Current Status and Future Perspectives on Sunflower Insect Pests
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lepidoptera: P5rralidae
HELIA.2O. Nr. 27. a.o. I-8. {1997) UDC 63 I .524.86 :632.7 :633.854.7 8 EVALUATION OF CI,JLTTVATED ST]NTLOWDR GERMPLASM FOR RESISTANCE TO SUNFLOWER MOTH, Homoeosoma. electellum (Lepidoptera: P5rralidae) R. L. Wiison and S. G. McClurq USDA, AgricuLtural Research Seruice, North Central Regional Plant Introduction Station, Ioua State UniDersitA, Ames, IA 5OO11 Receiued: Nouernber 25, 1996 Accepted: Nouember 17. 1997 SUMMARY The sunflower moth, I{omoeosoma electellum (Hulst), is a major pest of sunflower (Helianthus annuus L.) mainly in the central and southern United States. The sunflower moth is most commonly controlled w"ith pesticides. Resistânt plants would provide an environmentally friendly approach to con- trolling this pest. Evaluation of 680 cultivated sunflower accessions in the U.S. National Plant Germplasm System's sunflower (Flelianthus spp.) collection at the North Central Regional Plant Introduction Stauon, Ames, IA, USA. revealed 51 accessions resistant to sunflower moth feeding. A 1-3-5-7-9 rating scale is presented to compare accessions damaged by the pest. The proceeding evalua- tion data were entered into the Germplasm Resources Information Network (GRIN) and made available to researchers worldwide. Key words: Sunflower, Helio,nthus, Homoeosoma electellum, plarfi germplasm, host plant resistance to insects, sunflower moth. INTRODUCTION The United States National Plant Germplasm System's collection of sunflower, Helianthus spp., contains 3,670 accessions of which 1,495 are cultivated (H. clnnllus L.). From l9B5 to 1992, 680 cultivated accessions were evaluated for sun- flower moth, Homoeosoma electellum (Hulst)(Lepidoptera: Pgraltdae), resistance. The procedure used for these evaluations involved placing eggs on sunflower heads and covering with a Delnet@ bag until harvest. -
Wildlife Review Cover Image: Hedgehog by Keith Kirk
Dumfries & Galloway Wildlife Review Cover Image: Hedgehog by Keith Kirk. Keith is a former Dumfries & Galloway Council ranger and now helps to run Nocturnal Wildlife Tours based in Castle Douglas. The tours use a specially prepared night tours vehicle, complete with external mounted thermal camera and internal viewing screens. Each participant also has their own state- of-the-art thermal imaging device to use for the duration of the tour. This allows participants to detect animals as small as rabbits at up to 300 metres away or get close enough to see Badgers and Roe Deer going about their nightly routine without them knowing you’re there. For further information visit www.wildlifetours.co.uk email [email protected] or telephone 07483 131791 Contributing photographers p2 Small White butterfly © Ian Findlay, p4 Colvend coast ©Mark Pollitt, p5 Bittersweet © northeastwildlife.co.uk, Wildflower grassland ©Mark Pollitt, p6 Oblong Woodsia planting © National Trust for Scotland, Oblong Woodsia © Chris Miles, p8 Birdwatching © castigatio/Shutterstock, p9 Hedgehog in grass © northeastwildlife.co.uk, Hedgehog in leaves © Mark Bridger/Shutterstock, Hedgehog dropping © northeastwildlife.co.uk, p10 Cetacean watch at Mull of Galloway © DGERC, p11 Common Carder Bee © Bob Fitzsimmons, p12 Black Grouse confrontation © Sergey Uryadnikov/Shutterstock, p13 Black Grouse male ©Sergey Uryadnikov/Shutterstock, Female Black Grouse in flight © northeastwildlife.co.uk, Common Pipistrelle bat © Steven Farhall/ Shutterstock, p14 White Ermine © Mark Pollitt, -
Sobre Girasol
