Stream Channel Is the Path for Water and Sediment Flowing Within the Stream Banks (Figure 1)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PRELUDE to SEVEN SLOTS: FILLING and SUBSEQUENT MODIFICATION of SEVEN BROAD CANYONS in the NAVAJO SANDSTONE, SOUTH-CENTRAL UTAH by David B
PRELUDE TO SEVEN SLOTS: FILLING AND SUBSEQUENT MODIFICATION OF SEVEN BROAD CANYONS IN THE NAVAJO SANDSTONE, SOUTH-CENTRAL UTAH by David B. Loope1, Ronald J. Goble1, and Joel P. L. Johnson2 ABSTRACT Within a four square kilometer portion of Grand Staircase-Escalante National Monument, seven distinct slot canyons cut the Jurassic Navajo Sandstone. Four of the slots developed along separate reaches of a trunk stream (Dry Fork of Coyote Gulch), and three (including canyons locally known as “Peekaboo” and “Spooky”) are at the distal ends of south-flowing tributary drainages. All these slot canyons are examples of epigenetic gorges—bedrock channel reaches shifted laterally from previous reach locations. The previous channels became filled with alluvium, allowing active channels to shift laterally in places and to subsequently re-incise through bedrock elsewhere. New evidence, based on optically stimulated luminescence (OSL) ages, indicates that this thick alluvium started to fill broad, pre-existing, bedrock canyons before 55,000 years ago, and that filling continued until at least 48,000 years ago. Streams start to fill their channels when sediment supply increases relative to stream power. The following conditions favored alluviation in the study area: (1) a cooler, wetter climate increased the rate of mass wasting along the Straight Cliffs (the headwaters of Dry Fork) and the rate of weathering of the broad outcrops of Navajo and Entrada Sandstone; (2) windier conditions increased the amount of eolian sand transport, perhaps destabilizing dunes and moving their stored sediment into stream channels; and (3) southward migration of the jet stream dimin- ished the frequency and severity of convective storms. -
Geomorphic Classification of Rivers
9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations. -
Physical Geography of Southeast Asia
Physical Geography of Southeast Asia Creating an Annotated Sketch Map of Southeast Asia By Michelle Crane Teacher Consultant for the Texas Alliance for Geographic Education Texas Alliance for Geographic Education; http://www.geo.txstate.edu/tage/ September 2013 Guiding Question (5 min.) . What processes are responsible for the creation and distribution of the landforms and climates found in Southeast Asia? Texas Alliance for Geographic Education; http://www.geo.txstate.edu/tage/ September 2013 2 Draw a sketch map (10 min.) . This should be a general sketch . do not try to make your map exactly match the book. Just draw the outline of the region . do not add any features at this time. Use a regular pencil first, so you can erase. Once you are done, trace over it with a black colored pencil. Leave a 1” border around your page. Texas Alliance for Geographic Education; http://www.geo.txstate.edu/tage/ September 2013 3 Texas Alliance for Geographic Education; http://www.geo.txstate.edu/tage/ September 2013 4 Looking at your outline map, what two landforms do you see that seem to dominate this region? Predict how these two landforms would affect the people who live in this region? Texas Alliance for Geographic Education; http://www.geo.txstate.edu/tage/ September 2013 5 Peninsulas & Islands . Mainland SE Asia consists of . Insular SE Asia consists of two large peninsulas thousands of islands . Malay Peninsula . Label these islands in black: . Indochina Peninsula . Sumatra . Label these peninsulas in . Java brown . Sulawesi (Celebes) . Borneo (Kalimantan) . Luzon Texas Alliance for Geographic Education; http://www.geo.txstate.edu/tage/ September 2013 6 Draw a line on your map to indicate the division between insular and mainland SE Asia. -
River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources
River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources Overview In the discussion of river, or fluvial systems, and the strategies that may be used in the management of fluvial systems, it is important to have a basic understanding of the fundamental principals of how river systems work. This fact sheet will illustrate how sediment moves in the river, and the general response of the fluvial system when changes are imposed on or occur in the watershed, river channel, and the sediment supply. The Working River The complex river network that is an integral component of Vermont’s landscape is created as water flows from higher to lower elevations. There is an inherent supply of potential energy in the river systems created by the change in elevation between the beginning and ending