6-Shogaol Induces Apoptosis in Human Leukemia Cells Through A

Total Page:16

File Type:pdf, Size:1020Kb

6-Shogaol Induces Apoptosis in Human Leukemia Cells Through A Liu et al. Molecular Cancer 2013, 12:135 http://www.molecular-cancer.com/content/12/1/135 RESEARCH Open Access 6-Shogaol induces apoptosis in human leukemia cells through a process involving caspase-mediated cleavage of eIF2α Qun Liu1†, Yong-Bo Peng1†, Ping Zhou1, Lian-Wen Qi1, Mu Zhang1, Ning Gao2*, E-Hu Liu1* and Ping Li1* Abstract Background: 6-Shogaol is a promising antitumor agent isolated from dietary ginger (Zingiber officinale). However, little is known about the efficacy of 6-shogaol on leukemia cells. Here we investigated the underlying mechanism of 6-shogaol induced apoptosis in human leukemia cells in vitro and in vivo. Methods: Three leukemia cell lines and primary leukemia cells were used to investigate the apoptosis effect of 6-shogaol. A shotgun approach based on label-free proteome with LC-CHIP Q-TOF MS/MS was employed to identify the cellular targets of 6-shogaol and the differentially expressed proteins were analyzed by bioinformatics protocols. Results: The present study indicated that 6-shogaol selectively induced apoptosis in transformed and primary leukemia cells but not in normal cells. Eukaryotic translation initiation factor 2 alpha (eIF2α), a key regulator in apoptosis signaling pathway, was significantly affected in both Jurkat and U937 proteome profiles. The docking results suggested that 6-shogaol might bind well to eIF2α at Ser51 of the N-terminal domain. Immunoblotting data indicated that 6-shogaol induced apoptosis through a process involving dephosphorylation of eIF2α and caspase activation–dependent cleavage of eIF2α. Furthermore, 6-shogaol markedly inhibited tumor growth and induced apoptosis in U937 xenograft mouse model. Conclusion: The potent anti-leukemia activity of 6-shogaol found both in vitro and in vivo in our study make this compound a potential anti-tumor agent for hematologic malignancies. Keywords: 6-shogaol, Leukemia, Apoptosis, Shotgun proteome, eIF2α Background apoptosis in a variety of cancer cells including human lung In recent years, the use of natural dietary agents has be- cancer, colorectal carcinoma, hepatocarcinoma, ovarian come widely accepted as a realistic option for the treatment cancer and breast cancer cells [5-10]. of malignant cancers because of their cost-effectiveness and Previous studies on the role of signaling cascades in 6- wide safety margin. 6-Shogaol, a major pungent ingredient shogaol-related lethality have primarily focused on reactive in ginger (Zingiber officinale Roscoe, Zingiberaceae), has oxygen species (ROS) production, activation of caspase, attracted great attention due to its considerable pharma- GADD 153 expression, tubulin polymerization, AKT/ cologic effects including anti-cancer, anti-inflammatory, mTOR and matrix metalloproteinase 9 (MMP-9) expres- antioxidant, as well as antiemetic properties [1-4]. Eviden- sion [5,6,9,11]. The compound was also reported to inhibit ces have revealed that 6-shogaol could induce cell death/ breast cancer cell invasion by reducing MMP-9 expression viatargetingtheNF-kB activation cascade [9] or by inhib- * Correspondence: [email protected]; [email protected]; iting invade podium formation [12]. Our group and Gan [email protected] et al. have found that 6-shogaol induced G2/M cell cycle † Equal contributors arrest and apoptosis characterized by caspase 3 and PARP 1State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China cleavage in HeLa and HCT116 cells [3,13]. Despite enor- 2Department of Pharmacognosy, College of Pharmacy, 3rd Military Medical mous efforts performed to investigate the anticancer University, Chongqing 400038, China © 2013 Liu