UNIVERSIDAD CENTRAL MARTA ABREU DE LAS VILLAS FACULTAD DE CIENCIAS AGROPECUARIAS DEPARTAMENTO DE AGRONOMÍA Propuesta para la lucha biológica contra Homoeosoma electellum (Hulst) (Lepidoptera; Pyralidae) sobre girasol Tesis presentada en opción al grado científico de Doctor en Ciencias Agrícolas. Autor: Ms. C. Alán Rivero Aragón Tutor: Dr. C. Horacio Grillo Ravelo Santa Clara 2011 UNIVERSIDAD CENTRAL MARTA ABREU DE LAS VILLAS FACULTAD DE CIENCIAS AGROPECUARIAS DEPARTAMENTO DE AGRONOMÍA Propuesta para la lucha biológica contra Homoeosoma electellum (Hulst) (Lepidoptera; Pyralidae) sobre girasol Tesis presentada en opción al grado científico de Doctor en Ciencias Agrícolas. Autor: Ms. C. Alán Rivero Aragón Tutor: Dr. C. Horacio Grillo Ravelo Santa Clara 2011 AGRADECIMIENTOS Recordamos agradecidamente a los numerosos revisores que condujeron a la versión final de este trabajo. Agradecemos muy especialmente al Dr. C. Horacio Grillo Ravelo y a la Dra. C. Neida Aragón González; a ambos por el conocimiento trasmitido en los años de trabajo, por su asesoría y ayuda. A los amigos del departamento de Biología de la Universidad Central “Marta Abreu” de Las Villas, apoyos y consejeros cuando fue necesario. A los trabajadores de la Estación Experimental Agrícola “Álvaro Barba” por la ayuda brindada para la realización de los experimentos de campo. SÍNTESIS Se realizaron estudios ecológicos y biológicos de Homoeosoma electellum (Hulst) y su cultivo hospedante, girasol. Se comprobó que, H. electellum produce mayor daño, a los cultivares CGGI-90 y CGGI-611 que a los cultivares Caburé-15 y CIAP JE-94 y que una infestación promedio de una larva por planta genera afectaciones al rendimiento de alrededor de 0,06 t/ha. -
Aethes Fortsat, Cochylidia, Cochylis Mv. (4326-4365) Aethes Cnicana (Wstw.)
Cochylini del 3 Aethes fortsat, Cochylidia, Cochylis mv. (4326-4365) Aethes cnicana (Wstw.) 13-18 mm. Imago flyver om aftenen omkring foderplanten og kommer fint til lys i juni juli. Længere mod syd i to generationer. Der er en del variation. Båndet kan være næsten jævnt bredt i hele længden eller – oftere - noget knudret, men dog sammenhængende. Aethes cnicana (Wstw.) Larven lever i frø, rødder og stængler af forskellige tidsler, i Norden først og fremmest Tidsel og Bladhovedtidsel (Cirsium, Carduus). Den overvintrer og forpupper sig i stængel/rod om foråret. Udbredt og almindelig i hele det nordlige og centrale Europa. Aethes cnicana & rubigana Aethes cnicana (tv.) er lysere, mere roligt tegnet og midtbåndet er næsten udelt. Aethes rubigana (th.) har delt midtbånd og den nederste del ender med et rundt hoved, der tydeligt bøjer udad mod apex. Midt- båndet er også tydeligt bre- dere og der er et tydeligt, bredt bånd af lidt mørkere skæl længere ude på vingen. Aethes rubigana (Tr.) 15-19 mm. Imago flyver i aftentimerne omkring foderplanterne i juli-august og kommer gerne til lys. Længere mod syd er der også en generation i maj-juni. Også hos denne art er der en del variation, men båndet er altid afbrudt. Aethes rubigana (Tr.) Larven lever i september-oktober i blomsterhovederne af Burre (Actium) og overvintrer i stængel/rodstok. Sommergenerationen kan leve også i bladene. Aethes rubigana (Tr.) Arten kan også være meget spraglet og mørkere i yderfeltet som det viste eksemplar. Det er oftest hunner. Aethes rubigana (Tr.) Arten er udbredt øst for israndslinjen i Danmark og lokalt almindelig. -
197 Section 9 Sunflower (Helianthus
SECTION 9 SUNFLOWER (HELIANTHUS ANNUUS L.) 1. Taxonomy of the Genus Helianthus, Natural Habitat and Origins of the Cultivated Sunflower A. Taxonomy of the genus Helianthus The sunflower belongs to the genus Helianthus in the Composite family (Asterales order), which includes species with very diverse morphologies (herbs, shrubs, lianas, etc.). The genus Helianthus belongs to the Heliantheae tribe. This includes approximately 50 species originating in North and Central America. The basis for the botanical classification of the genus Helianthus was proposed by Heiser et al. (1969) and refined subsequently using new phenological, cladistic and biosystematic methods, (Robinson, 1979; Anashchenko, 1974, 1979; Schilling and Heiser, 1981) or molecular markers (Sossey-Alaoui et al., 1998). This approach splits Helianthus into four sections: Helianthus, Agrestes, Ciliares and Atrorubens. This classification is set out in Table 1.18. Section Helianthus This section comprises 12 species, including H. annuus, the cultivated sunflower. These species, which are diploid (2n = 34), are interfertile and annual in almost all cases. For the majority, the natural distribution is central and western North America. They are generally well adapted to dry or even arid areas and sandy soils. The widespread H. annuus L. species includes (Heiser et al., 1969) plants cultivated for seed or fodder referred to as H. annuus var. macrocarpus (D.C), or cultivated for ornament (H. annuus subsp. annuus), and uncultivated wild and weedy plants (H. annuus subsp. lenticularis, H. annuus subsp. Texanus, etc.). Leaves of these species are usually alternate, ovoid and with a long petiole. Flower heads, or capitula, consist of tubular and ligulate florets, which may be deep purple, red or yellow. -
