An Integrated Biogeo-Graphic Assessment of Reef Fish Populations and Fisheries in Dry Tortugas

Total Page:16

File Type:pdf, Size:1020Kb

An Integrated Biogeo-Graphic Assessment of Reef Fish Populations and Fisheries in Dry Tortugas An Integrated Biogeographic Assessment of Reef Fish Populations and Fisheries in Dry Tortugas: Effects of No-take Reserves NOAA National Centers for Coastal Ocean Science Center for Coastal Monitoring and Assessment Christopher F.G. Jeffrey Mark E. Monaco Greg Piniak NOAA Office of National Marine Sanctuaries Vernon R. Leeworthy NOAA National Centers for Coastal Ocean Science Center for Coastal Fisheries and Habitat Research Mark Fonseca August 2012 NOAA TECHNICAL MEMORANDUM NOS NCCOS 111 NOAA NCCOS Center for Coastal Monitoring and Assessment An Integrated Biogeographic Assessment of Reef Fish Populations and Fisheries in Dry Tortugas: Effects of No-Take Reserves Prepared by: NOAA National Centers for Coastal Ocean Science (NCCOS) Center for Coastal Monitoring and Assessment (CCMA) Biogeography Branch Silver Spring, MD USA August 2012 Editors Christopher F.G. Jeffrey Vernon R. Leeworthy Mark E. Monaco Greg Piniak Mark Fonseca NOAA Technical Memorandum NOS NCCOS 111 United States Department National Oceanic and of Commerce Atmospheric Administration National Ocean Service Rebecca Blank Jane Lubchenco David Kennedy Acting Secretary Administrator Assistant Administrator Citations Citation for entire document: Jeffrey, C.F.G., V.R. Leeworthy, M.E. Monaco, G. Piniak, M. Fonseca (eds.). 2012. An Integrated Biogeo- graphic Assessment of Reef Fish Populations and Fisheries in Dry Tortugas: Effects of No-take Reserves. NOAA Technical Memorandum NOS NCCOS 111. Prepared by the NCCOS Center for Coastal Monitoring and Assessment Biogeography Branch. Silver Spring, MD. 147 pp. Example citation for an individual chapter: Jeffrey, C.F.G., L. Jiangang, J.S. Ault, S.G. Smith, V. Ransibrahmanakul. 2012. Physical and Oceanographic Features of the Tortugas Ecological Reserve Study Area. pp 7-20. In: C.F.G. Jeffrey, V.R. Leeworthy, M.E. Monaco, G. Piniak, M. Fonseca (eds.). 2012. An Integrated Biogeographic Assessment of Reef Fish Popula- tions and Fisheries in Dry Tortugas: Effects of No-take Reserves. NOAA Technical Memorandum NOS NC- COS 111. Prepared by the NCCOS Center for Coastal Monitoring and Assessment Biogeography Branch. Silver Spring, MD. 147 pp. Acknowledgements The editors and authors would like to thank the many contributors to this report. Their efforts to review, edit, design and format the document are greatly appreciated. Many thanks to: Chris Caldow, Alicia Clarke, Kim- berly Edwards, Jamison Higgins, Sarah D. Hile, Todd Kellison, Kevin McMahon and Sam Tormey. The covers for this document were designed and created by Gini Kennedy (NOAA). Cover photos were pro- vided by NCCOS Center for Coastal Fisheries and Habitat Research and NCCOS Center for Coastal Moni- toring and Assessment’s Biogeography Branch. Government contract labor was provided by CSS-Dynamac, Fairfax, VA under NOAA contract number DG133C11CO0019. Mention of trade names or commercial products does not constitute endorsement or recommendation for their use by the United States government. ABOUT THIS DOCUMENT The Tortugas Integrated Biogeographic Assessment presents a unique analysis of demographic changes in living resource populations, as well as societal and socioeconomic benefits that resulted from Tortugas Eco- logical Reserves during the first five years after their implementation. Prepared by NOAA’s National Centers for Coastal Ocean Science (NCCOS), Center for Coastal Monitoring and Assessment Biogeography Branch, this assessment is one of a series of such projects designed to provide managers with critical information on the distribution of marine resources under their jurisdiction. Over the past decade, NCCOS has applied an integrated biogeographic assessment approach to inform the management of marine resources within both coral reefs and National Marine Sanctuaries since 1998. To date, nine Office of National Marine Sanctuaries (ONMS) sites and most of the coral reef ecosystems in U.S. states and territories have had some level of biogeographic characterization or mapping completed through this partnership. Nearly two dozen scientists, researchers and managers contributed to this biogeographic assessment. Partners include: NCCOS, ONMS, National