et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Liu et al. Molecular Cancer 2013, 12:135 Page 2 of 12 http://www.molecular-cancer.com/content/12/1/135 activities of 6-shogaol, to date, the study on induction of To determine whether these events were restricted to apoptosis induced by 6-shogaol in human leukemia cells myeloid leukemia cells, parallel studies were performed has not yet been explored, nor have the relationships in other leukemia cell lines including U937 and HL-60 between 6-shogaol-mediated anti-leukemic activity and cell leukemia cells. These cells exhibited apoptotic effects of 6- signaling cascades been examined in depth. shogaol similar to those observed in Jurkat cells (Figure 1d). Cell apoptosis involves two distinct pathways, the death Also, U937 and HL-60 cells caused comparable degrees of receptor-initiated extrinsic pathway and the mitochondria- caspase-7 and caspase-3 activation and PARP degradation mediated intrinsic pathway [14,15]. Recent studies point to (Figure 1e). endoplasmic reticulum (ER) as a third subcellular compart- To determine whether 6-shogaol could also trigger ment implicated in apoptotic execution [16,17]. Disruption apoptosis in primary human leukemia cells, primary of any function of ER causes ER stress and activates a leukemia cells isolated from 7 leukemia patients were cytoprotective signaling cascade called unfolded protein treated without or with 10 and 20 μM 6-shogaol for response (UPR) [18]. Different stimuli signal through 24 h, after which apoptosis were determined by Annexin several protein kinases to up-regulate the protein folding V/PI staining and flow cytometry. Exposure of cells to 6- capacity of the ER through UPR induces the expression of shogaol resulted in pronounced increase in apoptosis in ER chaperones such as GRP78/BiP [19]. Nowadays, the primary leukemia peripheral blood mononuclear cells proteomic platform represents a powerful tool for profiling (Figure 1f). In contract, the 6-shogaol regimen had no the comprehensive protein expression and investigation of or little effect on apoptosis in normal bone marrow the apoptotic mechanism of drugs. In particular the shot- mononuclear cells (Figure 1g). Together, these findings gun approach by label-free LC-CHIP Q-TOF MS/MS indicate that 6-shogaol selectively kills transformed allows the qualitative and quantitative analysis of complex and primary human leukemia cells but not normal samples. hematopoietic cells. In the present study, we examined the apoptotic effects of 6-shogaol on three different leukemia cell lines Proteins alternation of leukemia cells in response to and primary leukemia patients cells. A shotgun proteo- 6-shogaol treatment by LC-CHIP Q-TOF MS/MS mics strategy based on LC-CHIP Q-TOF MS/MS was To get insights into the mechanism of apoptosis induced used to identify and quantify the differentially-expressed by 6-shogaol, an integrated proteomic-bioinformatics proteins of control and 6-shogaol-treated leukemia cells. platform was used to investigate the global protein Our results showed that cleavage of eIF2α and phospho- profiles of control and 6-shogaol-treated leukemia cells. eIF2α by caspase activation may contribute to 6-shogaol- In order to highlight the main proteome alterations in mediated cell death in human leukemia cells. Our in vivo leukemia cells in response to 6-shogaol exposure, we results indicate that induction of apoptosis may contribute generated protein expression profiles of two cell lines to 6-shogaol-mediated inhibitory effects on tumor growth (Jurkat and U937) by a label-free shotgun proteomic of U937 xenograft mouse model. These findings provide a approach after 12 h treatment with vehicle control (0.1% novel mechanistic basis for 6-shogaol as a leukemia treat- DMSO) or 15 μM 6-shogaol. The average peptide