points of the river or within any discrete stream reach. This potential energy is expressed in a variety of ways as the river moves through and shapes the landscape, developing a complex fluvial network, with a variety of channel and valley forms and associated aquatic and riparian habitats. Excess energy is dissipated in many ways: contact with vegetation along the banks, in turbulence at steps and riffles in the river profiles, in erosion at meander bends, in irregularities, or roughness of the channel bed and banks, and in sediment, ice and debris transport (Kondolf, 2002). Sediment Production, Transport, and Storage in the Working River Sediment production is influenced by many factors, including soil type, vegetation type and coverage, land use, climate, and weathering/erosion rates. -
Federal Agency Functional Activities
Appendix B – Federal Agency Functional Activities Bureau of Indian Affairs (BIA) Point of Contact: Wyeth (Chad) Wallace, (720) 407-0638 The mission of the Bureau of Indian Affairs (BIA) is to enhance the quality of life, to promote economic opportunity, and to carry out the responsibility to protect and improve the trust assets of American Indians, Indian tribes, and Alaska Natives. Divided into regions (see map), the BIA is responsible for the administration and management of 55 million surface acres and 57 million acres of subsurface minerals estates held in trust by the United States for approximately 1.9 million American Indians and Alaska Natives, and 565 federally recognized American Indian tribes. The primary public policy of the Federal government in regards to Native Americans is the return of trust lands management responsibilities to those most affected by decisions on how these American Indian Trust (AIT) lands are to be used and developed. Enhanced elevation data, orthoimagery, and GIS technology are needed to enable tribal organizations to wholly manage significant, profitable and sustainable enterprises as diverse as forestry, water resources, mining, oil and gas, transportation, tourism, agriculture and range land leasing and management, while preserving and protecting natural and cultural resources on AIT lands. Accurate and current elevation data are especially mission-critical for management of forest and water resources. It is the mission of BIA’s Irrigation, Power and Safety of Dams (IPSOD) program to promote self-determination, economic opportunities and public safety through the sound management of irrigation, dam and power facilities owned by the BIA. This program generates revenues for the irrigation and power projects of $80M to $90M annually. -
Stream Restoration, a Natural Channel Design
Stream Restoration Prep8AICI by the North Carolina Stream Restonltlon Institute and North Carolina Sea Grant INC STATE UNIVERSITY I North Carolina State University and North Carolina A&T State University commit themselves to positive action to secure equal opportunity regardless of race, color, creed, national origin, religion, sex, age or disability. In addition, the two Universities welcome all persons without regard to sexual orientation. Contents Introduction to Fluvial Processes 1 Stream Assessment and Survey Procedures 2 Rosgen Stream-Classification Systems/ Channel Assessment and Validation Procedures 3 Bankfull Verification and Gage Station Analyses 4 Priority Options for Restoring Incised Streams 5 Reference Reach Survey 6 Design Procedures 7 Structures 8 Vegetation Stabilization and Riparian-Buffer Re-establishment 9 Erosion and Sediment-Control Plan 10 Flood Studies 11 Restoration Evaluation and Monitoring 12 References and Resources 13 Appendices Preface Streams and rivers serve many purposes, including water supply, The authors would like to thank the following people for reviewing wildlife habitat, energy generation, transportation and recreation. the document: A stream is a dynamic, complex system that includes not only Micky Clemmons the active channel but also the floodplain and the vegetation Rockie English, Ph.D. along its edges. A natural stream system remains stable while Chris Estes transporting a wide range of flows and sediment produced in its Angela Jessup, P.E. watershed, maintaining a state of "dynamic equilibrium." When Joseph Mickey changes to the channel, floodplain, vegetation, flow or sediment David Penrose supply significantly affect this equilibrium, the stream may Todd St. John become unstable and start adjusting toward a new equilibrium state. -
Logistic Analysis of Channel Pattern Thresholds: Meandering, Braiding, and Incising