Marine Fisheries Service, University of Miami and University of Massachusetts, Amherst. The results of this ecological characterization are available online. For more information on this and similar projects visit the NCCOS web site, http://coastalscience.noaa.gov/, or direct questions and comments to: Chris Caldow, CCMA Biogeograhy Branch Chief National Centers for Coastal Ocean Science Center for Coastal Monitoring and Assessment (301) 713-3028 x164 [email protected] Christopher F.G. Jeffrey, Marine Biologist National Centers for Coastal Ocean Science Center for Coastal Monitoring and Assessment Biogeography Branch (301) 713-3028 x134 [email protected] TABLE OF CONTENTS Executive Summary i Christopher F.G. Jeffrey and Vernon R. Leeworthy Chapter 1: Introduction 1 Christopher F.G. Jeffrey and Vernon R. Leeworthy Introduction and Background 1 Rationale for Implementation of the Tortugas Ecological Reserve and Boundary Selection 3 Expected Outcomes from Implementation of the Tortugas Ecological Reserve 3 Purpose of This Integrated Assessment 4 Definition of Study Areas 4 References 6 Chapter 2: Physical and Oceanographic Features of the Tortugas Ecological Reserve Study Area 7 Christopher F. G. Jeffrey, Jiangang Luo, Jerald S. Ault, Steven G. Smith and Varis Ransibrahmanakul Introduction and Background 7 Integration of Bathymetric and Benthic Habitat Information 7 Synthesis and Summary of Oceanic Features in the Tortugas Ecological Reserve Study Area 15 Summary and Conclusion 18 References 19 Chapter 3: Reef Fishes and Macroinvertebrates of the Tortugas Ecological Reserve Area and the Dry Tortugas National Park 21 Christopher F.G. Jeffrey, Jerald S. Ault and Steven G. Smith Introduction and Background 21 Historical Trends And Patterns In Fisheries Landings And Reef Fish Assemblages of the Tortugas Region, 1981 To 1999 22 Ecosystem-Based Approaches To Rebuilding And Monitoring Reef Fish Assemblages, 2000 To 2007 23 Status And Trends of Coral Reef Fish Populations in the TERSA, 1999 – 2006 25 Summary and Conclusion 27 References 28 Chapter 4: Characterization of Benthic Communities 31 Greg Piniak, Shay Viehman, Christine Addison and Nicole Fogarty Introduction and Background 31 Data Collection and Analysis 31 Results and Discussion 32 Other Benthic Habitat Studies In the Dry Tortugas 39 Summary and Conclusion 41 References 42 TABLE OF CONTENTS Chapter 5: Characterization of Reef and Shelf Nekton Assemblages 43 John Burke, Vanessa McDonough, Michael Burton, Carolyn Currin, Mark Fonseca and Christopher F.G. Jeffrey Introduction and Background 43 Section A. Reef Fish Assemblage Structure at Reef-Sand Interfaces 44 Section B. Additional Center for Coastal Fisheries and Habitat Research Studies 57 Summary and Conclusion 67 References 69 Chapter 6: Social and Economic Effects of Ecological Reserves on Commercial Fisheries in Dry Tortugas 71 Vernon R. Leeworthy and Christopher F.G. Jeffrey Introduction and Background 71 Macroeconomic Conditions Affecting Revenues from Dry Tortugas Commercial Fisheries and Implications for the Tortugas Ecological Reserves 72 Assessment of Fishers’ Knowledge, Attitudes, and Perceptions of Tortugas Ecological Reserves And Florida Keys National Marine Sanctuary 95 Summary and Conclusions 98 References 101 Chapter 7: Social and Economic Effects of Tortugas Ecological Reserve to Recreation Businesses that Utilize the Dry Tortugas Area 103 David K. Loomis, Christopher Hawkins, Douglas Lipton and Robert B. Ditton Introduction and Background 103 Results of the 2000 Socioeconomic Impact Analysis 104 Post Tortugas Ecological Reserve Social and Economic Impacts 106 to Recreational Businesses – 2006 Discussion and Recommendations 111 Summary and Conclusions 112 References 114 Appendix I 115 Appendix II 141 Appendix III 145 Tortugas Integrated Biogeographic Assessment Executive Summary Christopher F.G. Jeffrey1,2 and Vernon R. Leeworthy3 The Tortugas Integrated Biogeograph- ic Assessment presents a unique anal- ysis of demographic changes in living resource populations, as well as soci- etal and socioeconomic benefits that resulted from the Tortugas Ecological Reserves during the first five years af- ter their implementation. In 2001, state Executive Summary Executive and federal agencies established two no-take reserves within the region as part of the Florida Keys National Ma- The Dry Tortugas National Park and surrounding