FOURTH UPDATE to a CHECKLIST of the LEPIDOPTERA of the BRITISH ISLES , 2013 1 David J
Ent Rec 133(1).qxp_Layout 1 13/01/2021 16:46 Page 1 Entomologist’s Rec. J. Var. 133 (2021) 1 FOURTH UPDATE TO A CHECKLIST OF THE LEPIDOPTERA OF THE BRITISH ISLES , 2013 1 DAvID J. L. A GASSIz , 2 S. D. B EAvAN & 1 R. J. H ECkFoRD 1 Department of Life Sciences, Division of Insects, Natural History Museum, Cromwell Road, London SW7 5BD 2 The Hayes, Zeal Monachorum, Devon EX17 6DF Abstract This update incorporates information published since 30 November 2019 and before 1 January 2021 into A Checklist of the Lepidoptera of the British Isles, 2013. Introduction The Checklist of the Lepidoptera of the British Isles has previously been amended (Agassiz, Beavan & Heckford 2016a, 2016b, 2019 and 2020). This update details 4 species new to the main list and 3 to Appendix A. Numerous taxonomic changes are incorporated and country distributions are updated. CENSUS The number of species now recorded from the British Isles stands at 2,558 of which 58 are thought to be extinct and in addition there are 191 adventive species. ADDITIONAL SPECIES in main list Also make appropriate changes in the index 15.0715 Phyllonorycter medicaginella (Gerasimov, 1930) E S W I C 62.0382 Acrobasis fallouella (Ragonot, 1871) E S W I C 70.1698 Eupithecia breviculata (Donzel, 1837) Rusty-shouldered Pug E S W I C 72.089 Grammodes bifasciata (Petagna, 1786) Parallel Lines E S W I C The authorship and date of publication of Grammodes bifasciata were given by Brownsell & Sale (2020) as Petagan, 1787 but corrected to Petagna, 1786 by Plant (2020). -
RESISTANCE AMONG CULTIVATED SUNFLOWER GERMPLASM to the BANDED SUNFLOWER MOTH (Lepidoptera: Tortricidae) in the NORTHERN GREAT PLAINS
HELIA, 32, Nr. 51, p.p. 1-10, (2009) UDC 633.854.78:632.03:631.527.53 DOI: 10.2298/HEL0951001C RESISTANCE AMONG CULTIVATED SUNFLOWER GERMPLASM TO THE BANDED SUNFLOWER MOTH (Lepidoptera: Tortricidae) IN THE NORTHERN GREAT PLAINS Charlet, L.D.*1, Seiler, G.J.1, Miller, J.F.**2, Hulke, B.S.1 and Knodel, J.J.3 1 U.S. Department of Agriculture, Agricultural Research Service, Northern Crop Science Laboratory, 1307 18th St. N, Fargo, ND 58105, P.O. Box 5677, USA 2 USDA, ARS, Northern Crop Science Laboratory, 1307 18th Street North, P.O. Box 5677, Fargo, ND 58105, USA 3 North Dakota State University, Entomology Department, 202 Hultz Hall, 1300 Albrecht Blvd., Fargo, ND 58105, USA Received: September 15, 2009 Accepted: December 03, 2009 SUMMARY A five year field trial evaluated 71 oilseed sunflower, Helianthus annuus L., accessions, 32 breeding lines, and 25 interspecific crosses for resistance to infestation by naturally occurring populations of the banded sunflower moth, Cochylis hospes Walsingham (Lepidoptera: Tortricidae), in North Dakota. Germplasm with resistance to attack by the banded sunflower moth and sub- sequent larval feeding damage in the seeds was identified. PI 251902 had less than 10% feeding damage per head in all five years of testing and less than 6% in three of the five years. PI 372259 and PI 170401 exhibited 12% or less seed damage in three years of evaluation and PI 253776 had only 3% damage in two of the three years and was the least damaged in 2004. Four other accessions (PI 170385, PI 291403, PI 494859, and PI 505651) revealed resistance in three of five years. -
Lepidoptera: Tortricidae)
