Estimation of the Passive Earth Pressure with Inclined Cohesive Backfills: the Effect of Intermediate Principal Stress Is Considered
108 The Open Mechanical Engineering Journal, 2011, 5, 108-116 Open Access Estimation of the Passive Earth Pressure with Inclined Cohesive Backfills: the Effect of Intermediate Principal Stress is Considered W. L. Yu*,1,2, J. Zhang1, R. L. Hu1, Z. Q. Li1, X. H. Sun2, R. X. Wang3 and Y. Q. Wang4 1Key Laboratory of Engineering Geomechanics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China 2Exploration and Development Research Institute, Daqing Oil Field Company Ltd., Daqing, Heilongjiang 163712, China 3Beijing Orangelamp Navigation Technology Development Co., Ltd, Beijing 10085, China 4Henan Provincial Communications Planning Survey and Design Institute Co., Ltd. Zhenzhou 450052, China Abstract: Estimating passive earth pressure accurately is very important when designing retaining wall. Based on the unified strength theory and plane strain assumption, an analytical solution has been developed to determine the passive lateral earth pressure distribution on a retaining structure when the backfill is cohesive and inclined considering the effect of the intermediate principal stress. The solution derived encompasses both Bell’s equation (for cohesive or cohesionless backfill with a horizontal ground surface) and Rankine’s solution (for cohesionless backfill with an inclined ground surface). Keywords: Passive earth pressure, inclined backfill, unified strength theory, intermediate principal stress. INTRODUCTION When the backfill is cohesive (φ > 0, c > 0) and is horizontal, the passive earth pressure, σ , is calculated using Passive earth pressure plays an important role in soil- p Bell’s eq. (3): structure interaction in many structures in civil engineering such as retaining walls, retaining piles around a foundation ! = ! K + 2c K (3) ditch, and so on.
[Show full text]