Research Report 2006/2007 Research Report 2008/2009

Total Page:16

File Type:pdf, Size:1020Kb

Research Report 2006/2007 Research Report 2008/2009 RESEARCH REPORT 2006/20072008/2009 FOREWORD 04 The Helmholtz Centre for Infection Research (HZI) – a portrait 07 Foreword FOCUS 10 Highlights 2007-2009 RESEARCH REVIEWS 18 Mega-Genomes and Micro-Chemists: New perspectives for the production of bioactive compounds in Myxobacteria 26 Target diagnosis of pathogens SPECIAL FEATURES 32 Ferroplasma acidiphilum: a novel microbe with a unique iron: protein-dominated metabolic apparatus 40 The Internalin Story – lessons from structural infection biology SCIENTIFIC REPORTS 50 INFECTION AND IMMUNITY 52 Microorganisms 54 Structural analysis of virulence factors 55 Pathogenesis of chronic Pseudomonas aeruginosa infections 56 Virulence factors of streptococci and pneumococci 57 Systems biology of Pseudomonas 58 Microbial communication 59 Molecular mechanisms of intracellular traffi cking, survival and persistence of streptococci 60 Pathogenesis 62 Molecular mechanisms of host-cell/pathogen interactions 63 Analysis of the protein networks of early host-pathogen interactions 64 Signalling to actin dynamics 65 The innate immune response to Streptococcus pyogenes in an experimental infection model 66 Systems genetics of infection and immunity 67 Biology of the immune defence 68 Structural and mechanistical analysis of functional amyloids 69 Infl ammation and Immunity 71 Structural analysis of the innate immune system 72 IFN-dependent host-responses upon infection using transgenic reporter mouse models 73 Epigenetic principles of gene regulation 74 Cellular models for infection 75 Mucosal immunity and infl ammation 76 Immune effectors: Molecules, cells and mechanisms 77 Bioinformatics of cellular networks SCIENTIFIC REPORTS 78 Prevention and Therapy 81 Microbial diversity and natural product discovery 82 Medicinal chemistry of antiinfectives 83 Development of new antiinfectives from natural sources 84 Chemical biology of infectious diseases 85 Identifi cation of molecular targets of antiinfectives 86 Antigen delivery systems and vaccines 87 Therapeutic cellular vaccines 88 Molecular diagnostics of microbial pathogens 89 Molecular mechanisms of hepatitis C virus infection and replication 90 GENOME AND HEALTH RESEARCH 91 Inhibitors of protein-ligand interactions 92 Generation and exploitation of DNA sequence data 93 GENES, ENVIRONMENT AND HEALTH 94 Functional genomics and niche specifi ty 95 Metabolic diversity 96 Biofi lm communities in environment and health 97 Communities of pathogenic bacteria 98 Technological Platforms 99 Central animal facility 100 Analytical instruments 101 Gene expression analysis 102 Peptide synthesis 103 Histo-pathology platform 104 Protein expression 105 New Projectgroups 106 Chronic infection and cancer 107 Structural characterization of pathogen defence factors 108 Mammalian prion transmission barriers 109 Development and functional properties of Foxp3+-expressing regulatory T cells 110 Regulation of virulence mechanism implicated in pathogen host cell interactions 111 Intracellular traffi cking of phagosomes and immunity: Lessons from mycobacteria 112 THE FORTHCOMING RESEARCH PROGRAMME “INFECTION AND IMMUNITY” IN PoF II 114 Microbial Pathogenesis 116 Host Resistance and Susceptibility 119 Infl ammation and Immunity 121 Strategies for Prevetion and Therapy 123 Translational Infection Research 124 TWINCORE, Centre for Experimental and Clinical Infection Research GmbH 130 Publications 2007-2009 161 Lectures 2008-2009 FACTS AND FIGURES 166 Facts and Figures 4 PORTRAIT The Helmholtz Centre for Infection Research The Helmholtz Centre for Infection Research in Braun- Infections are always caused by molecular interactions be- schweig lives up to its name: here approximately 250 tween the host and pathogens, and between the pathogens scientists and 350 technical and administrative staff lay themselves. The central elements in these interactions are the foundations for new preventative procedures, diagnostic the proteins involved in the infection. Consequently they approaches, medicines and drugs with which infectious play a key role in the understanding of infectious diseases. diseases can be better cured or more effectively prevented. Microorganisms organise and catalyse their lives with thou- The paths that lead to this goal are as varied as the paths sands of proteins. The