Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing Site to Backstay Rock in the Columbia Hills R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Copyrighted Material
Index Abulfeda crater chain (Moon), 97 Aphrodite Terra (Venus), 142, 143, 144, 145, 146 Acheron Fossae (Mars), 165 Apohele asteroids, 353–354 Achilles asteroids, 351 Apollinaris Patera (Mars), 168 achondrite meteorites, 360 Apollo asteroids, 346, 353, 354, 361, 371 Acidalia Planitia (Mars), 164 Apollo program, 86, 96, 97, 101, 102, 108–109, 110, 361 Adams, John Couch, 298 Apollo 8, 96 Adonis, 371 Apollo 11, 94, 110 Adrastea, 238, 241 Apollo 12, 96, 110 Aegaeon, 263 Apollo 14, 93, 110 Africa, 63, 73, 143 Apollo 15, 100, 103, 104, 110 Akatsuki spacecraft (see Venus Climate Orbiter) Apollo 16, 59, 96, 102, 103, 110 Akna Montes (Venus), 142 Apollo 17, 95, 99, 100, 102, 103, 110 Alabama, 62 Apollodorus crater (Mercury), 127 Alba Patera (Mars), 167 Apollo Lunar Surface Experiments Package (ALSEP), 110 Aldrin, Edwin (Buzz), 94 Apophis, 354, 355 Alexandria, 69 Appalachian mountains (Earth), 74, 270 Alfvén, Hannes, 35 Aqua, 56 Alfvén waves, 35–36, 43, 49 Arabia Terra (Mars), 177, 191, 200 Algeria, 358 arachnoids (see Venus) ALH 84001, 201, 204–205 Archimedes crater (Moon), 93, 106 Allan Hills, 109, 201 Arctic, 62, 67, 84, 186, 229 Allende meteorite, 359, 360 Arden Corona (Miranda), 291 Allen Telescope Array, 409 Arecibo Observatory, 114, 144, 341, 379, 380, 408, 409 Alpha Regio (Venus), 144, 148, 149 Ares Vallis (Mars), 179, 180, 199 Alphonsus crater (Moon), 99, 102 Argentina, 408 Alps (Moon), 93 Argyre Basin (Mars), 161, 162, 163, 166, 186 Amalthea, 236–237, 238, 239, 241 Ariadaeus Rille (Moon), 100, 102 Amazonis Planitia (Mars), 161 COPYRIGHTED -
Planetary Report Report
The PLANETARYPLANETARY REPORT REPORT Volume XXIX Number 1 January/February 2009 Beyond The Moon From The Editor he Internet has transformed the way science is On the Cover: Tdone—even in the realm of “rocket science”— The United States has the opportunity to unify and inspire the and now anyone can make a real contribution, as world’s spacefaring nations to create a future brightened by long as you have the will to give your best. new goals, such as the human exploration of Mars and near- In this issue, you’ll read about a group of amateurs Earth asteroids. Inset: American astronaut Peggy A. Whitson who are helping professional researchers explore and Russian cosmonaut Yuri I. Malenchenko try out training Mars online, encouraged by Mars Exploration versions of Russian Orlan spacesuits. Background: The High Rovers Project Scientist Steve Squyres and Plane- Resolution Camera on Mars Express took this snapshot of tary Society President Jim Bell (who is also head Candor Chasma, a valley in the northern part of Valles of the rovers’ Pancam team.) Marineris, on July 6, 2006. Images: Gagarin Cosmonaut Training This new Internet-enabled fun is not the first, Center. Background: ESA nor will it be the only, way people can participate in planetary exploration. The Planetary Society has been encouraging our members to contribute Background: their minds and energy to science since 1984, A dust storm blurs the sky above a volcanic caldera in this image when the Pallas Project helped to determine the taken by the Mars Color Imager on Mars Reconnaissance Orbiter shape of a main-belt asteroid. -
The Journey to Mars: How Donna Shirley Broke Barriers for Women in Space Engineering
The Journey to Mars: How Donna Shirley Broke Barriers for Women in Space Engineering Laurel Mossman, Kate Schein, and Amelia Peoples Senior Division Group Documentary Word Count: 499 Our group chose the topic, Donna Shirley and her Mars rover, because of our connections and our interest level in not only science but strong, determined women. One of our group member’s mothers worked for a man under Ms. Shirley when she was developing the Mars rover. This provided us with a connection to Ms. Shirley, which then gave us the amazing opportunity to interview her. In addition, our group is interested in the philosophy of equality and we have continuously created documentaries that revolve around this idea. Every member of our group is a female, so we understand the struggles and discrimination that women face in an everyday setting and wanted to share the story of a female that faced these struggles but overcame them. Thus after conducting a great amount of research, we fell in love with Donna Shirley’s story. Lastly, it was an added benefit that Ms. Shirley is from Oklahoma, making her story important to our state. All of these components made this topic extremely appealing to us. We conducted our research using online articles, Donna Shirley’s autobiography, “Managing Martians”, news coverage from the launch day, and our interview with Donna Shirley. We started our research process by reading Shirley’s autobiography. This gave us insight into her college life, her time working at the Jet Propulsion Laboratory, and what it was like being in charge of such a barrier-breaking mission. -
Legalizing Marijuana: California's Pot of Gold?