spec- ment strategy. tral intensity was used as a standard to normalize and compare the relative protein abundance in control and Results 6-shogaol treated cells [20,21]. More than 800 proteins 6-Shogaol potently induced apoptosis in transformed and were identified in our experiments. The identification of primary human leukemia cells, but not in normal bone proteins with remarkable differences (up- or down- marrow mononuclear cells regulated over 2.0-fold) in Jurkat and U937 cells were Flow cytometry analysis revealed that treating Jurkat shown in Additional file 1: Table S1 and Additional file cells with 2.5 and 5 μM 6-shogaol for 24 h resulted in a 2: Table S2. The regulated proteins were listed by their moderate increase in apoptosis. These events became protein name, accession number of SWISSPROT, abbre- apparent at 10 μM and very extensive at 15 μM concen- viations, MW/pI and fold change. trations (Figure 1a). A time-course study of cells exposed In the present study, all significantly modulated pro- to 15 μM 6-shogaol revealed a moderate increase in teins were functionally categorized using the PANTHER apoptosis as early as 6 h after drug exposure. These Classification System (http://pantherdb.org) (As indica- events became apparent after 12 h of drug exposure and ted in Figure 2a and 2b), the majority of differentially reached near-maximal levels after 24 h of drug exposure expressed proteins identified were in the categories of (Figure 1b). Consistent with these findings, the same 6- binding, catalytic activity, structural molecule activity, shogaol concentrations and exposure intervals caused enzyme regulator activity and transcription regulator cleavage/activation of caspase-3 and caspase-7, as well as activity in both Jurkat and U937 cells. We also note that PARP degradation (Figure 1c). some differentially expressed proteins in the categories Liu et al. Molecular Cancer 2013, 12:135 Page 3 of 12 http://www.molecular-cancer.com/content/12/1/135 Figure 1 6-Shogaol induces apoptosis in transformed and primary leukemia cells. Cells apoptosis was determined using Annexin V/PI staining by flow cytometry. The values obtained from Annexin V/PI represent the mean±SD for three separate experiments. The difference were significant at *p < 0.05, **p < 0.01. (a) Jurkat cells were treated without or with various concentrations of 6-shogaol (6S) for 24 h. (b) Jurkat cells were treated without or with 15 μM for different time intervals as indicated.
Recommended publications
  • 6-Paradol and 6-Shogaol, the Pungent Compounds of Ginger
    International Journal of Molecular Sciences Article 6-Paradol and 6-Shogaol, the Pungent Compounds of Ginger, Promote Glucose Utilization in Adipocytes and Myotubes, and 6-Paradol Reduces Blood Glucose in High-Fat Diet-Fed Mice Chien-Kei Wei 1,†, Yi-Hong Tsai 1,†, Michal Korinek 1, Pei-Hsuan Hung 2, Mohamed El-Shazly 1,3, Yuan-Bin Cheng 1, Yang-Chang Wu 1,4,5,6, Tusty-Jiuan Hsieh 2,7,8,9,* and Fang-Rong Chang 1,7,9,* 1 Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan; [email protected] (C.-K.W.); [email protected] (Y.-H.T.); [email protected] (M.K.); [email protected] (M.E.-S.); [email protected] (Y.-B.C.); [email protected] (Y.-C.W.) 2 Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; [email protected] 3 Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt 4 School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan 5 Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan 6 Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan 7 Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan 8 Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan 9 Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan * Correspondence: [email protected] (T.-J.H.); [email protected] (F.-R.C.); Tel.: +886-7-312-1101 (ext.
