RASAL2, a RAS Gtpase-Activating Protein, Inhibits Stemness and Epithelial&Ndash;Mesenchymal Transition Via MAPK&Sol;SOX2

Total Page:16

File Type:pdf, Size:1020Kb

RASAL2, a RAS Gtpase-Activating Protein, Inhibits Stemness and Epithelial&Ndash;Mesenchymal Transition Via MAPK&Sol;SOX2 Citation: Cell Death and Disease (2017) 8, e2600; doi:10.1038/cddis.2017.9 OPEN Official journal of the Cell Death Differentiation Association www.nature.com/cddis RASAL2, a RAS GTPase-activating protein, inhibits stemness and epithelial–mesenchymal transition via MAPK/SOX2 pathway in bladder cancer Ke Hui1,4, Yang Gao2,4, Jun Huang1, Shan Xu1, Bin Wang1, Jin Zeng1, Jinhai Fan1, Xinyang Wang1, Yangyang Yue1, Shiqi Wu1, Jer-Tsong Hsieh3, Dalin He*,1 and Kaijie Wu*,1 Muscle-invasive or metastatic bladder cancer (BCa) is associated with a very poor prognosis, and the underlying mechanism remains poorly understood. In this study, we demonstrate RASAL2, a RAS GTPase-activating protein (RAS GAP), acts as a tumor suppressor in BCa. First, RASAL2 was downregulated in BCa specimens and inversely correlated with pathological grades and clinical stages. Furthermore, we observed that RASAL2 could inhibit BCa stemness and epithelial–mesenchymal transition (EMT) based on our gain-of-function and loss-of-function experiments. Mechanistically, we found that mitogen-activated protein kinase/ SOX2 signaling had a critical role for maintaining the stemness and mesenchymal properties of RASAL2-deficient BCa cells because inhibition of ERK activity or knockdown of SOX2 could reverse these phenotypes. Also, RASAL2 could inhibit BCa tumorigenesis and distant metastasis in vivo. Moreover, there was an inverse correlation between RASAL2 expression and the stemness/EMT status in subcutaneous xenograft and human BCa specimens. Taken together, our data indicate that RASAL2 is a tumor suppressor in BCa, and modulates cancer stemness and EMT for BCa recurrence and metastasis. Cell Death and Disease (2017) 8, e2600; doi:10.1038/cddis.2017.9; published online 9 February 2017 Bladder cancer (BCa) is one of the most common urological inactivate RAS.12,13 Several preliminary studies have reported cancers worldwide, and most of BCa are transitional cell the aberrant expression of RASAL2 in different cancer types, carcinoma.1 More than 70% cases are non-muscle-invasive including breast cancer, ovarian cancer, lung cancer and BCa (NMIBC), which can be treated with transurethral nasopharyngeal carcinoma.14–18 However, its tumor-suppres- resection. However, 450% cases will relapse and 10–30% sive or oncogenic roles in cancer development remain cases will progress into muscle-invasive BCa (MIBC), and controversial,16,18 especially, its expression and function in finally result in distant metastasis and poor prognosis of BCa are completely unknown. In this study, we will determine patients.2 So it is urgent to understand the molecular the dysregulation of RASAL2 expression in BCa specimens, mechanisms of BCa recurrence and metastasis, and explore and explore its unique roles in modulating stemness and EMT novel therapeutic targets to improve patient survival. phenotypes of BCa. Nowadays, cancer stemness has been identified in many cancer types. Cancer stem cells (CSCs) share some proper- ties with somatic stem cells, including self-renewal and multi- Results potent differentiation potential.3,4 Previous studies have revealed that cancer stemness is responsible for tumorigeni- RASAL2 is downregulated in human BCa tissues and city, therapeutic resistance, relapse and metastasis in BCa.5,6 inversely correlated with tumor grades and clinical Also, accumulating evidences suggest that epithelial– stages. To investigate the expression pattern of RASAL2 in mesenchymal transition (EMT) has an important role in the BCa tissues, we performed immunohistochemical staining enrichment of cells with CSC properties, which are believed to in our cohort including 132 cases of BCa and 10 cases of be the origin of cancer progression.7,8 Importantly, recent normal bladder epithelium specimens (Table 1). As shown in whole-genome studies have discovered the intrinsic basal and Figures 