................) igen /nem ………………………. (aláírás) A jelölt az értekezés nyilvános vitáján …..........%-ot ért el. A doktori (PhD) oklevél minősítése…................................. ………………………… Az EDHT elnöke 3 TABLE OF CONTENT 1. Abstracts .............................................................................................................................................. 6 1.1. Abstract ........................................................................................................................................ 6 1.2. Kivonat ........................................................................................................................................ -
Do Honeybees Act As Pollen Thieves Or Pollinators of Datura Wrightii?
Journal of Pollination Ecology, 24(18), 2018, pp 164-171 DO HONEYBEES ACT AS POLLEN THIEVES OR POLLINATORS OF DATURA WRIGHTII? Andrew C. McCall*,1, Sarah Richman2,3, Eric Thomson1, Monica Edgerton1, Skyler Jordan1, Judith L. Bronstein2 1Department of Biology, Denison University, Granville OH 43023 USA 2Department of Ecology and Evolutionary Biology, University of Arizona, Tucson AZ 85721 USA 3Present address: Department of Biology, University of Nevada, Reno; Reno NV 89557 USA Abstract—Datura wrightii (Solanaceae), a common shrub in the southwestern United States, bears massive, white, night-blooming flowers that attract and reward hawkmoth pollinators. However, Apis mellifera (honeybee) foragers are often observed on its flowers, especially at dusk and dawn hours. Their foraging activities are focused on the anthers, suggesting they could be pollen thieves. We used a series of observations and manipulative experiments to determine if honeybees are detrimental or beneficial to D. wrightii. We found that honeybees were the most frequent visitors to D. wrightii flowers at both dusk and dawn, and that they removed and carried large amounts of D. wrightii pollen. Flowers were capable of being pollinated at dusk and dawn and a single visit by a honeybee was sufficient to pollinate the flowers and produce fruit. There was no evidence that restricting visitation to diurnal hours yielded fruit set that was different from when we restricted visitation (likely by hawkmoths) to evening hours. These results suggest that honeybees are capable of effective pollination of D. wrightii. Although honeybees might interfere with pollen transmission mediated by their highly specialized hawkmoth pollinators, they may also increase plant fitness by pollinating D. -
Chemical Composition of the Seeds of Datura Innoxia
IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 3 Issue 2, February 2016. www.ijiset.com ISSN 2348 – 7968 Chemical composition of the seeds of Datura innoxia 1 2 1 2 Kendeson Anawuese ChristianaP ,P Iloka Gabriel SundayP ,P Bulama Joshua SamailaP P andP P Dashak Albert DayilP .P 1 2 P DepartmentP of Chemical Sciences, Federal University Kashere, P.M.B 0182, Gombe, Nigeria. P DepartmentP of Chemistry, University of Jos, P.M.B 2084, Jos, Nigeria. Correspondence Author: [email protected] Abstract The elemental analysis carried out on the seeds of the plant Datura innoxia showed the presence of phosphorus, nitrogen and chlorine. The moisture content was determined and found to be 6.61% ± 0.16. The ash content was 3.08% ± 0.13. The total carbohydrate and reducing sugar contents were determined and found to be 25.07% ± 0.88 and 21.69% ± 1.11 respectively. The lignin content was found to be 5.58% ± 0.16 while the crude fibre content was determined to be 42.42% ± 0.02. The percentage crude protein was found to be 8.64% ± 0.05, and the nitrogen content was determined to be 1.52% ±0.01. The non-polar and polar fat contents were found to be 18.24% ± 0.33 and 23.51% ± 0.25 respectively. The mineral composition of the Datura innoxia was determined and found to contain Ca, Mg, K, Na, Cu, Zn, Mn, Fe, Ni, Cd and Pb. The K, Mg and Ca contents were found to be 3450, 2500, and 2000 mg/100g respectively. -
High Tunnel Pest Management - Aphids
