Simultaneous Estimation of Cinnamaldehyde and Eugenol in Essential Oils and Traditional and Ultrasound-Assisted Extracts of Diff
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
6-Paradol and 6-Shogaol, the Pungent Compounds of Ginger
International Journal of Molecular Sciences Article 6-Paradol and 6-Shogaol, the Pungent Compounds of Ginger, Promote Glucose Utilization in Adipocytes and Myotubes, and 6-Paradol Reduces Blood Glucose in High-Fat Diet-Fed Mice Chien-Kei Wei 1,†, Yi-Hong Tsai 1,†, Michal Korinek 1, Pei-Hsuan Hung 2, Mohamed El-Shazly 1,3, Yuan-Bin Cheng 1, Yang-Chang Wu 1,4,5,6, Tusty-Jiuan Hsieh 2,7,8,9,* and Fang-Rong Chang 1,7,9,* 1 Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan; [email protected] (C.-K.W.); [email protected] (Y.-H.T.); [email protected] (M.K.); [email protected] (M.E.-S.); [email protected] (Y.-B.C.); [email protected] (Y.-C.W.) 2 Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; [email protected] 3 Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt 4 School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan 5 Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan 6 Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan 7 Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan 8 Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan 9 Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan * Correspondence: [email protected] (T.-J.H.); [email protected] (F.-R.C.); Tel.: +886-7-312-1101 (ext. -
In Vitro Immunopharmacological Profiling of Ginger (Zingiber Officinale Roscoe)
Research Collection Doctoral Thesis In vitro immunopharmacological profiling of ginger (Zingiber officinale Roscoe) Author(s): Nievergelt, Andreas Publication Date: 2011 Permanent Link: https://doi.org/10.3929/ethz-a-006717482 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH Nr. 19591 In Vitro Immunopharmacological Profiling of Ginger (Zingiber officinale Roscoe) ABHANDLUNG zur Erlangung des Titels DOKTOR DER WISSENSCHAFTEN der ETH ZÜRICH vorgelegt von Andreas Nievergelt Eidg. Dipl. Apotheker, ETH Zürich geboren am 18.12.1978 von Schleitheim, SH Angenommen auf Antrag von Prof. Dr. Karl-Heinz Altmann, Referent Prof. Dr. Jürg Gertsch, Korreferent Prof. Dr. Michael Detmar, Korreferent 2011 Table of Contents Summary 6 Zusammenfassung 7 Acknowledgements 8 List of Abbreviations 9 1. Introduction 13 1.1 Ginger (Zingiber officinale) 13 1.1.1 Origin 14 1.1.2 Description 14 1.1.3 Chemical Constituents 15 1.1.4 Traditional and Modern Pharmaceutical Use of Ginger 17 1.1.5 Reported In Vitro Effects 20 1.2 Immune System and Inflammation 23 1.2.1 Innate and Adaptive Immunity 24 1.2.2 Cytokines in Inflammation 25 1.2.3 Pattern Recognition Receptors 29 1.2.4 Toll-Like Receptors 30 1.2.5 Serotonin 1A and 3 Receptors 32 1.2.6 Phospholipases A2 33 1.2.7 MAP Kinases 36 1.2.8 Fighting Inflammation, An Ongoing Task 36 1.2.9 Inflammation Assays Using Whole Blood 38 1.3 Arabinogalactan-Proteins 39 1.3.1 Origin and Biological Function of AGPs 40 1.3.2 Effects on Animals 41 1.3.3 The ‘Immunostimulation’ Theory 42 1/188 2. -
TRP Mediation
molecules Review Remedia Sternutatoria over the Centuries: TRP Mediation Lujain Aloum 1 , Eman Alefishat 1,2,3 , Janah Shaya 4 and Georg A. Petroianu 1,* 1 Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; [email protected] (L.A.); Eman.alefi[email protected] (E.A.) 2 Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates 3 Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman 11941, Jordan 4 Pre-Medicine Bridge Program, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; [email protected] * Correspondence: [email protected]; Tel.: +971-50-413-4525 Abstract: Sneezing (sternutatio) is a poorly understood polysynaptic physiologic reflex phenomenon. Sneezing has exerted a strange fascination on humans throughout history, and induced sneezing was widely used by physicians for therapeutic purposes, on the assumption that sneezing eliminates noxious factors from the body, mainly from the head. The present contribution examines the various mixtures used for inducing sneezes (remedia