University of the Pacific Scholarly Commons McGeorge School of Law Scholarly Articles McGeorge School of Law Faculty Scholarship 2009 Legalizing Marijuana: California’s Pot of Gold? Michael Vitiello Pacific cGeM orge School of Law Follow this and additional works at: https://scholarlycommons.pacific.edu/facultyarticles Part of the Criminal Law Commons Recommended Citation Michael Vitiello, Legalizing Marijuana: California’s Pot of Gold?, 2009 Wis. L. Rev. 1349. This Article is brought to you for free and open access by the McGeorge School of Law Faculty Scholarship at Scholarly Commons. It has been accepted for inclusion in McGeorge School of Law Scholarly Articles by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. ESSAY LEGALIZING MARUUANA: CALIFORNIA'S POT OF GOLD? MICHAEL VITIELLO* In early 2009, a member of the California Assembly introduced a bill that would have legalized marijuana in an effort to raise tax revenue and reduce prison costs. While the bill's proponent withdrew the bill, he vowed to renew his efforts in the next term. Other prominent California officials, including Governor Schwarzenegger, have indicated their willingness to study legalization in light of California's budget shortfall. For the first time in over thirty years, politicians are giving serious consideration to a proposal to legalize marijuana. But already, the public debate has degenerated into traditional passionate advocacy, with ardent prohibitionists raising the specter of doom, and marijuana advocates promising billions of dollars in tax revenues and reduced prison costs. Rather than rehashing the old debate about legalizing marijuana, this Essay offers a balanced view of the proposal to legalize marijuana, specifically as a measure to raise revenue and to reduce prison costs. -
Martian Eolian Dust Probed by Chemcam J
Martian Eolian Dust Probed by ChemCam J. Lasue, A. Cousin, P.-y. Meslin, N. Mangold, R. Wiens, G. Berger, E. Dehouck, O. Forni, W. Goetz, O. Gasnault, et al. To cite this version: J. Lasue, A. Cousin, P.-y. Meslin, N. Mangold, R. Wiens, et al.. Martian Eolian Dust Probed by ChemCam. Geophysical Research Letters, American Geophysical Union, 2018, 45 (20), pp.10968– 10977. 10.1029/2018GL079210. hal-02349332 HAL Id: hal-02349332 https://hal.archives-ouvertes.fr/hal-02349332 Submitted on 10 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Geophysical Research Letters RESEARCH LETTER Martian Eolian Dust Probed by ChemCam 10.1029/2018GL079210 J. Lasue1 , A. Cousin1 , P.-Y. Meslin1 , N. Mangold2 , R. C. Wiens3 , G. Berger1 , Special Section: 4 1 5 1 6 7 Curiosity at the Bagnold Dunes, E. Dehouck , O. Forni , W. Goetz , O. Gasnault , W. Rapin , S. Schroeder , Gale crater: Advances in Mar- A. Ollila3 , J. Johnson8 , S. Le Mouélic2 , S. Maurice1 , R. Anderson9 , D. Blaney10 , tian eolian processes B. Clark11 , S. M. Clegg12 , C. d’Uston1, C. Fabre13, N. Lanza3 , M. B. Madsen14 , J. Martin-Torres15,16, N. -
NASA's Mars 2020 Perseverance Rover Gets Balanced 21 April 2020
NASA's Mars 2020 Perseverance rover gets balanced 21 April 2020 minimize friction that could affect the accuracy of the results, the table's surface sits on a spherical air bearing that essentially levitates on a thin layer of nitrogen gas. To determine center of gravity relative to the rover's z-axis (which extends from the bottom of the rover through the top) and y-axis (from the rover's left to right side), the team slowly rotated the vehicle back and forth, calculating the imbalance in its mass distribution. NASA's Perseverance rover is moved during a test of its mass properties at Kennedy Space Center in Florida. The image was taken on April 7, 2020. Credit: NASA/JPL-Caltech With 13 weeks to go before the launch period of NASA's Mars 2020 Perseverance rover opens, final preparations of the spacecraft continue at the Kennedy