1a, b and e, we found that the expression of RASAL2 luminal MIBC subtypes associated with different chemother- protein was not only lower in BCa tissues than normal apy sensitivity or patient prognosis, in which a comprehensive epithelia, but also negatively correlated with tumor grades molecular alteration involving CSC and EMT has been well (*Po0.05, **Po0.01). Moreover, the expression of RASAL2 in characterized.9–11 All these findings provide new insights MIBC tissues was significantly lower than that in NMIBC about invasion and metastasis of BCa. tissues (Figures 1a, c and e, *Po0.05). Furthermore, we found RASAL2 is a member of RAS GTPase-activating proteins that RASAL2 expression in high-grade NMIBC tissues are (RAS-GAPs), which can catalyze GTP into GDP and lower than that in low-grade NMIBC tissues (Figures 1d and e, 1Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; 2Department of Urology, Shaanxi Provincial People's Hospital, Xi'an 710068, China and 3Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA *Corresponding author: Dr D He or Dr K Wu, Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 277, YantaWest Road, Xi'an, Shaanxi 710061, China. Tel: +86 15389299128; Fax: +86 2985323203; E-mail: [email protected] or [email protected]. 4These authors contributed equally to this work. Received 04.7.16; revised 15.12.16; accepted 22.12.16; Edited by M Agostini RASAL2 inhibits BCa stemness and EMT K Hui et al 2 Table 1 Distribution by tumor characteristics for our patients with bladder *Po0.05). Also, we analyzed RASAL2 expression in another cancer cohort of BCa tissues profiled by microarray from NCBI GEO. Mean age at diagnosis (years) 68.6 Consistently, we further observed that RASAL2 mRNA was Gender (n) downregulated in human BCa tissues, and there was a Male 108 negative correlation between RASAL2 and BCa grades and Female 24 stages (Supplementary Figure 1A, *Po0.05, ***Po0.001), Stage (n) indicating that RASAL2 loss may be associated with BCa Ta–166progression. T2–466 Grade (n) PUNLMP 11 RASAL2 modulates the stemness properties of BCa Low grade 40 cells. Cancer stemness is one of the hotspot mechanisms High grade 81 leading to BCa development.5 Therefore, we applied both Total (n) 132 gain-of-function and loss-of-function strategies to further Figure 1 Expression of RASAL2 in BCa tissues. (a) Representative pictures of IHC staining of RASAL2 in normal urothelium, papillary urothelial neoplasm of low malignant potential (PUNLMP), low grade/NMIBC and high grade/MIBC. The scale bar represents 100 μm. (b and c) Quantification and percentage analysis of RASAL2 staining in normal urothelium and BCa tissues with different grades (b) and stages (c) were shown. Normal urothelium (NU, n = 10), PUNLMP (LMP, n = 11), low-grade BCa (LG, n = 40), high- grade BCa (HG, n = 81), NMIBC (n = 66) and MIBC (n = 66). (d) Quantification analysis of RASAL2 staining in NMIBC tissues with different grades. (e) Heatmap for IHC of RASAL2 staining in BCa tissues with different grades and stages. *Po0.05, **Po0.01 Cell Death and Disease RASAL2 inhibits BCa stemness and EMT K Hui et al 3 Figure 2 RASAL2 suppresses stemness in BCa cells. (a) Quantitative real-time RT-PCR and western blotting analysis of RASAL2 levels in human BCa cell lines. (b) Quantitative real-time RT-PCRand western blotting analysis of RASAL2 levels in 5637 cells transfected with RASAL2 shRNAs and scramble shRNA, or T24 cells infected with RASAL2 lentivirus and scramble control. (c) Tumorsphere assay of 5637 cells transfected with RASAL2 shRNAs and scramble shRNA, or T24 cells infected with RASAL2 lentivirus and scramble control. The tumorsphere number was counted and plotted, and percentage of tumorspheres with diameters o50 μm, 50–100 μmor4100 μmwas calculated and plotted. The scale bar represents 100 μm. (d) Colony formation assay of 5637 cells transfected with RASAL2 shRNAs and scramble shRNA, or T24 cells infected with RASAL2 lentivirus and scramble control. The colonies number was counted and plotted. (e) Western blotting analysis of RASAL2, CD44 and SOX2 in 5637 cells transfected with RASAL2 shRNAs and scramble shRNA, or T24 cells infected