    [Show full text]
  • In Vitro Immunopharmacological Profiling of Ginger (Zingiber Officinale Roscoe)
    Research Collection Doctoral Thesis In vitro immunopharmacological profiling of ginger (Zingiber officinale Roscoe) Author(s): Nievergelt, Andreas Publication Date: 2011 Permanent Link: https://doi.org/10.3929/ethz-a-006717482 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH Nr. 19591 In Vitro Immunopharmacological Profiling of Ginger (Zingiber officinale Roscoe) ABHANDLUNG zur Erlangung des Titels DOKTOR DER WISSENSCHAFTEN der ETH ZÜRICH vorgelegt von Andreas Nievergelt Eidg. Dipl. Apotheker, ETH Zürich geboren am 18.12.1978 von Schleitheim, SH Angenommen auf Antrag von Prof. Dr. Karl-Heinz Altmann, Referent Prof. Dr. Jürg Gertsch, Korreferent Prof. Dr. Michael Detmar, Korreferent 2011 Table of Contents Summary 6 Zusammenfassung 7 Acknowledgements 8 List of Abbreviations 9 1. Introduction 13 1.1 Ginger (Zingiber officinale) 13 1.1.1 Origin 14 1.1.2 Description 14 1.1.3 Chemical Constituents 15 1.1.4 Traditional and Modern Pharmaceutical Use of Ginger 17 1.1.5 Reported In Vitro Effects 20 1.2 Immune System and Inflammation 23 1.2.1 Innate and Adaptive Immunity 24 1.2.2 Cytokines in Inflammation 25 1.2.3 Pattern Recognition Receptors 29 1.2.4 Toll-Like Receptors 30 1.2.5 Serotonin 1A and 3 Receptors 32 1.2.6 Phospholipases A2 33 1.2.7 MAP Kinases 36 1.2.8 Fighting Inflammation, An Ongoing Task 36 1.2.9 Inflammation Assays Using Whole Blood 38 1.3 Arabinogalactan-Proteins 39 1.3.1 Origin and Biological Function of AGPs 40 1.3.2 Effects on Animals 41 1.3.3 The ‘Immunostimulation’ Theory 42 1/188 2.
    [Show full text]
  • TRP Mediation
    molecules Review Remedia Sternutatoria over the Centuries: TRP Mediation Lujain Aloum 1 , Eman Alefishat 1,2,3 , Janah Shaya 4 and Georg A. Petroianu 1,* 1 Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; [email protected] (L.A.); Eman.alefi[email protected] (E.A.) 2 Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates 3 Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman 11941, Jordan 4 Pre-Medicine Bridge Program, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; [email protected] * Correspondence: [email protected]; Tel.: +971-50-413-4525 Abstract: Sneezing (sternutatio) is a poorly understood polysynaptic physiologic reflex phenomenon. Sneezing has exerted a strange fascination on humans throughout history, and induced sneezing was widely used by physicians for therapeutic purposes, on the assumption that sneezing eliminates noxious factors from the body, mainly from the head. The present contribution examines the various mixtures used for inducing sneezes (remedia sternutatoria) over the centuries. The majority of the constituents of the sneeze-inducing remedies are modulators of transient receptor potential (TRP) channels. The TRP channel superfamily consists of large heterogeneous groups of channels that play numerous physiological roles such as thermosensation, chemosensation, osmosensation and mechanosensation. Sneezing is associated with the activation of the wasabi receptor, (TRPA1), typical ligand is allyl isothiocyanate and the hot chili pepper receptor, (TRPV1), typical agonist is capsaicin, in the vagal sensory nerve terminals, activated by noxious stimulants.