sternutatoria) over the centuries. The majority of the constituents of the sneeze-inducing remedies are modulators of transient receptor potential (TRP) channels. The TRP channel superfamily consists of large heterogeneous groups of channels that play numerous physiological roles such as thermosensation, chemosensation, osmosensation and mechanosensation. Sneezing is associated with the activation of the wasabi receptor, (TRPA1), typical ligand is allyl isothiocyanate and the hot chili pepper receptor, (TRPV1), typical agonist is capsaicin, in the vagal sensory nerve terminals, activated by noxious stimulants. -
Chapter 6—Clove Oil (Eugenol)
Chapter 6—Clove Oil (Eugenol) OH CH3 O Eugenol Chapter 6: Clove oil 6-2 6 Table of Contents — Clove Oil (Eugenol) 6.1 INTRODUCTION ......................................................................................................................................... 6-4 6.2 CLOVE OIL AND EUGENOL TOXICITY TO HUMANS AND LEVELS OF CONCERN ................ 6-6 6.2.1 HEALTH EFFECTS ...................................................................................................................................... 6-7 6.2.1.A Acute Effects—Sensitization ........................................................................................................... 6-7 6.2.1.B Acute Effects—Skin, Eyes and Respiratory System ........................................................................ 6-7 6.2.1.C Acute Effects—Systemic Poisoning ................................................................................................ 6-7 6.2.1.D Effects in Human Cells .................................................................................................................... 6-8 6.2.1.E Levels of Concern for Humans ........................................................................................................ 6-8 6.2.2 PESTICIDE ILLNESS REPORTS .................................................................................................................... 6-9 6.3 EUGENOL TOXICITY TO ANIMALS AND PLANTS AND LEVELS OF CONCERN .................... 6-10 6.3.1 MAMMALS ............................................................................................................................................. -
Daikenchuto (Da-Jian-Zhong-Tang) Ameliorates Intestinal Fibrosis by Activating Myofibroblast Transient Receptor Potential Ankyrin 1 Channel
Submit a Manuscript: http://www.f6publishing.com World J Gastroenterol 2018 September 21; 24(35): 4036-4053 DOI: 10.3748/wjg.v24.i35.4036 ISSN 1007-9327 (print) ISSN 2219-2840 (online) ORIGINAL ARTICLE Basic Study Daikenchuto (Da-Jian-Zhong-Tang) ameliorates intestinal fibrosis by activating myofibroblast transient receptor potential ankyrin 1 channel Keizo Hiraishi, Lin-Hai Kurahara, Miho Sumiyoshi, Yao-Peng Hu, Kaori Koga, Miki Onitsuka, Daibo Kojima, Lixia Yue, Hidetoshi Takedatsu, Yu-Wen Jian, Ryuji Inoue Keizo Hiraishi, Lin-Hai Kurahara, Miho Sumiyoshi, Yao-Peng and No. 25860571; a MEXT-Supported Program supporting research Hu, Ryuji Inoue, Department of Physiology, Graduate School of activities of female researchers; the Clinical Research Foundation; Medical Sciences, Fukuoka University, Fukuoka 8140180, Japan and the Central Research Institute of Fukuoka University, No. 151045 and No. 147104. Kaori Koga, Miki Onitsuka, Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka 8140180, Japan Institutional review board statement: The study was reviewed and approved by the Clinical Research Ethics Committee of Daibo Kojima, Department of Gastroenterological Surgery, Faculty Fukuoka University, No. 15-10-04. of Medicine, Fukuoka University, Fukuoka 8140180, Japan Institutional animal care and use committee statement: All Lixia Yue, Department of Cell Biology, University of Connecticut procedures involving animals were reviewed and approved by Health Center, Farmington, CT 06030, United States the Animal experiment ethics committee of Fukuoka University, No. 1709099; and the Genetic Modification Experiment Safety Hidetoshi Takedatsu, Department of Gastroenterology and Commission of Fukuoka University approved experiments on Medicine, Faculty of Medicine, Fukuoka University, Fukuoka genetically modified animals, No. 167. 8140180, Japan Conflict-of-interest statement: The authors declare that they Yu-Wen Jian, College of Letters and Science, University of have no competing interests. -