goal of infection researchers is not by which the pathogens enter our bodies. Microbiologists only to describe these proteins but also to understand their investigate how bacteria and viruses manage to enter our functions. The proteins on the cell surface, in particular, are bodies, how bacteria communicate with one another and responsible for contact with the host, and the most pertinent how exactly they make us ill. Geneticists investigate our question in this area of research is: how do bacteria manage genetic make-up in a search for reasons why one person to infect us? The arsenal of different pathogenity factors, falls ill with fl u, for example, whilst their neighbour at the with which bacteria, viruses and other microbial pathogens same table does not. Immunologists investigate how orga- interfere with processes within human cells is a modest nisms react to an intruder and resist it. Structural biologists one. However, knowing where these are located and being research the molecular structures of key molecules and their able to name these factors does not mean that they are interactions. Chemists use this knowledge to investigate understood. Proteins are very large molecules with complex and develop new agents that can in turn be employed to structures and it is precisely in these structures that the combat disease. Vaccine researchers have their sights set on secret of their success lies. Scientists at the HZI take a the best way to combat germs using preventative approaches close look at their structure atom by atom. Details of which before an illness occurs. provide fundamental clues as to how they interact with one another and allows a rationale of their involvement in New diagnostic approaches, vaccines and medicines can infection. only be successfully developed when the mechanisms of infectious diseases have been properly understood. A start- Once the structural biologists have familiarised themselves ing point from which researchers at the Helmholtz Centre with these critical regions in the molecular structure the for Infection Research approach the complex network of chemists can begin to put this knowledge to further use. Their “infection” is the cell – both that of the host and that of the goal is to develop tailored molecules that fi t these structures pathogen. One example is opportunistic infections which exactly, and subsequently have the opportunity to interrupt are a problem in hospitals. In a place where patients with an infection. To this end chemists look for natural inhibitors weakened immune systems are treated, bacteria transform or create new synthetic ones, using these to block the func- themselves from unobtrusive companions to dangerous tions of the pathogen proteins in a targeted approach. aggressors. In extreme cases they ensconce themselves permanently in our bodies by forming a so-called biofi lm, The basis for new active agents, which are able to target causing chronic illness under some circumstances. In selected regions of the bacterial proteins, are often natural biofi lms the bacteria are surrounded by a protective sheath agents. These often originate from traditional medicinal that protects them very effectively against attacks from plants, fungi or bacteria. A special role at the HZI is played the immune system or antibiotics. But what has to occur in by the myxobacteria. These live in the soil and defend them- order for a seemingly harmless germ to become an aggres- selves against bacterial competitors using a range of novel sor? How do bacteria communicate with one another and secondary metabolites, substances that are highly active the host? Only when scientists have understood how the when carefully isolated and analysed by natural product pathogens and their host cells interact and the mechanisms chemists and then subsequently developed into antiinfec- behind these interactions can they disrupt the communi- tives. Microbial active metabolites for combating infectious cation between bacteria in a targeted manner. diseases are therefore seen as the optimal starting sub- stances for developing new therapies against infections for use in hospitals and elsewhere. PORTRAIT 5 The task of the chemist in infection research is easily The system-genetic investigation of such interrelations will described but diffi cult to implement: chemists search for lead to new therapeutic approaches. The tools for this are active components