areas are home to coral rine Sanctuary. The northern reserve reef ecosystems that support diverse faunal assemblages and fish. Photos: Dry Tortugas National Park. (Tortugas Ecological Reserve North) was established adjacent to the Dry Tortugas National Park, which was first declared a national monument in 1935. The reserves were designed to protect a healthy coral reef ecosystem that supports diverse faunal assemblages and fisheries, serves as important spawning grounds for groupers and snappers, and includes essential feeding and breeding habitats for seabirds. The unique ecological qualities of the Tortugas region were recognized as far back as 1850, and it remains an important ecosystem and research area today. The two main goals of the Tortugas Ecological Reserve Integrated Ecological Assessment were: 1) to de- termine if demographic changes such as increases in abundance, average size and spawning potential of exploited populations occurred in the Tortugas region
Recommended publications
  • CAT Vertebradosgt CDC CECON USAC 2019
    Catálogo de Autoridades Taxonómicas de vertebrados de Guatemala CDC-CECON-USAC 2019 Centro de Datos para la Conservación (CDC) Centro de Estudios Conservacionistas (Cecon) Facultad de Ciencias Químicas y Farmacia Universidad de San Carlos de Guatemala Este documento fue elaborado por el Centro de Datos para la Conservación (CDC) del Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala. Guatemala, 2019 Textos y edición: Manolo J. García. Zoólogo CDC Primera edición, 2019 Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala ISBN: 978-9929-570-19-1 Cita sugerida: Centro de Estudios Conservacionistas [Cecon]. (2019). Catálogo de autoridades taxonómicas de vertebrados de Guatemala (Documento técnico). Guatemala: Centro de Datos para la Conservación [CDC], Centro de Estudios Conservacionistas [Cecon], Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala [Usac]. Índice 1. Presentación ............................................................................................ 4 2. Directrices generales para uso del CAT .............................................. 5 2.1 El grupo objetivo ..................................................................... 5 2.2 Categorías taxonómicas ......................................................... 5 2.3 Nombre de autoridades .......................................................... 5 2.4 Estatus taxonómico
    [Show full text]
  • Early Stages of Fishes in the Western North Atlantic Ocean Volume
    ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation.
    [Show full text]
  • Checklist of Fish and Invertebrates Listed in the CITES Appendices
    JOINTS NATURE \=^ CONSERVATION COMMITTEE Checklist of fish and mvertebrates Usted in the CITES appendices JNCC REPORT (SSN0963-«OStl JOINT NATURE CONSERVATION COMMITTEE Report distribution Report Number: No. 238 Contract Number/JNCC project number: F7 1-12-332 Date received: 9 June 1995 Report tide: Checklist of fish and invertebrates listed in the CITES appendices Contract tide: Revised Checklists of CITES species database Contractor: World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge, CB3 ODL Comments: A further fish and invertebrate edition in the Checklist series begun by NCC in 1979, revised and brought up to date with current CITES listings Restrictions: Distribution: JNCC report collection 2 copies Nature Conservancy Council for England, HQ, Library 1 copy Scottish Natural Heritage, HQ, Library 1 copy Countryside Council for Wales, HQ, Library 1 copy A T Smail, Copyright Libraries Agent, 100 Euston Road, London, NWl 2HQ 5 copies British Library, Legal Deposit Office, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ 1 copy Chadwick-Healey Ltd, Cambridge Place, Cambridge, CB2 INR 1 copy BIOSIS UK, Garforth House, 54 Michlegate, York, YOl ILF 1 copy CITES Management and Scientific Authorities of EC Member States total 30 copies CITES Authorities, UK Dependencies total 13 copies CITES Secretariat 5 copies CITES Animals Committee chairman 1 copy European Commission DG Xl/D/2 1 copy World Conservation Monitoring Centre 20 copies TRAFFIC International 5 copies Animal Quarantine Station, Heathrow 1 copy Department of the Environment (GWD) 5 copies Foreign & Commonwealth Office (ESED) 1 copy HM Customs & Excise 3 copies M Bradley Taylor (ACPO) 1 copy ^\(\\ Joint Nature Conservation Committee Report No.