6-Shogaol Induces Apoptosis in Human Leukemia Cells Through A
Liu et al. Molecular Cancer 2013, 12:135 http://www.molecular-cancer.com/content/12/1/135 RESEARCH Open Access 6-Shogaol induces apoptosis in human leukemia cells through a process involving caspase-mediated cleavage of eIF2α Qun Liu1†, Yong-Bo Peng1†, Ping Zhou1, Lian-Wen Qi1, Mu Zhang1, Ning Gao2*, E-Hu Liu1* and Ping Li1* Abstract Background: 6-Shogaol is a promising antitumor agent isolated from dietary ginger (Zingiber officinale). However, little is known about the efficacy of 6-shogaol on leukemia cells. Here we investigated the underlying mechanism of 6-shogaol induced apoptosis in human leukemia cells in vitro and in vivo. Methods: Three leukemia cell lines and primary leukemia cells were used to investigate the apoptosis effect of 6-shogaol. A shotgun approach based on label-free proteome with LC-CHIP Q-TOF MS/MS was employed to identify the cellular targets of 6-shogaol and the differentially expressed proteins were analyzed by bioinformatics protocols. Results: The present study indicated that 6-shogaol selectively induced apoptosis in transformed and primary leukemia cells but not in normal cells. Eukaryotic translation initiation factor 2 alpha (eIF2α), a key regulator in apoptosis signaling pathway, was significantly affected in both Jurkat and U937 proteome profiles. The docking results suggested that 6-shogaol might bind well to eIF2α at Ser51 of the N-terminal domain. Immunoblotting data indicated that 6-shogaol induced apoptosis through a process involving dephosphorylation of eIF2α and caspase activation–dependent cleavage of eIF2α. Furthermore, 6-shogaol markedly inhibited tumor growth and induced apoptosis in U937 xenograft mouse model. -
Understanding and Managing the Transition Using Essential Oils Vs
MENOPAUSE: UNDERSTANDING AND MANAGING THE TRANSITION USING ESSENTIAL OILS VS. TRADITIONAL ALLOPATHIC MEDICINE by Melissa A. Clanton A thesis submitted in partial fulfillment of the requirements for the Diploma of Aromatherapy 401 Australasian College of Health Sciences Instructors: Dorene Petersen, Erica Petersen, E. Joy Bowles, Marcangelo Puccio, Janet Bennion, Judika Illes, and Julie Gatti TABLE OF CONTENTS List of Tables and Figures............................................................................ iv Acknowledgments........................................................................................ v Introduction.................................................................................................. 1 Chapter 1 – Female Reproduction 1a – The Female Reproductive System............................................. 4 1b - The Female Hormones.............................................................. 9 1c – The Menstrual Cycle and Pregnancy....................................... 12 Chapter 2 – Physiology of Menopause 2a – What is Menopause? .............................................................. 16 2b - Physiological Changes of Menopause ..................................... 20 2c – Symptoms of Menopause ....................................................... 23 Chapter 3 – Allopathic Approaches To Menopausal Symptoms 3a –Diagnosis and Common Medical Treatments........................... 27 3b – Side Effects and Risks of Hormone Replacement Therapy ...... 32 3c – Retail Cost of Common Hormone Replacement -
Optimization of Extraction Conditions for the 6-Shogaol-Rich Extract from Ginger (Zingiber Officinale Roscoe) Research Note Seon Ok1,2 and Woo-Sik Jeong1†