with RASAL2 lentivirus and scramble control. GAPDH was used as internal loading control. *Po0.05, **Po0.01 explore the roles of RASAL2 in BCa stemness. As screening RASAL2 modulates EMT in BCa cells. Current studies in Figure 2a by quantitative RT-PCR and western blotting have reported that cancer stemness and EMT always appear assays, RASAL2 is highly expressed in SVHUC-1, an coincidently, and EMTendows cells with a more CSC-like and immortalized normal bladder epithelial cell line, whereas a mesenchymal phenotype.19 Indeed, 5637 cells revealed a relatively lower expression was detected in all BCa cell lines. cobblestone-like morphology; however, RASAL2-deficient Fortunately, we successfully established the stable 5637 5637 cells displayed an elongated fibroblastoid appearance, sublines with endogenous RASAL2 knockdown and T24 as well as increased cell migration and invasion in vitro sublines with ectopic RASAL2 overexpression (Figure 2b). (Figures 3a, **Po0.01, ***Po0.001). Also, western blotting Indeed, we noticed that knockdown of RASAL2 expression in results showed that epithelial marker (i.e., E-cadherin) 5637 cell lines enhanced the ability of tumorsphere and decreased but mesenchymal markers (i.e., vimentin, ZEB1) colony formation, meanwhile overexpression of RASAL2 in increased in RASAL2 knockdown 5637 cells compared T24 cells could decrease this ability (Figures 2c and d, with control (Figure 3b). In contrast, RASAL2 overexpression *Po0.05, **Po0.01). Consistently, western blotting data in T24 cells reversed EMT, and inhibited cell migration clearly showed that levels of potential stemness markers o o SOX2 and CD44 protein increased in 5637 cells after and invasion (Figures 3c and d, **P 0.01, **P 0.001). RASAL2 knockdown, however, ectopic RASAL2 expression Similar results were shown in 253J and 253J-BV cells could downregulate SOX2 and CD44 expression in T24 cells (Supplementary Figure 2). These data suggest that RASAL2 (Figure 2e). These data indicate that RASAL2 loss could could suppress BCa migration and invasion through potentiate CSC phenotype of BCa cells.
Recommended publications
  • Snotarget Shows That Human Orphan Snorna Targets Locate Close to Alternative Splice Junctions
    Available online at www.sciencedirect.com Gene 408 (2008) 172–179 www.elsevier.com/locate/gene snoTARGET shows that human orphan snoRNA targets locate close to alternative splice junctions Peter S. Bazeley a, Valery Shepelev b, Zohreh Talebizadeh c, Merlin G. Butler c, Larisa Fedorova d, ⁎ Vadim Filatov e, Alexei Fedorov a,d, a Program in Bioinformatics and Proteomics/Genomics, University of Toledo Health Science Campus, Toledo, OH 43614, USA b Department of Bioinformatics, Institute of Molecular Genetics, RAS, Moscow 123182, Russia c Section of Medical Genetics and Molecular Medicine, Children's Mercy Hospitals and Clinics and University of Missouri, Kansas City School of Medicine, Kansas City, MO, USA d Department of Medicine, University of Toledo Health Science Campus, Toledo, OH 43614, USA e Dinom LLC, 8/44 Pedagogicheskaya st., Moscow 115404, Russia Received 31 July 2007; received in revised form 19 October 2007; accepted 24 October 2007 Available online 21 November 2007 Received by Takashi Gojobori Abstract Among thousands of non-protein-coding RNAs which have been found in humans, a significant group represents snoRNA molecules that guide other types of RNAs to specific chemical modifications, cleavages, or proper folding. Yet, hundreds of mammalian snoRNAs have unknown function and are referred to as “orphan” molecules. In 2006, for the first time, it was shown that a particular orphan snoRNA (HBII-52) plays an important role in the regulation of alternative splicing of the serotonin receptor gene in humans and other mammals. In order to facilitate the investigation of possible involvement of snoRNAs in the regulation of pre-mRNA processing, we developed a new computational web resource, snoTARGET, which searches for possible guiding sites for snoRNAs among the entire set of human and rodent exonic and intronic sequences.
    [Show full text]
  • Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.