Geomorphology 38Ž. 2001 281–300 www.elsevier.nlrlocatergeomorph Logistic analysis of channel pattern thresholds: meandering, braiding, and incising Brian P. Bledsoe), Chester C. Watson 1 Department of CiÕil Engineering, Colorado State UniÕersity, Fort Collins, CO 80523, USA Received 22 April 2000; received in revised form 10 October 2000; accepted 8 November 2000 Abstract A large and geographically diverse data set consisting of meandering, braiding, incising, and post-incision equilibrium streams was used in conjunction with logistic regression analysis to develop a probabilistic approach to predicting thresholds of channel pattern and instability. An energy-based index was developed for estimating the risk of channel instability associated with specific stream power relative to sedimentary characteristics. The strong significance of the 74 statistical models examined suggests that logistic regression analysis is an appropriate and effective technique for associating basic hydraulic data with various channel forms. The probabilistic diagrams resulting from these analyses depict a more realistic assessment of the uncertainty associated with previously identified thresholds of channel form and instability and provide a means of gauging channel sensitivity to changes in controlling variables. q 2001 Elsevier Science B.V. All rights reserved. Keywords: Channel stability; Braiding; Incision; Stream power; Logistic regression 1. Introduction loads, loss of riparian habitat because of stream bank erosion, and changes in the predictability and vari- Excess stream power may result in a transition ability of flow and sediment transport characteristics from a meandering channel to a braiding or incising relative to aquatic life cyclesŽ. Waters, 1995 . In channel that is characteristically unstableŽ Schumm, addition, braiding and incising channels frequently 1977; Werritty, 1997. -
Chapter 4: Land Degradation
Final Government Distribution Chapter 4: IPCC SRCCL 1 Chapter 4: Land Degradation 2 3 Coordinating Lead Authors: Lennart Olsson (Sweden), Humberto Barbosa (Brazil) 4 Lead Authors: Suruchi Bhadwal (India), Annette Cowie (Australia), Kenel Delusca (Haiti), Dulce 5 Flores-Renteria (Mexico), Kathleen Hermans (Germany), Esteban Jobbagy (Argentina), Werner Kurz 6 (Canada), Diqiang Li (China), Denis Jean Sonwa (Cameroon), Lindsay Stringer (United Kingdom) 7 Contributing Authors: Timothy Crews (The United States of America), Martin Dallimer (United 8 Kingdom), Joris Eekhout (The Netherlands), Karlheinz Erb (Italy), Eamon Haughey (Ireland), 9 Richard Houghton (The United States of America), Muhammad Mohsin Iqbal (Pakistan), Francis X. 10 Johnson (The United States of America), Woo-Kyun Lee (The Republic of Korea), John Morton 11 (United Kingdom), Felipe Garcia Oliva (Mexico), Jan Petzold (Germany), Mohammad Rahimi (Iran), 12 Florence Renou-Wilson (Ireland), Anna Tengberg (Sweden), Louis Verchot (Colombia/The United 13 States of America), Katharine Vincent (South Africa) 14 Review Editors: José Manuel Moreno Rodriguez (Spain), Carolina Vera (Argentina) 15 Chapter Scientist: Aliyu Salisu Barau (Nigeria) 16 Date of Draft: 07/08/2019 17 Subject to Copy-editing 4-1 Total pages: 186 Final Government Distribution Chapter 4: IPCC SRCCL 1 2 Table of Contents 3 Chapter 4: Land Degradation ......................................................................................................... 4-1 4 Executive Summary ........................................................................................................................ -
Richard Sullivan, President
Participating Organizations Alliance for a Living Ocean American Littoral Society Arthur Kill Coalition Clean Ocean Action www.CleanOceanAction.org Asbury Park Fishing Club Bayberry Garden Club Bayshore Regional Watershed Council Bayshore Saltwater Flyrodders Belford Seafood Co-op Main Office Institute of Coastal Education Belmar Fishing Club Beneath The Sea 18 Hartshorne Drive 3419 Pacific Avenue Bergen Save the Watershed Action Network P.O. Box 505, Sandy Hook P.O. Box 1098 Berkeley Shores Homeowners Civic Association Wildwood, NJ 08260-7098 Cape May Environmental Commission Highlands, NJ 07732-0505 Central Jersey Anglers Voice: 732-872-0111 Voice: 609-729-9262 Citizens Conservation Council of Ocean County Fax: 732-872-8041 Fax: 609-729-1091 Clean Air Campaign, NY Ocean Advocacy [email protected] Coalition Against Toxics [email protected] Coalition for Peace & Justice/Unplug Salem Since 1984 Coast Alliance Coastal Jersey Parrot Head Club Communication Workers of America, Local 1034 Concerned Businesses of COA Concerned Citizens of Bensonhurst Concerned Citizens of COA Concerned Citizens of Montauk Eastern Monmouth Chamber of Commerce Fisher’s Island Conservancy Fisheries Defense Fund May 31, 2006 Fishermen’s Dock Cooperative, Pt. Pleasant Friends of Island Beach State Park Friends of Liberty State Park, NJ Friends of the Boardwalk, NY Garden Club of Englewood Edward Bonner Garden Club of Fair Haven Garden Club of Long Beach Island Garden Club of Middletown US Army Corps of Engineers Garden Club of Morristown -