    [Show full text]
  • Daikenchuto (Da-Jian-Zhong-Tang) Ameliorates Intestinal Fibrosis by Activating Myofibroblast Transient Receptor Potential Ankyrin 1 Channel
    Submit a Manuscript: http://www.f6publishing.com World J Gastroenterol 2018 September 21; 24(35): 4036-4053 DOI: 10.3748/wjg.v24.i35.4036 ISSN 1007-9327 (print) ISSN 2219-2840 (online) ORIGINAL ARTICLE Basic Study Daikenchuto (Da-Jian-Zhong-Tang) ameliorates intestinal fibrosis by activating myofibroblast transient receptor potential ankyrin 1 channel Keizo Hiraishi, Lin-Hai Kurahara, Miho Sumiyoshi, Yao-Peng Hu, Kaori Koga, Miki Onitsuka, Daibo Kojima, Lixia Yue, Hidetoshi Takedatsu, Yu-Wen Jian, Ryuji Inoue Keizo Hiraishi, Lin-Hai Kurahara, Miho Sumiyoshi, Yao-Peng and No. 25860571; a MEXT-Supported Program supporting research Hu, Ryuji Inoue, Department of Physiology, Graduate School of activities of female researchers; the Clinical Research Foundation; Medical Sciences, Fukuoka University, Fukuoka 8140180, Japan and the Central Research Institute of Fukuoka University, No. 151045 and No. 147104. Kaori Koga, Miki Onitsuka, Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka 8140180, Japan Institutional review board statement: The study was reviewed and approved by the Clinical Research Ethics Committee of Daibo Kojima, Department of Gastroenterological Surgery, Faculty Fukuoka University, No. 15-10-04. of Medicine, Fukuoka University, Fukuoka 8140180, Japan Institutional animal care and use committee statement: All Lixia Yue, Department of Cell Biology, University of Connecticut procedures involving animals were reviewed and approved by Health Center, Farmington, CT 06030, United States the Animal experiment ethics committee of Fukuoka University, No. 1709099; and the Genetic Modification Experiment Safety Hidetoshi Takedatsu, Department of Gastroenterology and Commission of Fukuoka University approved experiments on Medicine, Faculty of Medicine, Fukuoka University, Fukuoka genetically modified animals, No. 167. 8140180, Japan Conflict-of-interest statement: The authors declare that they Yu-Wen Jian, College of Letters and Science, University of have no competing interests.
    [Show full text]
  • Optimization of Extraction Conditions for the 6-Shogaol-Rich Extract from Ginger (Zingiber Officinale Roscoe) Research Note Seon Ok1,2 and Woo-Sik Jeong1†
    Prev Nutr Food Sci Vol 17, p 166~171 (2012) http://dx.doi.org/10.3746/pnf.2012.17.2.166 Optimization of Extraction Conditions for the 6-Shogaol-rich Extract from Ginger (Zingiber officinale Roscoe) Research Note Seon Ok1,2 and Woo-Sik Jeong1† 1Department of Food and Life Sciences, College of Biomedical Science and Engineering, Inje University, Gyeongnam 621-749, Korea 2Department of Pharmacy, Kyungsung University, Busan 808-736, Korea Abstract 6-Shogaol, a dehydrated form of 6-gingerol, is a minor component in ginger (Zingiber officinale Roscoe) and has recently been reported to have more potent bioactivity than 6-gingerol. Based on the thermal instability of gingerols (their dehydration to corresponding shogaols at high temperature), we aimed to develop an optimal proc- ess to maximize the 6-shogaol content during ginger extraction by modulating temperature and pH. Fresh gingers were dried under various conditions: freeze-, room temperature (RT)- or convection oven-drying at 60 or 80oC, and extracted by 95% ethanol at RT, 60 or 80oC. The content of 6-shogaol was augmented by increasing both drying and extraction temperatures. The highest production of 6-shogaol was achieved at 80oC extraction after drying at the same temperature and the content of 6-shogaol was about 7-fold compared to the lowest producing process by freezing and extraction at RT. Adjustment of pH (pH 1, 4, 7 and 10) for the 6-shogaol-richest extract (dried and extracted both at 80oC) also affected the chemical composition of ginger and the yield of 6-shogaol was maximized at the most acidic condition of pH 1.