    [Show full text]
  • Rabbit Anti-RASAL2/FITC Conjugated Antibody-SL21160R-FITC
    SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-RASAL2/FITC Conjugated antibody SL21160R-FITC Product Name: Anti-RASAL2/FITC Chinese Name: FITC标记的RASAL2蛋白抗体 nGAP; NGAP_HUMAN; Ras GTPase-activating protein nGAP; Ras protein activator Alias: like 1; RAS protein activator-like 2; RASAL2. Organism Species: Rabbit Clonality: Polyclonal React Species: Human, ICC=1:50-200IF=1:50-200 Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 129kDa Form: Lyophilized or Liquid Concentration: 2mg/1ml immunogen: KLH conjugated synthetic peptide derived from human RASAL2 Lsotype: IgG Purification: affinity purified by Protein A Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Storewww.sunlongbiotech.com at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. background: This gene encodes a protein that contains the GAP-related domain (GRD), a characteristic domain of GTPase-activating proteins (GAPs). GAPs function as activators of Ras superfamily of small GTPases. The protein encoded by this gene is Product Detail: able to complement the defective RasGAP function in a yeast system. Two alternatively spliced transcript variants of this gene encoding distinct isoforms have been reported.
    [Show full text]
  • Article Characterization of HMGB1/2 Interactome in Prostate Cancer by Yeast Two Hybrid Approach: Potential Pathobiological Implications
    Article Characterization of HMGB1/2 Interactome in Prostate Cancer by Yeast Two Hybrid Approach: Potential Pathobiological Implications Aida Barreiro-Alonso 1,†, María Cámara-Quílez 1,†, Martín Salamini-Montemurri 1, Mónica Lamas- Maceiras 1, Ángel Vizoso-Vázquez 1, Esther Rodríguez-Belmonte 1, María Quindós-Varela 2, Olaia Martínez-Iglesias 3, Angélica Figueroa 3 and María-Esperanza Cerdán 1,* Table S1. Association of proteins that interact with Hmgb1 or Hmgb2 to cancer hallmarks. Cancer Hallmark Protein Model Reference MAP1B Colorectal cancers [109] GENOMIC INSTABILITY AND Liver adenocarcinoma (SKHep1) and NOP53 [110] MUTATIONS/ CHANGES IN glioblastoma (T98G) cell lines TELOMERASE ACTIVITY RSF1 Ovarian cells [111] SRSF3 Ovarian cancer [112] C1QBP Breast cancer [54,113] cFOS Bladder cancer [114] cFOS Breast cancer [115] DLAT Gastric Cancer [116] Human melanoma (A7), Prostate cancer FLNA [117] (PC3) cell lines GOLM1 Hepatocellular carcinoma [118] GOLM1 Breast cancer [119] GOLM1 Lung proliferation [120] GOLM1 Prostate cancer [82] SUSTAINING PROLIFERATIVE Hox-A10 Prostate cancer cell line PC-3 [58] SIGNALLING/ CELL Hox-A10 Ovarian cancer cell lines [121,122] PROLIFERATION NOP53 Breast cancer [123] PSMA7 Cervical cancer [124] PTPN2 Epithelial carcinogenesis [125] RASAL2 hepatocellular carcinoma [126] RSF1 Prostate cancer [95] RSF1 Nasopharyngeal carcinoma [127] SPIN1 Glioma [128] TGM3 Esophageal cancer [129] UBE2E3 Retinal pigment epithelial (RPE) [130] Vigilin Hepatocellular carcinomas [131] WNK4 Kidney [100] C1QBP Prostate cancer [48]
    [Show full text]
  • A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2018 A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family Linda Molla Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Linda Molla June 2018 © Copyright by Linda Molla 2018 A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY Linda Molla, Ph.D. The Rockefeller University 2018 APOBEC2 is a member of the AID/APOBEC cytidine deaminase family of proteins. Unlike most of AID/APOBEC, however, APOBEC2’s function remains elusive. Previous research has implicated APOBEC2 in diverse organisms and cellular processes such as muscle biology (in Mus musculus), regeneration (in Danio rerio), and development (in Xenopus laevis). APOBEC2 has also been implicated in cancer. However the enzymatic activity, substrate or physiological target(s) of APOBEC2 are unknown. For this thesis, I have combined Next Generation Sequencing (NGS) techniques with state-of-the-art molecular biology to determine the physiological targets of APOBEC2. Using a cell culture muscle differentiation system, and RNA sequencing (RNA-Seq) by polyA capture, I demonstrated that unlike the AID/APOBEC family member APOBEC1, APOBEC2 is not an RNA editor. Using the same system combined with enhanced Reduced Representation Bisulfite Sequencing (eRRBS) analyses I showed that, unlike the AID/APOBEC family member AID, APOBEC2 does not act as a 5-methyl-C deaminase.