Prev Nutr Food Sci Vol 17, p 166~171 (2012) http://dx.doi.org/10.3746/pnf.2012.17.2.166 Optimization of Extraction Conditions for the 6-Shogaol-rich Extract from Ginger (Zingiber officinale Roscoe) Research Note Seon Ok1,2 and Woo-Sik Jeong1† 1Department of Food and Life Sciences, College of Biomedical Science and Engineering, Inje University, Gyeongnam 621-749, Korea 2Department of Pharmacy, Kyungsung University, Busan 808-736, Korea Abstract 6-Shogaol, a dehydrated form of 6-gingerol, is a minor component in ginger (Zingiber officinale Roscoe) and has recently been reported to have more potent bioactivity than 6-gingerol. Based on the thermal instability of gingerols (their dehydration to corresponding shogaols at high temperature), we aimed to develop an optimal proc- ess to maximize the 6-shogaol content during ginger extraction by modulating temperature and pH. Fresh gingers were dried under various conditions: freeze-, room temperature (RT)- or convection oven-drying at 60 or 80oC, and extracted by 95% ethanol at RT, 60 or 80oC. The content of 6-shogaol was augmented by increasing both drying and extraction temperatures. The highest production of 6-shogaol was achieved at 80oC extraction after drying at the same temperature and the content of 6-shogaol was about 7-fold compared to the lowest producing process by freezing and extraction at RT. Adjustment of pH (pH 1, 4, 7 and 10) for the 6-shogaol-richest extract (dried and extracted both at 80oC) also affected the chemical composition of ginger and the yield of 6-shogaol was maximized at the most acidic condition of pH 1. -
The Effects of Eugenol, Trans-Cinnamaldehyde, Citronellol
molecules Article The Effects of Eugenol, Trans-Cinnamaldehyde, Citronellol, and Terpineol on Escherichia coli Biofilm Control as Assessed by Culture-Dependent and -Independent Methods Magdalena A. Olszewska 1,* , Astrid G˛edas 1 and Manuel Simões 2,* 1 Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszy´nski1, 10-726 Olsztyn, Poland; [email protected] 2 LEPABE–Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal * Correspondence: [email protected] (M.A.O.); [email protected] (M.S.); Tel.: +48-89-5233729 (M.A.O.); +351-22508-1654 (M.S.); Fax: +351-22508-1449 (M.S.) Received: 14 May 2020; Accepted: 5 June 2020; Published: 6 June 2020 Abstract: Bacterial biofilms contribute to problems with preserving food hygiene, jeopardizing any conventional intervention method used by the food industry. Hence, the approach of using essential oil (EO) compounds effective in biofilm control has considerable merit and deserves in-depth research. In this study, the effect of selected EO compounds (eugenol, trans-cinnamaldehyde, citronellol, and terpineol) was assessed on Escherichia coli biofilm control by plate count, resazurin assay, and Syto® 9/PI (-/propidium iodide) staining coupled with flow cytometry (FCM) and confocal laser scanning microscopy (CLSM). The selected EO compounds effectively inhibited the growth of planktonic E. coli at low concentrations of 3–5 mM, revealing a high antimicrobial activity. EO compounds markedly interfered with biofilms too, with trans-cinnamaldehyde causing the most prominent effects. Its antibiofilm activity was manifested by a high reduction of cell metabolic activity (>60%) and almost complete reduction in biofilm cell culturability. -
Phase II Study of the Effects of Ginger Root Extract on Eicosanoids in Colon Mucosa in People at Normal Risk for Colorectal Cancer
Published OnlineFirst October 11, 2011; DOI: 10.1158/1940-6207.CAPR-11-0224 Cancer Prevention Research Article Research Phase II Study of the Effects of Ginger Root Extract on Eicosanoids in Colon Mucosa in People at Normal Risk for Colorectal Cancer Suzanna M. Zick1, D. Kim Turgeon3, Shaiju K. Vareed6, Mack T. Ruffin1, Amie J. Litzinger1, Benjamin D. Wright1, Sara Alrawi1, Daniel P. Normolle2, Zora Djuric1, and Dean E. Brenner3,4,5 Abstract Inhibitors of COX indicate that upregulation of inflammatory eicosanoids produced by COX, and in particular prostaglandin E2 (PGE2), are early events in the development of colorectal cancer (CRC). Ginger has shown downregulation of COX in vitro and decreased incidence/multiplicity of adenomas in rats. This study was conducted to determine if 2.0 g/d of ginger could decrease the levels