1 A molecular phylogeny of Cochylina, with confirmation of its relationship to Euliina 2 (Lepidoptera: Tortricidae) 3 4 John W. Brown*1, Leif Aarvik2, Maria Heikkilä3, Richard Brown4, and Marko Mutanen5 5 6 1 National Museum of Natural History, Smithsonian Institution, Washington, DC, USA, e-mail: 7 [email protected] 8 2 Natural History Museum, University of Oslo, Norway, e-mail: [email protected] 9 3 Finnish Museum of Natural History, LUOMUS, University of Helsinki, Helsinki, 00014, 10 Finland, e-mail: [email protected] 11 4 Mississippi Entomological Museum, Mississippi State, MS 39762, USA, e-mail: 12 [email protected] 13 5 Ecology and Genetics Research Unit, PO Box 3000, 90014, University of Oulu, Finland, e- 14 mail: [email protected] 15 *corresponding author 16 17 This is the peer reviewed version of the following article: Brown, J.W., Aarvik, L., Heikkilä, M., 18 Brown, R. and Mutanen, M. (2020), A molecular phylogeny of Cochylina, with confirmation of its 19 relationship to Euliina (Lepidoptera: Tortricidae). Syst Entomol, 45: 160-174., which has been 20 published in final form at https://doi.org/10.1111/syen.12385. 21 1 22 Abstract. We conducted a multiple-gene phylogenetic analysis of 70 species representing 24 23 genera of Cochylina and eight species representing eight genera of Euliina, and a maximum 24 likelihood analysis based on 293 barcodes representing over 220 species of Cochylina. The 25 results confirm the hypothesis that Cochylina is a monophyletic group embedded within a 26 paraphyletic Euliina. We recognize and define six major monophyletic lineages within 27 Cochylina: a Phtheochroa Group, a Henricus Group, an Aethes Group, a Saphenista Group, a 28 Phalonidia Group, and a Cochylis Group. -
Using Banded Sunflower Moth (Lepidoptera: Tortricidae) Egg Density to Estimate Damage and Economic Distance in Oilseed Sunflower
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2008 Using Banded Sunflower Moth (Lepidoptera: Tortricidae) Egg Density to Estimate Damage and Economic Distance in Oilseed Sunflower Kirk D. Mundal North Dakota State University Gary J. Brewer University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Mundal, Kirk D. and Brewer, Gary J., "Using Banded Sunflower Moth (Lepidoptera: Tortricidae) Egg Density to Estimate Damage and Economic Distance in Oilseed Sunflower" (2008). Faculty Publications: Department of Entomology. 221. https://digitalcommons.unl.edu/entomologyfacpub/221 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. SAMPLING AND BIOSTATISTICS Using Banded Sunflower Moth (Lepidoptera: Tortricidae) Egg Density to Estimate Damage and Economic Distance in Oilseed Sunflower 1 2 KIRK D. MUNDAL AND GARY J. BREWER J. Econ. Entomol. 101(3): 969Ð975 (2008) ABSTRACT The banded sunßower moth, Cochylis hospes Walsingham (Lepidoptera: Tortricidae), is an important economic pest of sunßower in the Upper Great Plains of North America. Economic losses due to reductions in seed number, weight, and quality can be signiÞcant. Previously, the potential for economic losses were estimated by sampling for adult moths. However, sampling for moths can be difÞcult and inaccurate. An alternative is to sample for banded sunßower moth eggs, which can be accurately counted in the Þeld by using a binocular 3.5 headband magniÞer. -
The Taxonomy of the Side Species Group of Spilochalcis (Hymenoptera: Chalcididae) in America North of Mexico with Biological Notes on a Representative Species
University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 1984 The taxonomy of the side species group of Spilochalcis (Hymenoptera: Chalcididae) in America north of Mexico with biological notes on a representative species. Gary James Couch University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Couch, Gary James, "The taxonomy of the side species group of Spilochalcis (Hymenoptera: Chalcididae) in America north of Mexico with biological notes on a representative species." (1984). Masters Theses 1911 - February 2014. 3045. Retrieved from https://scholarworks.umass.edu/theses/3045 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. THE TAXONOMY OF THE SIDE SPECIES GROUP OF SPILOCHALCIS (HYMENOPTERA:CHALCIDIDAE) IN AMERICA NORTH OF MEXICO WITH BIOLOGICAL NOTES ON A REPRESENTATIVE SPECIES. A Thesis Presented By GARY JAMES COUCH Submitted to the Graduate School of the University of Massachusetts in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1984 Department of Entomology THE TAXONOMY OF THE SIDE SPECIES GROUP OF SPILOCHALCIS (HYMENOPTERA:CHALCIDIDAE) IN AMERICA NORTH OF MEXICO WITH BIOLOGICAL NOTES ON A REPRESENTATIVE SPECIES. A Thesis Presented By GARY JAMES COUCH Approved as to style and content by: Dr. T/M. Peter's, Chairperson of Committee CJZl- Dr. C-M. Yin, Membe D#. J.S. El kin ton, Member ii Dedication To: My mother who taught me that dreams are only worth the time and effort you devote to attaining them and my father for the values to base them on. -
