A Molecular Phylogeny of Tortoises (Testudines: Testudinidae) Based on Mitochondrial and Nuclear Genes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
§4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
§4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm, -
Manual for the Differentiation of Captive-Produced and Wild-Caught Turtles and Tortoises (Testudines)
Image: Peter Paul van Dijk Image:Henrik Bringsøe Image: Henrik Bringsøe Image: Andrei Daniel Mihalca Image: Beate Pfau MANUAL F O R T H E DIFFERENTIATION OF CAPTIVE-PRODUCED AND WILD-CAUGHT TURTLES AND TORTOISES (TESTUDINES) PREPARED BY SPECIES360 UNDER CONTRACT FOR THE CITES SECRETARIAT Manual for the differentiation of captive-produced and wild-caught turtles and tortoises (Testudines) This document was prepared by Species360 under contract for the CITES Secretariat. Principal Investigators: Prof. Dalia A. Conde, Ph.D. and Johanna Staerk, Ph.D., Species360 Conservation Science Alliance, https://www.species360.orG Authors: Johanna Staerk1,2, A. Rita da Silva1,2, Lionel Jouvet 1,2, Peter Paul van Dijk3,4,5, Beate Pfau5, Ioanna Alexiadou1,2 and Dalia A. Conde 1,2 Affiliations: 1 Species360 Conservation Science Alliance, www.species360.orG,2 Center on Population Dynamics (CPop), Department of Biology, University of Southern Denmark, Denmark, 3 The Turtle Conservancy, www.turtleconservancy.orG , 4 Global Wildlife Conservation, globalwildlife.orG , 5 IUCN SSC Tortoise & Freshwater Turtle Specialist Group, www.iucn-tftsG.org. 6 Deutsche Gesellschaft für HerpetoloGie und Terrarienkunde (DGHT) Images (title page): First row, left: Mixed species shipment (imaGe taken by Peter Paul van Dijk) First row, riGht: Wild Testudo marginata from Greece with damaGe of the plastron (imaGe taken by Henrik BrinGsøe) Second row, left: Wild Testudo marginata from Greece with minor damaGe of the carapace (imaGe taken by Henrik BrinGsøe) Second row, middle: Ticks on tortoise shell (Amblyomma sp. in Geochelone pardalis) (imaGe taken by Andrei Daniel Mihalca) Second row, riGht: Testudo graeca with doG bite marks (imaGe taken by Beate Pfau) Acknowledgements: The development of this manual would not have been possible without the help, support and guidance of many people. -
A Phylogenomic Analysis of Turtles ⇑ Nicholas G
Molecular Phylogenetics and Evolution 83 (2015) 250–257 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A phylogenomic analysis of turtles ⇑ Nicholas G. Crawford a,b,1, James F. Parham c, ,1, Anna B. Sellas a, Brant C. Faircloth d, Travis C. Glenn e, Theodore J. Papenfuss f, James B. Henderson a, Madison H. Hansen a,g, W. Brian Simison a a Center for Comparative Genomics, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA b Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA c John D. Cooper Archaeological and Paleontological Center, Department of Geological Sciences, California State University, Fullerton, CA 92834, USA d Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA e Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA f Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA g Mathematical and Computational Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 9171, USA article info abstract Article history: Molecular analyses of turtle relationships have overturned prevailing morphological hypotheses and Received 11 July 2014 prompted the development of a new taxonomy. Here we provide the first genome-scale analysis of turtle Revised 16 October 2014 phylogeny. We sequenced 2381 ultraconserved element (UCE) loci representing a total of 1,718,154 bp of Accepted 28 October 2014 aligned sequence. Our sampling includes 32 turtle taxa representing all 14 recognized turtle families and Available online 4 November 2014 an additional six outgroups. Maximum likelihood, Bayesian, and species tree methods produce a single resolved phylogeny. -