    [Show full text]
  • Epigenetic Changes in Fibroblasts Drive Cancer Metabolism and Differentiation
    26 12 Endocrine-Related R Mishra et al. TME based epigenetic targets 26:12 R673–R688 Cancer in cancer REVIEW Epigenetic changes in fibroblasts drive cancer metabolism and differentiation Rajeev Mishra1, Subhash Haldar2, Surabhi Suchanti1 and Neil A Bhowmick3,4 1Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India 2Department of Biotechnology, Brainware University, Kolkata, India 3Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA 4Department of Research, Greater Los Angeles Veterans Administration, Los Angeles, California, USA Correspondence should be addressed to N A Bhowmick: [email protected] Abstract Genomic changes that drive cancer initiation and progression contribute to the Key Words co-evolution of the adjacent stroma. The nature of the stromal reprogramming involves f endocrine therapy differential DNA methylation patterns and levels that change in response to the tumor resistance and systemic therapeutic intervention. Epigenetic reprogramming in carcinoma- f prostate associated fibroblasts are robust biomarkers for cancer progression and have a f neuroendocrine tumors transcriptional impact that support cancer epithelial progression in a paracrine manner. For prostate cancer, promoter hypermethylation and silencing of the RasGAP, RASAL3 that resulted in the activation of Ras signaling in carcinoma-associated fibroblasts. Stromal Ras activity initiated a process of macropinocytosis that provided prostate cancer epithelia with abundant glutamine for metabolic conversion
    [Show full text]
  • RASAL2 Promotes Tumor Progression Through LATS2/YAP1 Axis of Hippo
    Pan et al. Molecular Cancer (2018) 17:102 https://doi.org/10.1186/s12943-018-0853-6 RESEARCH Open Access RASAL2 promotes tumor progression through LATS2/YAP1 axis of hippo signaling pathway in colorectal cancer Yi Pan1,2,3†, Joanna Hung Man Tong1,2,3†, Raymond Wai Ming Lung1,2,3, Wei Kang1,2,3, Johnny Sheung Him Kwan1,2, Wing Po Chak1,2,3, Ka Yee Tin1,2, Lau Ying Chung1,2,3, Feng Wu1,2,3, Simon Siu Man Ng3,4, Tony Wing Chung Mak4, Jun Yu3,5, Kwok Wai Lo1,2, Anthony Wing Hung Chan1,2* and Ka Fai To1,2,3* Abstract Background: Patients with colorectal cancer (CRC) have a high incidence of regional and distant metastases. Although metastasis is the main cause of CRC-related death, its molecular mechanisms remain largely unknown. Methods: Using array-CGH and expression microarray analyses, changes in DNA copy number and mRNA expression levels were investigated in human CRC samples. The mRNA expression level of RASAL2 was validated by qRT-PCR, and the protein expression was evaluated by western blot as well as immunohistochemistry in CRC cell lines and primary tumors. The functional role of RASAL2 in CRC was determined by MTT proliferation assay, monolayer and soft agar colony formation assays, cell cycle analysis, cell invasion and migration and in vivo study through siRNA/shRNA mediated knockdown and overexpression assays. Identification of RASAL2 involved in hippo pathway was achieved by expression microarray screening, double immunofluorescence staining and co-immunoprecipitation assays. Results: Integrated genomic analysis identified copy number gains and upregulation of RASAL2 in metastatic CRC.