Space Center in Florida. On April 8, the This image of the Perseverance Mars rover was taken at assembly, test and launch operations team NASA's Kennedy Space Center on April 7, 2020, during a completed a crucial mass properties test of the test of the vehicle's mass properties. Credit: NASA/JPL- rover. Caltech Precision mass properties measurements are essential to a safe landing on Mars because they help ensure that the spacecraft travels accurately Just as an auto mechanic places small weights on throughout its trip to the Red Planet—from launch a car tire's rim to bring it into balance, the through its entry, descent and landing. Perseverance team analyzed the data and then added 13.8 pounds (6.27 kilograms) to the rover's On April 6, the meticulous three-day process chassis. -
Columbus Crater HLS2 Hangout: Exploration Zone Briefing
Columbus Crater HLS2 Hangout: Exploration Zone Briefing Kennda Lynch1,2, Angela Dapremont2, Lauren Kimbrough2, Alex Sessa2, and James Wray2 1Lunar and Planetary Institute/Universities Space Research Association 2Georgia Institute of Technology Columbus Crater: An Overview • Groundwater-fed paleolake located in northwest region of Terra Sirenum • ~110 km in diameter • Diversity of Noachian & Hesperian aged deposits and outcrops • High diversity of aqueous mineral deposits • Estimated 1.5 km depth of sedimentary and/or volcanic infill • High Habitability and Biosignature Preservation Potential LZ & Field Station Latitude: 194.0194 E Longitude: 29.2058 S Altitude: +910 m SROI #1 RROI #1 LZ/HZ SROI #4 SROI #2 SROI #5 22 KM HiRISE Digital Terrain Model (DTM) • HiRISE DTMs are made from two images of the same area on the ground, taken from different look angles (known as a stereo-pair) • DTM’s are powerful research tools that allow researchers to take terrain measurements and model geological processes • For our traversability analysis of Columbus: • The HiRISE DTM was processed and completed by the University of Arizona HiRISE Operations Center. • DTM data were imported into ArcMap 10.5 software and traverses were acquired and analyzed using the 3D analyst tool. • A slope map was created in ArcMap to assess slope values along traverses as a supplement to topography observations. Slope should be ≤30°to meet human mission requirements. Conclusions Traversability • 9 out of the 17 traverses analyzed met the slope criteria for human missions. • This region of Columbus Crater is traversable and allows access to regions of astrobiological interest. It is also a possible access point to other regions of Terra Sirenum. -
NASA Mars Exploration Strategy: “Follow the Water”
Gullies on Mars -- Water or Not? Allan H. Treiman NASA Mars Exploration Strategy: “Follow the Water” Life W Climate A T Geology E Resources R Evidence of Water on Mars Distant Past Crater Degradation and Valley Networks ‘River’ Channels Flat Northern Lowlands Meteorites Carbonate in ALH84001 Clay in nakhlites MER Rover Sites Discoveries Hydrous minerals: jarosite! Fe2O3 from water (blueberries etc.) Silica & sulfate & phosphate deposits Recent Past (Any liquid?) Clouds & Polar Ice Ground Ice Valley Networks and Degraded Craters 1250 km River Channels - Giant Floods! 225 km 10 km craters River Channels - ‘Normal’ Flows 14 km 1 km River Channels from Rain? 700 km Science, July 2, 2004 19 km Ancient Martian Meteorite ALH84001 MER Opportunity - Heatshield and parachute. Jarosite - A Water-bearing Mineral Formed in Groundwater 3+ KFe3 (SO4)2(OH)6 2 Jarosite = K2SO4 + 3 Fe2O3 + 3 H2SO4 Hematite is in “Blueberries,” which still suggest water. Stone Mountain MER Spirit: Columbia Hills H2O Now: Clouds & Polar Caps Ground Ice – Mars Orbiter GRS Water abundances within a few meters depth of the Martian surface. Wm. Feldman. AAAS talk & Los Alamos Nat’l. Lab. Press Release, 15 Feb. 2003. (SPACE.com report, 16 Feb. 2003) So, Water on Mars !! So? Apparently, Mars has/had lots of water. Lots of evidence for ancient liquid water (> ~2 billion years ago), both surface and underground. Martian Gullies - Liquid Water or Not? Material flows down steep slopes, most commonly interpreted as water-bearing debris flows [Malin and Edgett (2000) Science 288, 2330]. Liquid water is difficult to produce and maintain near Mars’ surface, now. -