that enable myxobacteria to defend not limited to the petri dish, microscope or mouse, but are themselves against other microorganisms or are a basic above all computers. component of a medicinal plant. In these molecules they search for particular structural characteristics and chemi- Research at the Helmholtz Centre for Infection Research cal groups in order to recreate these and even improve their covers a wide fi eld of disciplines ranging from an under- effectiveness. For HZI researchers synthesising or modify- standing of the molecular interactions between pathogen ing natural agents to create potent medicines is a discipline and host to the discovery of new active agents, and methods that bridges the gap between pure research and clinical for disease prevention. Co-operation with the Hannover applications. Medical School has resulted in the
Recommended publications
  • Metabolomics-Guided Discovery and Characterization of Five New Cyclic
    Justus-Liebig-Universität Gießen Department 08 - Biology & Chemistry Dissertation Metabolomics-Guided Discovery and Characterization of five n ew Cyclic Lipopeptides from Freshwater Isolate Pseudomonas sp. Michael MARNER Gießen, March 2020 1 st examiner: PD Dr. Jens Glaeser 2 nd examiner: Prof. Dr. Peter Hammann I Contents 1 Abstract1 2 Introduction2 2.1 Antibiotic Resistance . .2 2.2 Natural product research and Metabolomics . .3 3 Developement and Evaluation of a Metabolomics platform6 3.1 Introduction . .6 3.2 Material and Methods . 12 3.2.1 Cultivation of bacteria . 12 3.2.2 Extract preparation . 13 3.2.3 Bioactivity assessment . 14 3.2.4 Analytics . 15 3.2.5 Data bucketing and visualization . 16 3.2.6 Variable dereplication via molecular networking . 16 3.3 Results . 18 3.3.1 Bioactivity . 18 3.3.2 Chemical diversity assessment and automatic annotation . 19 3.3.3 Molecular networking and variable dereplication . 25 3.3.4 Linking bioactivity to causative agent . 30 3.4 Discussion . 38 3.4.1 Metabolomics . 38 3.4.2 Bioactivity . 41 4 Bioprospecting and characterization of the bacterial community of Lake Stechlin 44 4.1 Intoduction . 44 4.2 Material and Methods . 45 4.2.1 Sampling of microorganisms from Lake Stechlin . 45 4.2.2 Sample preparation . 46 4.2.3 Cell enumeration via fluorescence microscopy . 47 4.2.4 Microbiome analysis . 47 4.2.5 Cultivation and conservation . 49 4.2.6 Bioactivity assessment via quick supernatant lux assay . 49 4.2.7 Phylogenetic identification based on 16S rRNA gene se- quencing . 50 4.3 Results .
    [Show full text]
  • Kaistella Soli Sp. Nov., Isolated from Oil-Contaminated Soil
    A001 Kaistella soli sp. nov., Isolated from Oil-contaminated Soil Dhiraj Kumar Chaudhary1, Ram Hari Dahal2, Dong-Uk Kim3, and Yongseok Hong1* 1Department of Environmental Engineering, Korea University Sejong Campus, 2Department of Microbiology, School of Medicine, Kyungpook National University, 3Department of Biological Science, College of Science and Engineering, Sangji University A light yellow-colored, rod-shaped bacterial strain DKR-2T was isolated from oil-contaminated experimental soil. The strain was Gram-stain-negative, catalase and oxidase positive, and grew at temperature 10–35°C, at pH 6.0– 9.0, and at 0–1.5% (w/v) NaCl concentration. The phylogenetic analysis and 16S rRNA gene sequence analysis suggested that the strain DKR-2T was affiliated to the genus Kaistella, with the closest species being Kaistella haifensis H38T (97.6% sequence similarity). The chemotaxonomic profiles revealed the presence of phosphatidylethanolamine as the principal polar lipids;iso-C15:0, antiso-C15:0, and summed feature 9 (iso-C17:1 9c and/or C16:0 10-methyl) as the main fatty acids; and menaquinone-6 as a major menaquinone. The DNA G + C content was 39.5%. In addition, the average nucleotide identity (ANIu) and in silico DNA–DNA hybridization (dDDH) relatedness values between strain DKR-2T and phylogenically closest members were below the threshold values for species delineation. The polyphasic taxonomic features illustrated in this study clearly implied that strain DKR-2T represents a novel species in the genus Kaistella, for which the name Kaistella soli sp. nov. is proposed with the type strain DKR-2T (= KACC 22070T = NBRC 114725T). [This study was supported by Creative Challenge Research Foundation Support Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF- 2020R1I1A1A01071920).] A002 Chitinibacter bivalviorum sp.