    [Show full text]
  • RASAL2 (B-11): Sc-390605
    SANTA CRUZ BIOTECHNOLOGY, INC. RASAL2 (B-11): sc-390605 BACKGROUND RECOMMENDED SUPPORT REAGENTS RASAL2 (Ras protein activator like 2), also known as nGAP, is a Ras GTPase- To ensure optimal results, the following support reagents are recommended: activating protein. RAS proteins cycle between an active guanosine-triphos- 1) Western Blotting: use m-IgGκ BP-HRP: sc-516102 or m-IgGκ BP-HRP (Cruz phate (GTP) bound form and an inactive, guanosine-diphosphate (GDP) bound Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz Marker™ form. GTPase-activating proteins (GAPs) accelerate the intrinsic rate of GTP Molecular Weight Standards: sc-2035, UltraCruz® Blocking Reagent: hydrolysis of Ras-related proteins, resulting in downregulation of their active sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunopre- form. RASAL2 functions in the Ras/MAPK/ERK signaling pathway. It contains cipitation: use Protein A/G PLUS-Agarose: sc-2003 (0.5 ml agarose/2.0 ml). a C2 domain, a PH domain and a Ras-GAP domain. The gene encoding RASAL2 3) Immunofluorescence: use m-IgGκ BP-FITC: sc-516140 or m-IgGκ BP-PE: is located on chromosome 1 within the prostate cancer susceptibility locus. sc-516141 (dilution range: 1:50-1:200) with UltraCruz® Mounting Medium: This suggests that a mutation or defect in RASAL2 is implicated in carcino- sc-24941 or UltraCruz® Hard-set Mounting Medium: sc-359850. 4) Immuno- genesis. Two transcript variants exist for RASAL2 due to alternative splicing histochemistry: use m-IgGκ BP-HRP: sc-516102 with DAB, 50X: sc-24982 events. and Immunohistomount: sc-45086, or Organo/Limonene Mount: sc-45087.
    [Show full text]
  • Quantitative Trait Loci Mapping of Macrophage Atherogenic Phenotypes
    QUANTITATIVE TRAIT LOCI MAPPING OF MACROPHAGE ATHEROGENIC PHENOTYPES BRIAN RITCHEY Bachelor of Science Biochemistry John Carroll University May 2009 submitted in partial fulfillment of requirements for the degree DOCTOR OF PHILOSOPHY IN CLINICAL AND BIOANALYTICAL CHEMISTRY at the CLEVELAND STATE UNIVERSITY December 2017 We hereby approve this thesis/dissertation for Brian Ritchey Candidate for the Doctor of Philosophy in Clinical-Bioanalytical Chemistry degree for the Department of Chemistry and the CLEVELAND STATE UNIVERSITY College of Graduate Studies by ______________________________ Date: _________ Dissertation Chairperson, Johnathan D. Smith, PhD Department of Cellular and Molecular Medicine, Cleveland Clinic ______________________________ Date: _________ Dissertation Committee member, David J. Anderson, PhD Department of Chemistry, Cleveland State University ______________________________ Date: _________ Dissertation Committee member, Baochuan Guo, PhD Department of Chemistry, Cleveland State University ______________________________ Date: _________ Dissertation Committee member, Stanley L. Hazen, MD PhD Department of Cellular and Molecular Medicine, Cleveland Clinic ______________________________ Date: _________ Dissertation Committee member, Renliang Zhang, MD PhD Department of Cellular and Molecular Medicine, Cleveland Clinic ______________________________ Date: _________ Dissertation Committee member, Aimin Zhou, PhD Department of Chemistry, Cleveland State University Date of Defense: October 23, 2017 DEDICATION I dedicate this work to my entire family. In particular, my brother Greg Ritchey, and most especially my father Dr. Michael Ritchey, without whose support none of this work would be possible. I am forever grateful to you for your devotion to me and our family. You are an eternal inspiration that will fuel me for the remainder of my life. I am extraordinarily lucky to have grown up in the family I did, which I will never forget.