The Conservation Biology of Tortoises
The Conservation Biology of Tortoises Edited by Ian R. Swingland and Michael W. Klemens IUCN/SSC Tortoise and Freshwater Turtle Specialist Group and The Durrell Institute of Conservation and Ecology Occasional Papers of the IUCN Species Survival Commission (SSC) No. 5 IUCN—The World Conservation Union IUCN Species Survival Commission Role of the SSC 3. To cooperate with the World Conservation Monitoring Centre (WCMC) The Species Survival Commission (SSC) is IUCN's primary source of the in developing and evaluating a data base on the status of and trade in wild scientific and technical information required for the maintenance of biological flora and fauna, and to provide policy guidance to WCMC. diversity through the conservation of endangered and vulnerable species of 4. To provide advice, information, and expertise to the Secretariat of the fauna and flora, whilst recommending and promoting measures for their con- Convention on International Trade in Endangered Species of Wild Fauna servation, and for the management of other species of conservation concern. and Flora (CITES) and other international agreements affecting conser- Its objective is to mobilize action to prevent the extinction of species, sub- vation of species or biological diversity. species, and discrete populations of fauna and flora, thereby not only maintain- 5. To carry out specific tasks on behalf of the Union, including: ing biological diversity but improving the status of endangered and vulnerable species. • coordination of a programme of activities for the conservation of biological diversity within the framework of the IUCN Conserva- tion Programme. Objectives of the SSC • promotion of the maintenance of biological diversity by monitor- 1. -
University of Nevada, Reno Effects of Fire on Desert Tortoise (Gopherus Agassizii) Thermal Ecology a Dissertation Submitted in P
University of Nevada, Reno Effects of fire on desert tortoise (Gopherus agassizii) thermal ecology A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Ecology, Evolution, and Conservation Biology by Sarah J. Snyder Dr. C. Richard Tracy/Dissertation Advisor May 2014 THE GRADUATE SCHOOL We recommend that the dissertation prepared under our supervision by SARAH J. SNYDER Entitled Effects of fire on desert tortoise (Gopherus agassizii) thermal ecology be accepted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY C. Richard Tracy, Ph.D., Advisor Kenneth Nussear, Ph.D., Committee Member Peter Weisberg, Ph.D., Committee Member Lynn Zimmerman, Ph.D., Committee Member Lesley DeFalco, Ph.D., Graduate School Representative David W. Zeh, Ph. D., Dean, Graduate School May, 2014 i ABSTRACT Among the many threats facing the desert tortoise (Gopherus agassizii) is the destruction and alteration of habitat. In recent years, wildfires have burned extensive portions of tortoise habitat in the Mojave Desert, leaving burned landscapes that are virtually devoid of living vegetation. Here, we investigated the effects of fire on the thermal ecology of the desert tortoise by quantifying the thermal quality of above- and below-ground habitat, determining which shrub species are most thermally valuable for tortoises including which shrub species are used by tortoises most frequently, and comparing the body temperature of tortoises in burned and unburned habitat. To address these questions we placed operative temperature models in microhabitats that received filtered radiation to test the validity of assuming that the interaction between radiation and radiation-absorbing properties of the model can result in a single, mean radiant absorptance regardless of whether the incident solar radiation is direct unfiltered or filtered by plant canopies, using the desert tortoise as a case study. -