The Pennsylvania State University
The Pennsylvania State University The Graduate School PLANTS AS ILLEGITIMATE RECEIVERS OF INSECT SIGNALS: INSIGHT FROM MAIZE AND TEOSINTE A Thesis in Entomology by Julianne Golinski © 2020 Julianne Golinski Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science August 2020 ii The thesis of Julianne Golinski was reviewed and approved by the following: John F. Tooker Professor of Entomology and Extension Specialist Thesis Advisor Jared G. Ali Assistant Professor of Entomology Ben McGraw Associate Professor of Turfgrass Science Gary W. Felton Professor of Entomology Head of Department of Entomology iii ABSTRACT Plants have evolved to be sensitive to a range of insect-associated cues to detect the presence of herbivorous species and mount effective defense responses against future attack. Insect pheromones have recently been added to this library of cues as some plant species can act as “illegitimate receivers” that eavesdrop on the pheromones of insect herbivores, which act as reliable indicators of future larval damage. My thesis begins with a review that explores the perceptive capabilities of plants and how the ability to eavesdrop on insect pheromone cues may have evolved. I also cover the three known examples of plant illegitimate receivers and use shared traits in these systems to build criteria for finding other host plant species that may also utilize this strategy; native host plants species with (1) native, co-evolved insect herbivore species (2) that release abundant amounts of chemicals on or near the host plant, and (3) substantially reduce host plant fitness. My second chapter highlights two agriculturally relevant plant species that fit the criteria, maize (Zea mays ssp. -
Scientific Names of Pest Species in Tortricidae (Lepidoptera)
RESEARCH Scientific Names of Pest Species in Tortricidae (Lepidoptera) Frequently Cited Erroneously in the Entomological Literature John W. Brown Abstract. The scientific names of several pest species in the moth meate the literature. For example, the subfamilial designation for family Tortricidae (Lepidoptera) frequently are cited erroneously in Olethreutinae (rather than Olethreutidae) was slow to be accepted contemporary entomological literature. Most misuse stems from the for many years following Obraztsov’s (1959) treatment of the group. fact that many proposed name changes appear in systematic treat- They even appear at both taxonomic levels (i.e., Olethreutinae and ments that are not seen by most members of the general entomologi- Olethreutidae) in different papers in the same issue of the Canadian cal community. Also, there is resistance among some entomologists Entomologist in the 1980s! (Volume 114 (6), 1982) Olethreutinae to conform to recently proposed changes in the scientific names of gradually was absorbed into the North America literature, espe- well-known pest species. Species names discussed in this paper are cially following publication of the Check List of the Lepidoptera Brazilian apple leafroller, Bonagota salubricola (Meyrick); western of America North of Mexico (Hodges 1983), which has served as a black-headed budworm, Acleris gloverana (Walsingham); and green standard for more than 20 years. budworm, Choristoneura retiniana (Walsingham). Generic names During preparation of a world catalog of Tortricidae (Brown discussed include those for false codling moth, Thaumatotibia leu- 2005), it became obvious to me that several taxonomically correct cotreta (Meyrick); grape berry moth, Paralobesia viteana (Clemens); combinations of important pest species were not in common use in pitch twig moth, Retinia comstockiana (Fernald); codling moth, the entomological literature.