    [Show full text]
  • Supplementary Table 1 Double Treatment Vs Single Treatment
    Supplementary table 1 Double treatment vs single treatment Probe ID Symbol Gene name P value Fold change TC0500007292.hg.1 NIM1K NIM1 serine/threonine protein kinase 1.05E-04 5.02 HTA2-neg-47424007_st NA NA 3.44E-03 4.11 HTA2-pos-3475282_st NA NA 3.30E-03 3.24 TC0X00007013.hg.1 MPC1L mitochondrial pyruvate carrier 1-like 5.22E-03 3.21 TC0200010447.hg.1 CASP8 caspase 8, apoptosis-related cysteine peptidase 3.54E-03 2.46 TC0400008390.hg.1 LRIT3 leucine-rich repeat, immunoglobulin-like and transmembrane domains 3 1.86E-03 2.41 TC1700011905.hg.1 DNAH17 dynein, axonemal, heavy chain 17 1.81E-04 2.40 TC0600012064.hg.1 GCM1 glial cells missing homolog 1 (Drosophila) 2.81E-03 2.39 TC0100015789.hg.1 POGZ Transcript Identified by AceView, Entrez Gene ID(s) 23126 3.64E-04 2.38 TC1300010039.hg.1 NEK5 NIMA-related kinase 5 3.39E-03 2.36 TC0900008222.hg.1 STX17 syntaxin 17 1.08E-03 2.29 TC1700012355.hg.1 KRBA2 KRAB-A domain containing 2 5.98E-03 2.28 HTA2-neg-47424044_st NA NA 5.94E-03 2.24 HTA2-neg-47424360_st NA NA 2.12E-03 2.22 TC0800010802.hg.1 C8orf89 chromosome 8 open reading frame 89 6.51E-04 2.20 TC1500010745.hg.1 POLR2M polymerase (RNA) II (DNA directed) polypeptide M 5.19E-03 2.20 TC1500007409.hg.1 GCNT3 glucosaminyl (N-acetyl) transferase 3, mucin type 6.48E-03 2.17 TC2200007132.hg.1 RFPL3 ret finger protein-like 3 5.91E-05 2.17 HTA2-neg-47424024_st NA NA 2.45E-03 2.16 TC0200010474.hg.1 KIAA2012 KIAA2012 5.20E-03 2.16 TC1100007216.hg.1 PRRG4 proline rich Gla (G-carboxyglutamic acid) 4 (transmembrane) 7.43E-03 2.15 TC0400012977.hg.1 SH3D19
    [Show full text]
  • Feature Selection for Longitudinal Data by Using Sign Averages to Summarize Gene Expression Values Over Time
    University of Kentucky UKnowledge Biostatistics Faculty Publications Biostatistics 3-19-2019 Feature Selection for Longitudinal Data by Using Sign Averages to Summarize Gene Expression Values over Time Suyan Tian The First Hospital of Jilin University, China, [email protected] Chi Wang University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/biostatistics_facpub Part of the Biostatistics Commons, Computational Biology Commons, Longitudinal Data Analysis and Time Series Commons, and the Microarrays Commons Repository Citation Tian, Suyan and Wang, Chi, "Feature Selection for Longitudinal Data by Using Sign Averages to Summarize Gene Expression Values over Time" (2019). Biostatistics Faculty Publications. 43. https://uknowledge.uky.edu/biostatistics_facpub/43 This Article is brought to you for free and open access by the Biostatistics at UKnowledge. It has been accepted for inclusion in Biostatistics Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Feature Selection for Longitudinal Data by Using Sign Averages to Summarize Gene Expression Values over Time Notes/Citation Information Published in BioMed Research International, v. 2019, article ID 1724898, p. 1-12. © 2019 Suyan Tian and Chi Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use,
    [Show full text]
  • 82481 RASAL2 (D6K9L) Rabbit Mab
    Revision 1 C 0 2 - t RASAL2 (D6K9L) Rabbit mAb a e r o t S Orders: 877-616-CELL (2355) [email protected] 1 Support: 877-678-TECH (8324) 8 4 Web: [email protected] 2 www.cellsignal.com 8 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source/Isotype: UniProt ID: Entrez-Gene Id: WB, IP H Endogenous 150 Rabbit IgG Q9UJF2 9462 Product Usage Information Application Dilution Western Blotting 1:1000 Immunoprecipitation 1:50 Specificity / Sensitivity RASAL2 (D6K9L) Rabbit mAb recognizes endogenous levels of total RASAL2 protein. Species Reactivity: Human Source / Purification Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Pro69 of human RASAL2 protein. Background Small GTPases act as molecular switches, regulating processes such as cell migration, adhesion, proliferation and differentiation. They are activated by guanine nucleotide exchange factors (GEFs), which catalyze the exchange of bound GDP for GTP, and inhibited by GTPase activating proteins (GAPs), which catalyze the hydrolysis of GTP to GDP. RASAL2 was initially identified as a GAP for the small GTPase, Ras, and later shown to interact with the Rho-GEF ECT2, and to regulate Rho activity in human astrocytoma cells (1). Researchers have implicated RASAL2 as a suppressor of migration and metastasis in human cancer (2), and have shown that RASAL2 downregulation promotes epithelial- mesenchymal transition and metastasis in ovarian cancer (3) and lung cancer (4). Conversely, other research studies show that RASAL2 can be oncogenic in triple negative breast cancer through activation of Rac1 signaling (5).
    [Show full text]