    [Show full text]
  • Ecological and Ontogenetic Components of Larval Lake
    MICROBIAL ECOLOGY crossm Ecological and Ontogenetic Components of Larval Lake Downloaded from Sturgeon Gut Microbiota Assembly, Successional Dynamics, and Ecological Evaluation of Neutral Community Processes Shairah Abdul Razak,a,b Kim T. Scribnera,c http://aem.asm.org/ aDepartment of Fisheries & Wildlife, Michigan State University, East Lansing, Michigan, USA bCenter for Frontier Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia cDepartment of Integrative Biology, Michigan State University, East Lansing, Michigan, USA Shairah Abdul Razak and Kim T. Scribner contributed equally to this article. Author order was determined based on the workload associated with data analysis and writing of the paper. ABSTRACT Gastrointestinal (GI) or gut microbiotas play essential roles in host de- velopment and physiology. These roles are influenced partly by the microbial com- munity composition. During early developmental stages, the ecological processes on September 1, 2020 at MICHIGAN STATE UNIVERSITY underlying the assembly and successional changes in host GI community composi- tion are influenced by numerous factors, including dispersal from the surrounding environment, age-dependent changes in the gut environment, and changes in di- etary regimes. However, the relative importance of these factors to the gut microbi- ota is not well understood. We examined the effects of environmental (diet and wa- ter sources) and host early ontogenetic development on the diversity of and the compositional changes in the gut microbiota of a primitive teleost fish, the lake stur- geon (Acipenser fulvescens), based on massively parallel sequencing of the 16S rRNA gene. Fish larvae were raised in environments that differed in water source (stream versus filtered groundwater) and diet (supplemented versus nonsupplemented Ar- temia fish).
    [Show full text]
  • The Gut Microbiome and Aquatic Toxicology: an Emerging Concept For
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aquila Digital Community The University of Southern Mississippi The Aquila Digital Community Faculty Publications 11-1-2018 The utG Microbiome and Aquatic Toxicology: An Emerging Concept for Environmental Health Ondrej Adamovsky University of Florida Amanda Buerger University of Florida Alexis M. Wormington University of Florida Naomi Ector University of Florida Robert J. Griffitt University of Southern Mississippi, [email protected] See next page for additional authors Follow this and additional works at: https://aquila.usm.edu/fac_pubs Part of the Marine Biology Commons Recommended Citation Adamovsky, O., Buerger, A., Wormington, A. M., Ector, N., Griffitt, R. J., Bisesi, J. H., Martyniuk, C. J. (2018). The utG Microbiome and Aquatic Toxicology: An Emerging Concept for Environmental Health. Environmental Toxicology and Chemistry, 37(11), 2758-2775. Available at: https://aquila.usm.edu/fac_pubs/15447 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Faculty Publications by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. Authors Ondrej Adamovsky, Amanda Buerger, Alexis M. Wormington, Naomi Ector, Robert J. Griffitt, Joseph H. Bisesi Jr., and Christopher J. Martyniuk This article is available at The Aquila Digital Community: https://aquila.usm.edu/fac_pubs/15447 Invited Critical Review The gut microbiome and aquatic toxicology: An emerging concept for environmental health Ondrej Adamovsky, Amanda Buerger, Alexis M. Wormington, Naomi Ector, Robert J. Griffitt, Joseph H. Bisesi Jr, Christopher J.