Aldabrachelys Arnoldi (Bour 1982) – Arnold's Giant Tortoise
Conservation Biology of Freshwater Turtles and Tortoises: A Compilation ProjectTestudinidae of the IUCN/SSC — AldabrachelysTortoise and Freshwater arnoldi Turtle Specialist Group 028.1 A.G.J. Rhodin, P.C.H. Pritchard, P.P. van Dijk, R.A. Saumure, K.A. Buhlmann, J.B. Iverson, and R.A. Mittermeier, Eds. Chelonian Research Monographs (ISSN 1088-7105) No. 5, doi:10.3854/crm.5.028.arnoldi.v1.2009 © 2009 by Chelonian Research Foundation • Published 18 October 2009 Aldabrachelys arnoldi (Bour 1982) – Arnold’s Giant Tortoise JUSTIN GERLACH 1 1133 Cherry Hinton Road, Cambridge CB1 7BX, United Kingdom [[email protected]] SUMMARY . – Arnold’s giant tortoise, Aldabrachelys arnoldi (= Dipsochelys arnoldi) (Family Testudinidae), from the granitic Seychelles, is a controversial species possibly distinct from the Aldabra giant tortoise, A. gigantea (= D. dussumieri of some authors). The species is a morphologi- cally distinctive morphotype, but has so far not been genetically distinguishable from the Aldabra tortoise, and is considered synonymous with that species by many researchers. Captive reared juveniles suggest that there may be a genetic basis for the morphotype and more detailed genetic work is needed to elucidate these relationships. The species is the only living saddle-backed tortoise in the Seychelles islands. It was apparently extirpated from the wild in the 1800s and believed to be extinct until recently purportedly rediscovered in captivity. The current population of this morphotype is 23 adults, including 18 captive adult males on Mahé Island, 5 adults recently in- troduced to Silhouette Island, and one free-ranging female on Cousine Island. Successful captive breeding has produced 138 juveniles to date. -
Pyxis Arachnoides (Malagasy Spider Tortoise)
Studbook Breeding Programme Pyxis arachnoides (Malagasy spider tortoise) Photo by Frank van Loon Annual Report 2011 / 2012 Frank van Loon studbook keeper KvK nr. 41136106 www.studbooks.eu Contents 1. Introduction 3 2. Current living studbook population 4 3. Locations 15 4. Births 15 5. Deaths 15 6. Imports 16 7. Transfers 16 8. Lost to follow up 16 9. Situation in the wild 17 10.Plans for 2013 17 11.Identification of subspecies 18 12.Identification of gender 19 13.Appendix (Husbandry conditions and additional information) 22 1.Introduction This report is an update of the annual report of the Studbook Breeding Programme Pyxis arachnoides published in 2010.The programme aims to form a genetically healthy, reproducing captive population, to study and to gather and distribute as much information about Pyxis arachnoides as possible. In order to keep the studbook manageable (in terms of number of tortoises and contacts between participants and coordinator), it has been decided that the studbook will operate exclusively in Europe. Although Pyxis a. arachnoides appears to be present in Europe in sufficiently large numbers for a viable studbook, the situation for the other two subspecies, brygooi and oblonga, is somewhat different. Although both subspecies are bred in captivity, the total number of living tortoises in the studbook is too low to form a genetical healthy captive population. In the (near) future it might be advisable to establish closer contacts outside Europe to import tortoises of both subspecies (brygooi and oblonga). 2. Current living studbook population Table I: Current living studbook population Pyxis arachnoides per location as registered in the studbook. -
Can Unwanted Suburban Tortoises Rescue Native Hawaiian Plants?