    [Show full text]
  • Phase II Study of the Effects of Ginger Root Extract on Eicosanoids in Colon Mucosa in People at Normal Risk for Colorectal Cancer
    Published OnlineFirst October 11, 2011; DOI: 10.1158/1940-6207.CAPR-11-0224 Cancer Prevention Research Article Research Phase II Study of the Effects of Ginger Root Extract on Eicosanoids in Colon Mucosa in People at Normal Risk for Colorectal Cancer Suzanna M. Zick1, D. Kim Turgeon3, Shaiju K. Vareed6, Mack T. Ruffin1, Amie J. Litzinger1, Benjamin D. Wright1, Sara Alrawi1, Daniel P. Normolle2, Zora Djuric1, and Dean E. Brenner3,4,5 Abstract Inhibitors of COX indicate that upregulation of inflammatory eicosanoids produced by COX, and in particular prostaglandin E2 (PGE2), are early events in the development of colorectal cancer (CRC). Ginger has shown downregulation of COX in vitro and decreased incidence/multiplicity of adenomas in rats. This study was conducted to determine if 2.0 g/d of ginger could decrease the levels of PGE2, 13-hydroxy- octadecadienoic acids, and 5-, 12-, and 15-hydroxyeicosatetraenoic acid (5-, 12-, and 15-HETE), in the colon mucosa of healthy volunteers. To investigate this aim, we randomized 30 subjects to 2.0 g/d ginger or placebo for 28 days. Flexible sigmoidoscopy at baseline and day 28 was used to obtain colon biopsies. A liquid chromatography mass spectrometry method was used to determine eicosanoid levels in the biopsies, and levels were expressed per protein or per free arachidonic acid. There were no significant differences in mean percent change between baseline and day 28 for any of the eicosanoids, when normalized to protein. There was a significant decrease in mean percent change in PGE2 (P ¼ 0.05) and 5-HETE (P ¼ 0.04), and a trend toward significant decreases in 12-HETE (P ¼ 0.09) and 15-HETE (P ¼ 0.06) normalized to free arachidonic acid.
    [Show full text]
  • New Natural Agonists of the Transient Receptor Potential Ankyrin 1 (TRPA1
    www.nature.com/scientificreports OPEN New natural agonists of the transient receptor potential Ankyrin 1 (TRPA1) channel Coline Legrand, Jenny Meylan Merlini, Carole de Senarclens‑Bezençon & Stéphanie Michlig* The transient receptor potential (TRP) channels family are cationic channels involved in various physiological processes as pain, infammation, metabolism, swallowing function, gut motility, thermoregulation or adipogenesis. In the oral cavity, TRP channels are involved in chemesthesis, the sensory chemical transduction of spicy ingredients. Among them, TRPA1 is activated by natural molecules producing pungent, tingling or irritating sensations during their consumption. TRPA1 can be activated by diferent chemicals found in plants or spices such as the electrophiles isothiocyanates, thiosulfnates or unsaturated aldehydes. TRPA1 has been as well associated to various physiological mechanisms like gut motility, infammation or pain. Cinnamaldehyde, its well known potent agonist from cinnamon, is reported to impact metabolism and exert anti-obesity and anti-hyperglycemic efects. Recently, a structurally similar molecule to cinnamaldehyde, cuminaldehyde was shown to possess anti-obesity and anti-hyperglycemic efect as well. We hypothesized that both cinnamaldehyde and cuminaldehyde might exert this metabolic efects through TRPA1 activation and evaluated the impact of cuminaldehyde on TRPA1. The results presented here show that cuminaldehyde activates TRPA1 as well. Additionally, a new natural agonist of TRPA1, tiglic aldehyde, was identifed
    [Show full text]
  • Antimicrobial Property and Phytochemical Study of Ginger Found in Local Area of Punjab, Pakistan
    Riaz et al., International Current Pharmaceutical Journal, June 2015, 4(7): 405-409 International Current http://www.icpjonline.com/documents/Vol4Issue7/03.pdf Pharmaceutical Journal ORIGINAL RESEARCH ARTICLE OPEN ACCESS Antimicrobial property and phytochemical study of ginger found in local area of Punjab, Pakistan Humayun Riaz1, Almas Begum2, Syed Atif Raza3, Zia Mohy-Ud-Din Khan1, *Hamad Yousaf1 and Ayesha Tariq4 1Rashid Latif College of Pharmacy Lahore, Pakistan 2Rashid Latif Medical College Lahore, Pakistan 3University College of Pharmacy, Punjab University, Lahore, Pakistan 4Faculity of Pharmacy, University of Central Punjab, Lahore Pakistan ABSTRACT The aim of study is to identify the antimicrobial property of ginger. Phytochemical screening of chloroform plant extract showed presence of different chemicals. In this study we used Cultures of E. Coli, Bacillus subtilis, Staphylococcus aureus and Streptococcus faecalis to identify the antimicrobial strength. Effectiveness of ginger against different conditions attributed to its different constitu- ents (volatile oils, shogaols, Gingerols and diarylheptanoids) that show their therapeutic efficacy by modulating the genetic or metabolic activities of our body. In this study, we performed phytochemical evaluation and antimicrobial assay of ginger root extract which were available in our local farms of Lahore. Ginger possesses a noticeable antimicrobial activity which was confirmed by checking the susceptibility of different strains of bacteria and fungus by measuring the zone of inhibition. In the light of several socioeconomic factors of Pakistan mainly poverty and poor hygienic condition, present study encourages the use of spices as alternative or supplementary medicine to reduce the burden of high cost, side effects and progressively increasing drug resistance of pathogens.