of PGE2, 13-hydroxy- octadecadienoic acids, and 5-, 12-, and 15-hydroxyeicosatetraenoic acid (5-, 12-, and 15-HETE), in the colon mucosa of healthy volunteers. To investigate this aim, we randomized 30 subjects to 2.0 g/d ginger or placebo for 28 days. Flexible sigmoidoscopy at baseline and day 28 was used to obtain colon biopsies. A liquid chromatography mass spectrometry method was used to determine eicosanoid levels in the biopsies, and levels were expressed per protein or per free arachidonic acid. There were no significant differences in mean percent change between baseline and day 28 for any of the eicosanoids, when normalized to protein. There was a significant decrease in mean percent change in PGE2 (P ¼ 0.05) and 5-HETE (P ¼ 0.04), and a trend toward significant decreases in 12-HETE (P ¼ 0.09) and 15-HETE (P ¼ 0.06) normalized to free arachidonic acid. -
The Synthesis of Vanillin
The synthesis of vanillin - learning about aspects of sustainable chemistry by comparing different syntheses La síntesis de la vainilla - aprendiendo sobre aspectos de química sostenible mediante la comparación de diferentes síntesis NICOLE GARNER1, ANTJE SIOL2 , INGO EILKS1 1 Institute for Science Education, University of Bremen, 2 Center for Environmental Research and Sustainable Technology, University of Bremen, Germany, [email protected] Abstract • Prevention This paper discusses one way of integrating the aspects of sustainable chemistry into • Atom Economy secondary and undergraduate chemistry education. Two different synthesis reactions • Less Hazardous Chemical Syntheses for vanillin are presented, which both use isoeugenol as the starting reagent. Whereas • Designing Safer Chemicals the first synthesis is performed using conventional chemistry techniques, second • Safer Solvents and Auxiliaries approach employs strategies inspired by sustainable chemistry. The discussion • Design for Energy Efficiency covers how comparison of these two experiments can aid in learning about selected • Use of Renewable Feedstocks sustainable chemistry principles. • Reduce Derivatives Key words: education for sustainable development, chemistry education, green • Catalysis chemistry, vanillin • Design for Degradation • Real-time Analysis for Pollution Prevention Resumen • Inherently Safer Chemistry for Accident Prevention Este artículo analiza una manera de integrar los aspectos de la química sostenible en la escuela secundaria y en bachillerato. -
New Natural Agonists of the Transient Receptor Potential Ankyrin 1 (TRPA1
www.nature.com/scientificreports OPEN New natural agonists of the transient receptor potential Ankyrin 1 (TRPA1) channel Coline Legrand, Jenny Meylan Merlini, Carole de Senarclens‑Bezençon & Stéphanie Michlig* The transient receptor potential (TRP) channels family are cationic channels involved in various physiological processes as pain, infammation, metabolism, swallowing function, gut motility, thermoregulation or adipogenesis. In the oral cavity, TRP channels are involved in chemesthesis, the sensory chemical transduction of spicy ingredients. Among them, TRPA1 is activated by natural molecules producing pungent, tingling or irritating sensations during their consumption. TRPA1 can be activated by diferent chemicals found in plants or spices such as the electrophiles isothiocyanates, thiosulfnates or unsaturated aldehydes. TRPA1 has been as well associated to various physiological mechanisms like gut motility, infammation or pain. Cinnamaldehyde, its well known potent agonist from cinnamon, is reported to impact metabolism and exert anti-obesity and anti-hyperglycemic efects. Recently, a structurally similar molecule to cinnamaldehyde, cuminaldehyde was shown to possess anti-obesity and anti-hyperglycemic efect as well. We hypothesized that both cinnamaldehyde and cuminaldehyde might exert this metabolic efects through TRPA1 activation and evaluated the impact of cuminaldehyde on TRPA1. The results presented here show that cuminaldehyde activates TRPA1 as well. Additionally, a new natural agonist of TRPA1, tiglic aldehyde, was identifed