Land Degradation
SPM4 Land degradation Coordinating Lead Authors: Lennart Olsson (Sweden), Humberto Barbosa (Brazil) Lead Authors: Suruchi Bhadwal (India), Annette Cowie (Australia), Kenel Delusca (Haiti), Dulce Flores-Renteria (Mexico), Kathleen Hermans (Germany), Esteban Jobbagy (Argentina), Werner Kurz (Canada), Diqiang Li (China), Denis Jean Sonwa (Cameroon), Lindsay Stringer (United Kingdom) Contributing Authors: Timothy Crews (The United States of America), Martin Dallimer (United Kingdom), Joris Eekhout (The Netherlands), Karlheinz Erb (Italy), Eamon Haughey (Ireland), Richard Houghton (The United States of America), Muhammad Mohsin Iqbal (Pakistan), Francis X. Johnson (The United States of America), Woo-Kyun Lee (The Republic of Korea), John Morton (United Kingdom), Felipe Garcia Oliva (Mexico), Jan Petzold (Germany), Mohammad Rahimi (Iran), Florence Renou-Wilson (Ireland), Anna Tengberg (Sweden), Louis Verchot (Colombia/ The United States of America), Katharine Vincent (South Africa) Review Editors: José Manuel Moreno (Spain), Carolina Vera (Argentina) Chapter Scientist: Aliyu Salisu Barau (Nigeria) This chapter should be cited as: Olsson, L., H. Barbosa, S. Bhadwal, A. Cowie, K. Delusca, D. Flores-Renteria, K. Hermans, E. Jobbagy, W. Kurz, D. Li, D.J. Sonwa, L. Stringer, 2019: Land Degradation. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. In press. -
Channel Aggradation by Beaver Dams on a Small Agricultural Stream in Eastern Nebraska
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 9-12-2004 Channel Aggradation by Beaver Dams on a Small Agricultural Stream in Eastern Nebraska M. C. McCullough University of Nebraska-Lincoln J. L. Harper University of Nebraska-Lincoln D. E. Eisenhauer University of Nebraska-Lincoln, [email protected] M. G. Dosskey USDA National Agroforestry Center, Lincoln, Nebraska, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Part of the Agricultural Science Commons McCullough, M. C.; Harper, J. L.; Eisenhauer, D. E.; and Dosskey, M. G., "Channel Aggradation by Beaver Dams on a Small Agricultural Stream in Eastern Nebraska" (2004). Publications from USDA-ARS / UNL Faculty. 147. https://digitalcommons.unl.edu/usdaarsfacpub/147 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. This is not a peer-reviewed article. Self-Sustaining Solutions for Streams, Wetlands, and Watersheds, Proceedings of the 12-15 September 2004 Conference (St. Paul, Minnesota USA) Publication Date 12 September 2004 ASAE Publication Number 701P0904. Ed. J. L. D'Ambrosio Channel Aggradation by Beaver Dams on a Small Agricultural Stream in Eastern Nebraska M. C. McCullough1, J. L. Harper2, D.E. Eisenhauer3, M. G. Dosskey4 ABSTRACT We assessed the effect of beaver dams on channel gradation of an incised stream in an agricultural area of eastern Nebraska. -
Abandoned Channels (Avulsions)
Musselshell BMPs 1 Abandoned Channels (Avulsions) Applicability The following Best Management Practices (“BMPs”) summarize several recommended approaches to managing abandoned channels within the Musselshell River stream corridor. The information is based upon the on- site evaluation of floodplain features and discussions with producers, and is intended for producers and residents who are living or farming in areas where abandoned channel segments exist. Description Perhaps the most dramatic 2011 flood Figure 1. 2011 avulsion, Musselshell River. impact on the Musselshell River was the number of avulsions that occurred over the period of a few weeks. An “avulsion” is the rapid formation of a new river channel across the floodplain that captures the flow of the main channel thread. River avulsions typically occur when rivers find a relatively steep, short flow path across their floodplain. When floodwaters re- enter the river over a steep bank, they form headcuts that migrate upvalley, creating a new channel, causing intense erosion, and sending a sediment slug downswtream. If the new channel completely develops, it can capture the main thread, resulting in a successful avulsion. If floodwaters recede before the new channel is completely formed, or if the floodplain is resistant to erosion, the avulsion may fail. From near Harlowton to Fort Peck Reservoir, 59 avulsions occurred on the Musselshell in the spring of 2011, abandoning a total of 39 miles of channel. The abandoned channel segments range in length from 280 feet to almost three miles. One of the reasons there were so many avulsions on the Figure 2. Upstream-migrating headcuts showing Musselshell River in 2011 is because the floodwaters stayed creation of avulsion path, 2011.