    [Show full text]
  • Dietary Compounds for Targeting Prostate Cancer
    Review Dietary Compounds for Targeting Prostate Cancer Seungjin Noh 1, Eunseok Choi 1, Cho-Hyun Hwang 1, Ji Hoon Jung 2, Sung-Hoon Kim 2 and Bonglee Kim 1,2,* 1 College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea; [email protected] (S.N.); [email protected] (E.C.); [email protected] (C.-H.H.) 2 Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02453, Korea; [email protected] (J.H.J.); [email protected] (S.-H.K.) * Correspondence: [email protected]; Tel.: +82-2-961-9217 Received: 10 August 2019; Accepted: 17 September 2019; Published: 8 October 2019 Abstract: Prostate cancer is the third most common cancer worldwide, and the burden of the disease is increased. Although several chemotherapies have been used, concerns about the side effects have been raised, and development of alternative therapy is inevitable. The purpose of this study is to prove the efficacy of dietary substances as a source of anti-tumor drugs by identifying their carcinostatic activities in specific pathological mechanisms. According to numerous studies, dietary substances were effective through following five mechanisms; apoptosis, anti-angiogenesis, anti- metastasis, microRNA (miRNA) regulation, and anti-multi-drug-resistance (MDR). About seventy dietary substances showed the anti-prostate cancer activities. Most of the substances induced the apoptosis, especially acting on the mechanism of caspase and poly adenosine diphosphate ribose polymerase (PARP) cleavage. These findings support that dietary compounds have potential to be used as anticancer agents as both food supplements and direct clinical drugs.
    [Show full text]
  • The Anti-Leukemic Activity of Natural Compounds
    molecules Review The Anti-Leukemic Activity of Natural Compounds Coralia Cotoraci 1,*,†, Alina Ciceu 2,† , Alciona Sasu 1,†, Eftimie Miutescu 3,† and Anca Hermenean 2,4 1 Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania; [email protected] 2 “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania; [email protected] (A.C.); [email protected] (A.H.) 3 Department of Gastroenterology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania; [email protected] 4 Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: The use of biologically active compounds has become a realistic option for the treatment of malignant tumors due to their cost-effectiveness and safety. In this review, we aimed to highlight the main natural biocompounds that target leukemic cells, assessed by in vitro and in vivo experiments or clinical studies, in order to explore their therapeutic potential in the treatment of leukemia: acute myeloid leukemia (AML), chronic myeloid leukemia (CML), acute lymphocytic leukemia (ALL), and chronic lymphocytic leukemia (CLL). It provides a basis for researchers and hematologists in improving basic and clinical research on the development of new alternative therapies in the fight against leukemia, a harmful hematological cancer and the leading cause of death among patients. Keywords: antioxidants; flavonoids; anti-leukemic; myeloid leukemia; lymphoblastic leukemia Citation: Cotoraci, C.; Ciceu, A.; Sasu, A.; Miutescu, E.; Hermenean, A.