THE MARS 2020 ROVER ENGINEERING CAMERAS. J. N. Maki1, C
51st Lunar and Planetary Science Conference (2020) 2663.pdf THE MARS 2020 ROVER ENGINEERING CAMERAS. J. N. Maki1, C. M. McKinney1, R. G. Willson1, R. G. Sellar1, D. S. Copley-Woods1, M. Valvo1, T. Goodsall1, J. McGuire1, K. Singh1, T. E. Litwin1, R. G. Deen1, A. Cul- ver1, N. Ruoff1, D. Petrizzo1, 1Jet Propulsion Laboratory, California Institute of Technology (4800 Oak Grove Drive, Pasadena, CA 91109, [email protected]). Introduction: The Mars 2020 Rover is equipped pairs (the Cachecam, a monoscopic camera, is an ex- with a neXt-generation engineering camera imaging ception). The Mars 2020 engineering cameras are system that represents a significant upgrade over the packaged into a single, compact camera head (see fig- previous Navcam/Hazcam cameras flown on MER and ure 1). MSL [1,2]. The Mars 2020 engineering cameras ac- quire color images with wider fields of view and high- er angular/spatial resolution than previous rover engi- neering cameras. Additionally, the Mars 2020 rover will carry a new camera type dedicated to sample op- erations: the Cachecam. History: The previous generation of Navcams and Hazcams, known collectively as the engineering cam- eras, were designed in the early 2000s as part of the Mars Exploration Rover (MER) program. A total of Figure 1. Flight Navcam (left), Flight Hazcam (middle), 36 individual MER-style cameras have flown to Mars and flight Cachecam (right). The Cachecam optical assem- on five separate NASA spacecraft (3 rovers and 2 bly includes an illuminator and fold mirror. landers) [1-6]. The MER/MSL cameras were built in two separate production runs: the original MER run Each of the Mars 2020 engineering cameras utilize a (2003) and a second, build-to-print run for the Mars 20 megapixel OnSemi (CMOSIS) CMOS sensor Science Laboratory (MSL) mission in 2008. -
Open Research Online Oro.Open.Ac.Uk
Open Research Online The Open University’s repository of research publications and other research outputs Centimeter to decimeter hollow concretions and voids in Gale Crater sediments, Mars Journal Item How to cite: Wiens, Roger C.; Rubin, David M.; Goetz, Walter; Fairén, Alberto G.; Schwenzer, Susanne P.; Johnson, Jeffrey R.; Milliken, Ralph; Clark, Ben; Mangold, Nicolas; Stack, Kathryn M.; Oehler, Dorothy; Rowland, Scott; Chan, Marjorie; Vaniman, David; Maurice, Sylvestre; Gasnault, Olivier; Rapin, William; Schroeder, Susanne; Clegg, Sam; Forni, Olivier; Blaney, Diana; Cousin, Agnes; Payré, Valerie; Fabre, Cecile; Nachon, Marion; Le Mouelic, Stephane; Sautter, Violaine; Johnstone, Stephen; Calef, Fred; Vasavada, Ashwin R. and Grotzinger, John P. (2017). Centimeter to decimeter hollow concretions and voids in Gale Crater sediments, Mars. Icarus, 289 pp. 144–156. For guidance on citations see FAQs. c 2017 Elsevier Inc. https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Accepted Manuscript Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1016/j.icarus.2017.02.003 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk Centimeter to Decimeter Hollow Concretions and Voids In Gale Crater Sediments, Mars Roger C. Wiens1, David M. Rubin2, Walter Goetz3, Alberto G. Fairén4, Susanne P. Schwenzer5, Jeffrey R. Johnson6, Ralph Milliken7, Ben Clark8, Nicolas Mangold9, Kathryn M. Stack10, Dorothy Oehler11, Scott Rowland12, Marjorie Chan13, David Vaniman14, Sylvestre Maurice15, Olivier Gasnault15, William Rapin15, Susanne Schroeder16, Sam Clegg1, Olivier Forni15, Diana Blaney10, Agnes Cousin15, Valerie Payré17, Cecile Fabre17, Marion Nachon18, Stephane Le Mouelic9, Violaine Sautter19, Stephen Johnstone1, Fred Calef10, Ashwin R. -