    [Show full text]
  • Proteome Cold-Shock Response in the Extremely Acidophilic Archaeon, Cuniculiplasma Divulgatum
    microorganisms Article Proteome Cold-Shock Response in the Extremely Acidophilic Archaeon, Cuniculiplasma divulgatum Rafael Bargiela 1 , Karin Lanthaler 1,2, Colin M. Potter 1,2 , Manuel Ferrer 3 , Alexander F. Yakunin 1,2, Bela Paizs 1,2, Peter N. Golyshin 1,2 and Olga V. Golyshina 1,2,* 1 School of Natural Sciences, Bangor University, Deiniol Rd, Bangor LL57 2UW, UK; [email protected] (R.B.); [email protected] (K.L.); [email protected] (C.M.P.); [email protected] (A.F.Y.); [email protected] (B.P.); [email protected] (P.N.G.) 2 Centre for Environmental Biotechnology, Bangor University, Deiniol Rd, Bangor LL57 2UW, UK 3 Systems Biotechnology Group, Department of Applied Biocatalysis, CSIC—Institute of Catalysis, Marie Curie 2, 28049 Madrid, Spain; [email protected] * Correspondence: [email protected]; Tel.: +44-1248-388607; Fax: +44-1248-382569 Received: 27 April 2020; Accepted: 15 May 2020; Published: 19 May 2020 Abstract: The archaeon Cuniculiplasma divulgatum is ubiquitous in acidic environments with low-to-moderate temperatures. However, molecular mechanisms underlying its ability to thrive at lower temperatures remain unexplored. Using mass spectrometry (MS)-based proteomics, we analysed the effect of short-term (3 h) exposure to cold. The C. divulgatum genome encodes 2016 protein-coding genes, from which 819 proteins were identified in the cells grown under optimal conditions. In line with the peptidolytic lifestyle of C. divulgatum, its intracellular proteome revealed the abundance of proteases, ABC transporters and cytochrome C oxidase. From 747 quantifiable polypeptides, the levels of 582 proteins showed no change after the cold shock, whereas 104 proteins were upregulated suggesting that they might be contributing to cold adaptation.
    [Show full text]
  • Antagonistic Interactions and Biofilm Forming Capabilities Among Bacterial Strains Isolated from the Egg Surfaces of Lake Sturgeon (Acipenser Fulvescens)
    Microb Ecol (2018) 75:22–37 DOI 10.1007/s00248-017-1013-z MICROBIOLOGY OF AQUATIC SYSTEMS Antagonistic Interactions and Biofilm Forming Capabilities Among Bacterial Strains Isolated from the Egg Surfaces of Lake Sturgeon (Acipenser fulvescens) M. Fujimoto1 & B. Lovett1 & R. Angoshtari1 & P. Nirenberg 1 & T. P. Loch 2 & K. T. Scribner3,4 & T. L. Marsh1 Received: 3 November 2016 /Accepted: 8 June 2017 /Published online: 3 July 2017 # Springer Science+Business Media, LLC 2017 Abstract Characterization of interactions within a host- well-characterized isolates but enhanced biofilm formation associated microbiome can help elucidate the mechanisms of of a fish pathogen. Our results revealed the complex nature microbial community formation on hosts and can be used to of interactions among members of an egg associated microbial identify potential probiotics that protect hosts from pathogens. community yet underscored the potential of specific microbial Microbes employ various modes of antagonism when populations as host probiotics. interacting with other members of the community. The forma- tion of biofilm by some strains can be a defense against anti- Keywords Microbiome . Antagonism . Antibiotic . Biofilm microbial compounds produced by other taxa. We character- ized the magnitude of antagonistic interactions and biofilm formation of 25 phylogenetically diverse taxa that are repre- Introduction sentative of isolates obtained from egg surfaces of the threat- ened fish species lake sturgeon (Acipenser fulvescens)attwo Microbiologists have known for decades that intricate ecolog- ecologically relevant temperature regimes. Eight isolates ex- ical linkages exist between a host and the hosted microbial hibited aggression to at least one other isolate. Pseudomonas community [e.g., 1, 2].