    [Show full text]
  • Gingerol Aspirinate As a Novel Chemopreventive
    www.nature.com/scientificreports OPEN Gastroprotective [6]-Gingerol Aspirinate as a Novel Chemopreventive Prodrug of Received: 06 June 2016 Accepted: 02 December 2016 Aspirin for Colon Cancer Published: 09 January 2017 Yingdong Zhu1,*, Fang Wang1,2,*, Yantao Zhao1, Pei Wang1 & Shengmin Sang1 A growing body of research suggests daily low-dose aspirin (ASA) reduces heart diseases and colorectal cancers. However, the major limitation to the use of aspirin is its side effect to cause ulceration and bleeding in the gastrointestinal tract. Preclinical studies have shown that ginger constituents ameliorate ASA-induced gastric ulceration. We here report the design and synthesis of a novel prodrug of aspirin, [6]-gingerol aspirinate (GAS). Our data show that GAS exerts enhanced anti-cancer properties in vitro and superior gastroprotective effects in mice. GAS was also able to survive stomach acid and decomposed in intestinal linings or after absorption to simultaneously release ASA and [6]-gingerol. We further present that GAS inactivates both COX-1 and COX-2 equally. Our results demonstrate the enhanced anticancer properties along with gastroprotective effects of GAS, suggesting that GAS can be a therapeutic equivalent for ASA in inflammatory and proliferative diseases without the deleterious effects on stomach mucosa. Ginger (Zingiber officinale) is widely used as a spice and an ingredient in traditional herbal medicine. The rhizome of ginger has been shown to ameliorate symptoms such as inflammation, rheumatic disorders, gastrointestinal discomforts, and nausea and vomiting associated with pregnancy1. Considerable evidences in preclinical and clinical studies have been reported regarding the gastroprotective effects of ginger root extracts or ginger essential oils2–5.
    [Show full text]
  • Ginger Between 10-Gingerol and the Second Prominent Band DEFINITION Corresponding to 6-Shogaol in Standard Solution A
    Printed on: Tue Dec 22 2020, 02:55:47 AM Official Status: Currently Official on 22-Dec-2020 DocId: 1_GUID-4E7E04A2-8C5A-4586-A11D-B67425D4CA8D_2_en-US (EST) Printed by: Jinjiang Yang Official Date: Official as of 01-Aug-2016 Document Type: DIETARY SUPPLEMENTS @2020 USPC 1 variable number of low-intensity dark-gray bands appear Ginger between 10-gingerol and the second prominent band DEFINITION corresponding to 6-shogaol in Standard solution A. In the Ginger is the dried rhizome of Zingiber officinale Roscoe (Fam. distal part of the chromatogram, a dark-purple Zingiberaceae), scraped, partially scraped, or unscraped. It is somewhat diffuse band is observed. Under long-wave known in commerce as unbleached ginger. UV (365 nm), the chromatograms of the Standard solutions exhibit patterns similar to those observed under IDENTIFICATION white light. The bands due to gingerols and shogaols are · A. bright orange; the bands between the origin and the Analysis: Pulverize 5 g of Ginger. To 1 g of the pulverized 6-gingerol band are dark-red to brown, somewhat less Ginger add 5 mL of dilute acetic acid, prepared by diluting prominent than when observed in white light. The 1 part of glacial acetic acid with 1 part of water, and shake bands between 10-gingerol and 6-shogaol are variably for 15 min. Filter, and add a few drops of ammonium colored; frequently, a light-gray band appears halfway oxalate TS to the filtrate. between them, with a light-purple diffuse band between Acceptance criteria: NMT a slight turbidity is produced. it and the orange band due to 6-shogaol.
    [Show full text]