CAN UNWANTED SUBURBAN TORTOISES RESCUE NATIVE HAWAIIAN PLANTS? by David A. Burney, James O. Juvik, Lida Pigott Burney, and Tomas Diagne 104 THE TORTOISE ・ 2012 hrough a series of coincidences, surplus pet tortoises in Hawaii may end up offering a partial solution to the seemingly insurmountable challenge posed by invasive plants in the Makauwahi Cave Reserve Ton Kaua`i. This has come about through a serendipitous intersection of events in Africa, the Mascarene Islands, North America, and Hawaii. The remote Hawaiian Islands were beyond the reach of naturally dispersing island tortoises, but the niches were apparently still there. Giant flightless ducks and geese evolved on these islands with tortoise-like beaks and other adaptations as terrestrial “meso-herbivores.” Dating of these remarkable fossil remains shows that they went extinct soon after the arrival of Polynesians at the beginning of the last millennium leaving the niches for large native herbivores entirely empty. Other native birds, including important plant pollinators, and some plant species have also suffered extinction in recent centuries. This trend accelerated after European settlement ecosystem services and a complex mix of often with the introduction of many invasive alien plants conflicting stakeholder interests clearly requires and the establishment of feral ungulate populations new paradigms and new tools. such as sheep, goats, cattle, and European swine, as Lacking any native mammalian herbivores, the well as other insidious invasives such as deer, rats, majority of the over 1,000 native Hawaiian plant mongoose, feral house cats, and even mosquitoes, species on the islands have been widely regarded which transmit avian malaria to a poorly resistant in the literature as singularly lacking in defensive native avifauna. -
Origins of Endemic Island Tortoises in the Western Indian Ocean: a Critique of the Human-Translocation Hypothesis
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2017 Origins of endemic island tortoises in the western Indian Ocean: a critique of the human-translocation hypothesis Hansen, Dennis M ; Austin, Jeremy J ; Baxter, Rich H ; de Boer, Erik J ; Falcón, Wilfredo ; Norder, Sietze J ; Rijsdijk, Kenneth F ; Thébaud, Christophe ; Bunbury, Nancy J ; Warren, Ben H Abstract: How do organisms arrive on isolated islands, and how do insular evolutionary radiations arise? In a recent paper, Wilmé et al. (2016a) argue that early Austronesians that colonized Madagascar from Southeast Asia translocated giant tortoises to islands in the western Indian Ocean. In the Mascarene Islands, moreover, the human-translocated tortoises then evolved and radiated in an endemic genus (Cylindraspis). Their proposal ignores the broad, established understanding of the processes leading to the formation of native island biotas, including endemic radiations. We find Wilmé et al.’s suggestion poorly conceived, using a flawed methodology and missing two critical pieces of information: the timing and the specifics of proposed translocations. In response, we here summarize the arguments thatcould be used to defend the natural origin not only of Indian Ocean giant tortoises but also of scores of insular endemic radiations world-wide. Reinforcing a generalist’s objection, the phylogenetic and ecological data on giant tortoises, and current knowledge of environmental and palaeogeographical history of the Indian Ocean, make Wilmé et al.’s argument even more unlikely. DOI: https://doi.org/10.1111/jbi.12893 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-131419 Journal Article Accepted Version Originally published at: Hansen, Dennis M; Austin, Jeremy J; Baxter, Rich H; de Boer, Erik J; Falcón, Wilfredo; Norder, Sietze J; Rijsdijk, Kenneth F; Thébaud, Christophe; Bunbury, Nancy J; Warren, Ben H (2017). -
Mitochondrial Genome Reveals Contrasting Pattern of Adaptive