    [Show full text]
  • A New Symbiotic Lineage Related to Neisseria and Snodgrassella Arises from the Dynamic and Diverse Microbiomes in Sucking Lice
    bioRxiv preprint doi: https://doi.org/10.1101/867275; this version posted December 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A new symbiotic lineage related to Neisseria and Snodgrassella arises from the dynamic and diverse microbiomes in sucking lice Jana Říhová1, Giampiero Batani1, Sonia M. Rodríguez-Ruano1, Jana Martinů1,2, Eva Nováková1,2 and Václav Hypša1,2 1 Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic 2 Institute of Parasitology, Biology Centre, ASCR, v.v.i., České Budějovice, Czech Republic Author for correspondence: Václav Hypša, Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic, +42 387 776 276, [email protected] Abstract Phylogenetic diversity of symbiotic bacteria in sucking lice suggests that lice have experienced a complex history of symbiont acquisition, loss, and replacement during their evolution. By combining metagenomics and amplicon screening across several populations of two louse genera (Polyplax and Hoplopleura) we describe a novel louse symbiont lineage related to Neisseria and Snodgrassella, and show its' independent origin within dynamic lice microbiomes. While the genomes of these symbionts are highly similar in both lice genera, their respective distributions and status within lice microbiomes indicate that they have different functions and history. In Hoplopleura acanthopus, the Neisseria-related bacterium is a dominant obligate symbiont universally present across several host’s populations, and seems to be replacing a presumably older and more degenerated obligate symbiont.
    [Show full text]
  • Variations of the Intestinal Gut Microbiota of Farmed Rainbow Trout, Oncorhynchus Mykiss (Walbaum), Depending on the Infection Status of the Fish"
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by IRTA Pubpro This is the peer reviewed version of the following article: Parshukov, A.N., E.N. Kashinskaya, E.P. Simonov, O.V. Hlunov, G.I. Izvekova, K.B. Andree, and M.M. Solovyev. 2019. "Variations Of The Intestinal Gut Microbiota Of Farmed Rainbow Trout, Oncorhynchus Mykiss (Walbaum), Depending On The Infection Status Of The Fish". Journal Of Applied Microbiology. Wiley. doi:10.1111/jam.14302., which has been published in final form at https://doi.org/10.1111/jam.14302. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions http://www.wileyauthors.com/self- archiving. DR. ALEKSEY PARSHUKOV (Orcid ID : 0000-0001-9917-186X) MISS ELENA KASHINSKAYA (Orcid ID : 0000-0001-8097-2333) Article type : - Original Article Variations of the intestinal gut microbiota of farmed rainbow trout, Oncorhynchus mykiss (Walbaum), depending on the infection status of the fish Article A.N. Parshukov1*¥, E.N. Kashinskaya2¥, E.P. Simonov2,3¥, O.V. Hlunov4, G.I. Izvekova5, K.B. Andree6, M.M. Solovyev2,7** 1Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, Russia 2Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia 3Laboratory for Genomic Research and Biotechnology, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia 4LLC “FishForel”, Lahdenpohja, Karelia, Russia 5Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Nekouzskii raion, Yaroslavl oblast, Russia 6IRTA-SCR, San Carlos de la Rapita, Tarragona, Spain 7Tomsk State University, Tomsk, Russia This article has been accepted for publication and undergone full peer review but has not Accepted been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record.