Published by Utah State University Extension and Utah Plant Pest Diagnostic Laboratory ENT-225-21-PR March 2021 High Tunnel Pest Management - Aphids Nick Volesky, Vegetable IPM Associate • Zachary Schumm, Arthropod Diagnostician Winged Aphids Quick Facts • Aphids are small, pear-shaped insects with Thorax green; no abdominal Thorax darker piercing-sucking mouthparts that feed on plant dorsal markings; large (4 mm) than abdomen tissue. They can be found inside high tunnels all season long. • Various species of aphids have a broad host range and can vector several viruses. Potato Aphid Therefore, management in high tunnels can be Macrosipu euphorbiae challenging. • Monitor for aphids in high tunnels by visually inspecting plants for colonies and feeding symptoms. Irregular patch on No abdominal patch; dorsal abdomen; abdomen light to dark • Aphids can be managed in high tunnels through antennal tubercles green; small (<2 mm) cultural, mechanical, biological, and chemical swollen; medium to practices. large (> 3 mm) phids are a common pest that can be found on high Atunnel crops such as fruits, vegetables, ornamentals, Melon Cotton Aphid grasses, and weeds. Four aphid species commonly Aphis gossypii Green Peach Aphid found in Utah in high tunnels are green peach aphid Myzus persicae (Myzus persicae), melon aphid (Aphis gossypii), potato Wingless Aphids aphid (Macrosiphum euphorbiae), and cabbage aphid (Brevicoryne brassicae) (Fig. 1). Cornicles short (same as Cornicles longer than cauda); head flattened; small cauda; antennal insertions (2 mm), rounded body DESCRIPTION developed; medium to large (> 3mm) Aphids are small plant feeding insects in the order Hemiptera (the “true bugs”). Like all true bugs, aphids Melon Cotton Aphid have a piercing-sucking mouthpart (“proboscis”) that Aphis gossypii is used for feeding on plant structures. -
World Journal of Pharmaceutical Research Mishra
World Journal of Pharmaceutical Research Mishra. World Journal of Pharmaceutical SJIF ImpactResearch Factor 8.074 Volume 7, Issue 12, 1011-1019. Review Article ISSN 2277– 7105 DATURA STRAMONIUM (COMMON NAME: JIMSON WEED) MEDICINAL USES, SIDE EFFECTS AND BENEFITS *Dr. Shaival Mishra Lecturer Govt. Auto Ayurvedic College Jabalpur M.P. ABSTRACT Article Received on 03 May 2018, It is small shrub growing 4 to 5 feet height and belong to family Revised on 23 May 2018, solanaceae. It’s having active principles – Hyoscine, hyoscyamine Accepted on 13 June 2018 atropine. It is used as mydriate, antispasmodic, antidote, pre anesthetic DOI: 10.20959/wjpr201812-12710 and medication, bronchial, asthma mode of action – peripheral effects are predominant and result from anticholinergic action. Central effects *Corresponding Author involve initial stimulations of the C.N.S with excitement and Dr. Shaival Mishra restlessness followed by subsequent depression delirium and coma. It Lecturer Govt. Auto Ayurvedic College Jabalpur is mainly used for robbery & other type of crime. M.P. KEYWORDS: Atropine, antidot, delirium. INTRODUCTION It is small shrub growing 4 to 5 feet height and belong to family solanaceae. Datura is an herbaceous perennial plant, which is grown in temperate and tropical region of the globe. All the species of Datura are poisonous in nature. Some are aphrodisiac too. The seeds and flowers are more poisonous in nature. Sometimes, datura is termed as witches weeds and shows properties like deadly nightshade and henbane. Datura use is known for feverish state and even death. However, in Ayurveda, it is used as medicine and ritual as well as prayers has also place this. -
Beneficial Insects: True Bugs Erin W
Published by Utah State University Extension and Utah Plant Pest Diagnostic Laboratory ENT-111-07 November 2007 Beneficial insects: true bugs Erin W. Hodgson Ron Patterson Extension Entomology Specialist Carbon County Extension What You Should Know • True bugs are fluid feeding insects that suck out juices from plants and animals. • Nymphs and adults feed on the same prey, especially soft-bodied insects like aphids and caterpillars. • Predatory true bugs are usually not host-specific, meaning they do not have a preference for feeding on certain prey. Fig. 2. Bee assassin bug adult.2 rue bugs have piercing-sucking mouthparts (Fig. ) and belong to the order Hemiptera and suborder True Bug Life Cycle THeteroptera. There are more than 38,000 species of true bugs, and are most closely related to aphids, True bugs, and all Hemipterans, go through simple or cicadas, and leaf hoppers. Although some true bugs incomplete metamorphosis. Males and females will are considered pests, about one-third are predaceous. mate end-to-end (Fig. 3), or facing away from each True bugs have forewings, or hemelytra, that cross over other. Mated females lay eggs singly or in small masses the back at rest, but sometimes the wings are reduced near potential food sources. Nymphs hatch from the (Figs. -3). Hemelytra are hardened at the base and eggs and begin to search for small prey items. Nymphs membranous near the end. A triangular patch between look similar to the adults except they are smaller in size the forewings is usually noticeable. True bugs have and lack functional wings; nymphs will develop wing 5-segmented antennae and scent glands.