bioRxiv preprint doi: https://doi.org/10.1101/2021.02.18.431795; this version posted February 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. MITOCHONDRIAL GENOME REVEALS CONTRASTING PATTERN OF ADAPTIVE SELECTION IN TURTLES AND TORTOISES Subhashree Sahoo1,2, Ajit Kumar1, Jagdish Rai2, Sandeep Kumar Gupta1 1. Department of Animal Ecology and Conservation Biology, Wildlife Institute of India, Dehradun 2. Institute of Forensic Science and Criminology, Panjab University, India *Author for correspondence Dr. S.K. Gupta Scientist-E Wildlife Institute of India Dehra Dun 248 001, India E-mail: [email protected] Telephone: +91-135-2646343 Fax No.: +91-135-2640117 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.18.431795; this version posted February 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract Testudinoidea represents an evolutionarily unique taxon comprising both turtles and tortoises. The contrasting habitats that turtles and tortoises inhabit are associated with unique physio-ecological challenges hence enable distinct adaptive evolutionary strategies. To comparatively understand the pattern and strength of Darwinian selection and physicochemical evolution in turtle and tortoise mitogenomes, we employed adaptive divergence and selection analyses. We evaluated changes in structural and biochemical properties, and codon models on the mitochondrial protein-coding genes (PCGs) among three turtles and a tortoise lineage. -
Descriptions of Some A.Frican Tortoises
A"nals aftlte Natal Museum. Vol. VI, 1)(1ft 3 DESCRIPTIONS OF SOME AFRICAN TORTOISES. 46 1 Descriptions of some A.frican Tortoises. By John II C\\'itt. With P lates XXXVI-XXXVIII, and 5 Text. fi gul·es. CONTENTS. P elusios s inuatus s inu n.t us Smith J(j2 P elus ios s illu atus zuluensis H elQift 462 P ell1si os ni g r ica. ns n igricnns DonllC/. 4(\3 Pelus ios ni g ri can s castanoides SIIUS)1. n . 4(13 Peil1si os nigr icn.ns ca.stan e us Schw. 464 P elus ios nigricans rh odesianus H ellJi tt 465 Kinixys hellian!} Gray -I n? Kinixys nogll ey i Lataste ·HiS Kin ixys s pekii Gray. 469 Kinixys be lliana. zombensis sllbsp. '11. ·WO Kinixys belJin.nn. zulllon sis subs)1 . n. 47 1 Kinixys n. ustra lis 8p. It. 477 Kinixys da.rlingi Blgr. 4, 1 Kini xys jordn.ni sp . n . 482 Kinixys yonn gi ap. n. 4SG Kini xys lo bn.ts ia na Pou'er 488 H omopus WaMb. ..HHi Pseudomopus g. n . ·Hlli T estlld o L . 4!)H Neotestlldo g. n. 50" 462 JOHN HEWI'IT. THE material dealt wi th in this revi ew has bef' 1l derived from varioll s sources. A good portion of it is contained in the Albany Musemu, and for the loan of specimens I am especia.lly indebted to the Mu seums at Pretoria, Kimberley and Pietermaritzburg. It, may be .aid that the. present study again illustrates the fact t.hat the closer a group of organisms is studied and the wider the area from which they are obt.ained, the greater is the difficnlty ill formulating any clear diagnosis of specific characters. -
Download Vol. 20, No. 2
BULLETIN of the FLORIDA STATE MUSEUM Biological Sciences Volume 20 1976 Number 2 THE GENUS GOPHERUS ( TESTUDINIDAE ): PT. I. OSTEOLOGY AND RELATIONSHIPS OF EXTANT SPECIES WALTER AUFFENBERC e = UNIVERSITY OF FLORIDA GAINESVILLE Numbers of the BULLETIN OF THE FLORIDA STATE MUSEUM, BIOLOGICAL SCIENCES, are published at irregular intervals. Volumes contain about 300 pages and are not necessaril; completed in any one calendar year. CARTER R. GILBERT, Editor RHODA J, RYBAK, Managing Editor Consultants for this issue: JAMES L. DOBIE J, ALAN HOLMAN SAM R. TELFORD, JR. Communications concerning purchase or exchange of the publications and all man- uscripts should be addressed to the Managing Editor of the Bulletin, Florida State Museum, Museum Road, University of Florida, Gainesville, Florida 32611. This public document was promulgated at an annual cost of $2,561.67 or $2.328 per copy. It makes available to libraries, scholars, and all interested persons the results of researches in the natural sciences, emphasizing the Circum-Caribbean region. Publication date: January 23, 1976 Price $2.35 THE GENUS GOPHERUS (TESTUDINIDAE): PT. I. OSTEOLOGY AND RELATIONSHIPS OF EXTANT SPECIES WALTER AUFFENBERGl SYNOPSIS: Adult skeletons of the extant species of the genus Gopherus were studied to determine the kind and level of similarities and differences between them and to form a comparative base for studies of fossil members of the genus. The skeleton and its variation in each of the species is described and/or figured and analyzed. The four extant species form two species groups, based on a number of osteological characters. One group includes G. polyphemus and G, #avomarginatus, the other G.