    [Show full text]
  • The Novel Extremely Acidophilic, Cell-Wall-Deficient Archaeon Cuniculiplasma Divulgatum Gen
    International Journal of Systematic and Evolutionary Microbiology (2016), 66, 332–340 DOI 10.1099/ijsem.0.000725 The novel extremely acidophilic, cell-wall-deficient archaeon Cuniculiplasma divulgatum gen. nov., sp. nov. represents a new family, Cuniculiplasmataceae fam. nov., of the order Thermoplasmatales Olga V. Golyshina,1 Heinrich Lu¨nsdorf,2 Ilya V. Kublanov,3 Nadine I. Goldenstein,4 Kai-Uwe Hinrichs4 and Peter N. Golyshin1 Correspondence 1School of Biological Sciences, Bangor University, Deiniol Rd, Bangor LL57 2UW, UK Olga V. Golyshina 2Central Unit of Microscopy, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, [email protected] Braunschweig 38124, Germany 3Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-Letiya Oktyabrya 7/2, Moscow 117312, Russia 4MARUM – Center for Marine Environmental Sciences, University of Bremen, Leobener Str., Bremen 28359, Germany Two novel cell-wall-less, acidophilic, mesophilic, organotrophic and facultatively anaerobic archaeal strains were isolated from acidic streamers formed on the surfaces of copper-ore- containing sulfidic deposits in south-west Spain and North Wales, UK. Cells of the strains varied from 0.1 to 2 mm in size and were pleomorphic, with a tendency to form filamentous structures. The optimal pH and temperature for growth for both strains were 1.0–1.2 and 2 37–40 8C, with the optimal substrates for growth being beef extract (3 g l 1) for strain S5T and 2 beef extract with tryptone (3 and 1 g l 1, respectively) for strain PM4. The lipid composition was dominated by intact polar lipids consisting of a glycerol dibiphytanyl glycerol tetraether (GDGT) core attached to predominantly glycosidic polar headgroups.
    [Show full text]
  • J. Gen. Appl. Microbiol., 55(2): 147-153(2009)
    J. Gen. Appl. Microbiol., 55, 147‒153 (2009) Full Paper Chitiniphilus shinanonensis gen. nov., sp. nov., a novel chitin-degrading bacterium belonging to Betaproteobacteria Kazuaki Sato,1 Yuichi Kato,1 Goro Taguchi,1 Masahiro Nogawa,1 Akira Yokota,2 and Makoto Shimosaka1,* 1 Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386‒8567, Japan 2 Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113‒0032, Japan (Received September 2, 2008; Accepted December 22, 2008) A bacterial strain capable of degrading chitin, strain SAY3T, was isolated from moat water of Ueda Castle in Nagano Prefecture, Japan. The strain was gram-negative, curved rod-shaped, facultatively anaerobic, and motile with a single polar fl agellum. It grew well with chitin as a sole carbon source. The cellular fatty acids profi les showed the presence of C16:1 ω7c and C16:0 as the major components. The G+C content of DNA was 67.6 mol% and Q-8 was the major respira- tory quinone. A 16S rRNA gene sequence-based phylogenetic analysis showed the strain be- longed to the family Neisseriaceae but was distantly related (<94% identity) to any previously known species. Since the strain was clearly distinct from closely related genera in phenotypic and chemotaxonomic characteristics, it should be classifi ed under a new genus and a new spe- cies. We propose the name Chitiniphilus shinanonensis gen. nov., sp. nov. The type strain is SAY3T (=NBRC 104970T=NICMB 14509T). Key Words—Betaproteobacteria; chitin; Chitiniphilus shinanonensis gen. nov., sp. nov.; chitinolytic bacterium; Neisseriaceae; 16S rRNA gene sequence Introduction (Cohen-Kupiec and Chet, 1998; Keyhani and Rose- man, 1999), but relatively little is known about those Chitin is a linear polymer consisting of β-1, 4-linked isolated from freshwater.