Downselection of Landing Sites Proposed for the Mars 2020 Rover Mission
47th Lunar and Planetary Science Conference (2016) 2324.pdf DOWNSELECTION OF LANDING SITES PROPOSED FOR THE MARS 2020 ROVER MISSION. M. P. Golombek1, J. A. Grant2, K. A. Farley3, K. Williford1, A. Chen1, R. E. Otero1, and J. W. Ashley1, 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109; 2Smithsonian Institution, Center for Earth and Planetary Sciences, Washington, D.C. 20560, 3Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125. Introduction: The Mars 2020 mission would ex- suitable for addressing key planetary evolution ques- plore a site likely to have been habitable, seek signs of tions if and when they are returned to Earth. past life, prepare a returnable cache with the most Results of the voting were presented as the compelling samples, take the first steps towards in-situ weighted average (assigning 5 points to each green resource utilization on Mars, and demonstrate technol- vote, 3 to each yellow vote, and 1 to each red vote that ogy needed for future human and robotic exploration were then summed and divided by the total number of of Mars. The first landing site workshop identified and votes) and the mode (color receiving the most votes). prioritized 27 landing sites proposed by the science This ensured that participants could not skew the re- community according to science objectives that also sults by withholding votes from some sites. Both met the engineering constraints [1]. This abstract de- methods yield similar results and reveal a fall-off in scribes the downselection of landing sites that occurred support for sites ranked lower than the top nine or ten at the second landing site workshop and associated based on mode and average, respectively [2]. -
Mars Science Laboratory: Curiosity Rover Curiosity’S Mission: Was Mars Ever Habitable? Acquires Rock, Soil, and Air Samples for Onboard Analysis
National Aeronautics and Space Administration Mars Science Laboratory: Curiosity Rover www.nasa.gov Curiosity’s Mission: Was Mars Ever Habitable? acquires rock, soil, and air samples for onboard analysis. Quick Facts Curiosity is about the size of a small car and about as Part of NASA’s Mars Science Laboratory mission, Launch — Nov. 26, 2011 from Cape Canaveral, tall as a basketball player. Its large size allows the rover Curiosity is the largest and most capable rover ever Florida, on an Atlas V-541 to carry an advanced kit of 10 science instruments. sent to Mars. Curiosity’s mission is to answer the Arrival — Aug. 6, 2012 (UTC) Among Curiosity’s tools are 17 cameras, a laser to question: did Mars ever have the right environmental Prime Mission — One Mars year, or about 687 Earth zap rocks, and a drill to collect rock samples. These all conditions to support small life forms called microbes? days (~98 weeks) help in the hunt for special rocks that formed in water Taking the next steps to understand Mars as a possible and/or have signs of organics. The rover also has Main Objectives place for life, Curiosity builds on an earlier “follow the three communications antennas. • Search for organics and determine if this area of Mars was water” strategy that guided Mars missions in NASA’s ever habitable for microbial life Mars Exploration Program. Besides looking for signs of • Characterize the chemical and mineral composition of Ultra-High-Frequency wet climate conditions and for rocks and minerals that ChemCam Antenna rocks and soil formed in water, Curiosity also seeks signs of carbon- Mastcam MMRTG • Study the role of water and changes in the Martian climate over time based molecules called organics.