    [Show full text]
  • UNIVERSITY of CALIFORNIA Los Angeles Discovery of a Novel
    UNIVERSITY OF CALIFORNIA Los Angeles Discovery of a Novel Mevalonate Pathway and its Potential to Produce Biofuels A dissertation submitted in the partial satisfaction of the requirements for the degree Doctor of Philosophy in Biochemistry, Molecular and Structural Biology by Jeffrey Michael Vinokur 2017 © Copyright by Jeffrey Michael Vinokur 2017 ABSTRACT OF THE DISSERTATION Discovery of a Novel Mevalonate Pathway and its Potential to Produce Biofuels by Jeffrey Michael Vinokur Doctor of Philosophy in Biochemistry, Molecular and Structural Biology University of California, Los Angeles, 2017 Professor James U. Bowie, Chair The mevalonate pathway is present in eukaryotes, archaea, and some bacteria, where it produces the building blocks used to make cholesterol, vitamin A, natural rubber, and over 25,000 other biomolecules collectively called isoprenoids. Here we report the discovery of a novel mevalonate pathway in archaea. We describe the identification and characterization of three new enzymes, two new metabolites, a novel structure, and a new mechanism. We also show that the new pathway is unique to extreme acidophiles that grow below pH 2. We attempt to re-design three mevalonate pathway enzymes (mevalonate 3-kinase, mevalonate 5- phosphate decarboxylase, and mevalonate 5-pyrophosphate decarboxylase) to produce isoprenol through the decarboxylation of mevalonate. Isoprenol is a 5-carbon alcohol that has a higher energy density than ethanol. Both rational design and random mutagenesis strategies are described. Finally, we report a new method for the soluble expression of recombinant proteins in E. coli through the co-expression of archaeal thermosomes and prefoldins. ii The dissertation of Jeffrey Michael Vinokur is approved. Todd O.
    [Show full text]
  • An Adaptation to Life in Acid Through a Novel Mevalonate Pathway
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by eScholarship - University of California UCLA UCLA Previously Published Works Title An Adaptation To Life In Acid Through A Novel Mevalonate Pathway. Permalink https://escholarship.org/uc/item/1j33k1mj Journal Scientific reports, 6(1) ISSN 2045-2322 Authors Vinokur, Jeffrey M Cummins, Matthew C Korman, Tyler P et al. Publication Date 2016-12-22 DOI 10.1038/srep39737 Peer reviewed eScholarship.org Powered by the California Digital Library University of California www.nature.com/scientificreports OPEN An Adaptation To Life In Acid Through A Novel Mevalonate Pathway Received: 18 August 2016 Jeffrey M. Vinokur*, Matthew C. Cummins*, Tyler P. Korman & James U. Bowie Accepted: 28 November 2016 Extreme acidophiles are capable of growth at pH values near zero. Sustaining life in acidic environments Published: 22 December 2016 requires extensive adaptations of membranes, proton pumps, and DNA repair mechanisms. Here we describe an adaptation of a core biochemical pathway, the mevalonate pathway, in extreme acidophiles. Two previously known mevalonate pathways involve ATP dependent decarboxylation of either mevalonate 5-phosphate or mevalonate 5-pyrophosphate, in which a single enzyme carries out two essential steps: (1) phosphorylation of the mevalonate moiety at the 3-OH position and (2) subsequent decarboxylation. We now demonstrate that in extreme acidophiles, decarboxylation is carried out by two separate steps: previously identified enzymes generate mevalonate 3,5-bisphosphate and a new decarboxylase we describe here, mevalonate 3,5-bisphosphate decarboxylase, produces isopentenyl phosphate. Why use two enzymes in acidophiles when one enzyme provides both functionalities in all other organisms examined to date? We find that at low pH, the dual function enzyme, mevalonate 5-phosphate decarboxylase is unable to carry out the first phosphorylation step, yet retains its ability to perform decarboxylation.
    [Show full text]