    [Show full text]
  • Satellite Monitoring of Coastal Marine Ecosystems a Case from the Dominican Republic
    Satellite Monitoring of Coastal Marine Ecosystems: A Case from the Dominican Republic Item Type Report Authors Stoffle, Richard W.; Halmo, David Publisher University of Arizona Download date 04/10/2021 02:16:03 Link to Item http://hdl.handle.net/10150/272833 SATELLITE MONITORING OF COASTAL MARINE ECOSYSTEMS A CASE FROM THE DOMINICAN REPUBLIC Edited By Richard W. Stoffle David B. Halmo Submitted To CIESIN Consortium for International Earth Science Information Network Saginaw, Michigan Submitted From University of Arizona Environmental Research Institute of Michigan (ERIM) University of Michigan East Carolina University December, 1991 TABLE OF CONTENTS List of Tables vi List of Figures vii List of Viewgraphs viii Acknowledgments ix CHAPTER ONE EXECUTIVE SUMMARY 1 The Human Dimensions of Global Change 1 Global Change Research 3 Global Change Theory 4 Application of Global Change Information 4 CIESIN And Pilot Research 5 The Dominican Republic Pilot Project 5 The Site 5 The Research Team 7 Key Findings 7 CAPÍTULO UNO RESUMEN GENERAL 9 Las Dimensiones Humanas en el Cambio Global 9 La Investigación del Cambio Global 11 Teoría del Cambio Global 12 Aplicaciones de la Información del Cambio Global 13 CIESIN y la Investigación Piloto 13 El Proyecto Piloto en la República Dominicana 14 El Lugar 14 El Equipo de Investigación 15 Principales Resultados 15 CHAPTER TWO REMOTE SENSING APPLICATIONS IN THE COASTAL ZONE 17 Coastal Surveys with Remote Sensing 17 A Human Analogy 18 Remote Sensing Data 19 Aerial Photography 19 Landsat Data 20 GPS Data 22 Sonar
    [Show full text]
  • REVIEW of the ATLANTIC STATES MARINE FISHERIES COMMISSION's INTERSTATE FISHERY MANAGEMENT PLAN for SPINY DOGFISH (Squalus Acanthias)
    REVIEW OF THE ATLANTIC STATES MARINE FISHERIES COMMISSION'S INTERSTATE FISHERY MANAGEMENT PLAN FOR SPINY DOGFISH (Squalus acanthias) May 2004 – April 2005 FISHING YEAR Board Approved: February 2006 Prepared by the Spiny Dogfish Plan Review Team: Ruth Christiansen, ASMFC, Chair I. Status of the Fishery Management Plan Date of FMP Approval: November 2002 Date of Addendum I Approval: November 2005 Management Unit: Entire coastwide distribution of the resource from the estuaries eastward to the inshore boundary of the EEZ States With Declared Interest: Maine - Florida Active Boards/Committees: Spiny Dogfish and Coastal Shark Management Board, Advisory Panel, Technical Committee, Stock Assessment Subcommittee, and Plan Review Team In April 1998, the National Marine Fisheries Service (NMFS) declared spiny dogfish overfished. The Mid-Atlantic and New England Fishery Management Councils jointly manage the federal spiny dogfish fishery. NMFS partially approved the federal FMP in September 1999, but implementation did not begin until the May 2000, the start of the 2000-2001 fishing year. The federal FMP uses a target fishing mortality to specify a coastwide commercial quota and splits this quota into two seasonal periods (Period 1: May 1 to October 31 and Period 2: November 1 to April 30). The seasonal periods also have separate possession limits that are specified on an annual basis. In August 2000, ASMFC took emergency action to close state waters to the commercial harvest, landing, and possession of spiny dogfish when federal waters closed because the quota was fully harvested. With the emergency action in place, the Commission had time to develop an interstate FMP, which prevented the undermining of the federal FMP and prevented further overharvest of the coastwide spiny dogfish population.
    [Show full text]
  • 2004 Status Review of Southern Resident Killer Whales (Orcinus Orca) Under the Endangered Species Act
    NOAA Technical Memorandum NMFS-NWFSC-62 2004 Status Review of Southern Resident Killer Whales (Orcinus orca) under the Endangered Species Act December 2004 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA Technical Memorandum NMFS Series The Northwest Fisheries Science Center of the National Marine Fisheries Service, NOAA, uses the NOAA Technical Memorandum NMFS series to issue infor- mal scientific and technical publications when com- plete formal review and editorial processing are not appropriate or feasible due to time constraints. Docu- ments published in this series may be referenced in the scientific and technical literature. The NMFS-NWFSC Technical Memorandum series of the Northwest Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest & Alaska Fisheries Science Center, which has since been split into the Northwest Fisheries Science Center and the Alaska Fisheries Science Center. The NMFS-AFSC Technical Memorandum series is now being used by the Alaska Fisheries Science Center. Reference throughout this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. This document should be cited as follows: Krahn, M.M., M.J. Ford, W.F. Perrin, P.R. Wade, R.P. Angliss, M.B. Hanson, B.L. Taylor, G.M. Ylitalo, M.E. Dahlheim, J.E. Stein, and R.S. Waples. 2004. 2004 Status review of Southern Resident killer whales (Orcinus orca) under the Endangered Species Act. U.S. Dept. Commer., NOAA Tech. Memo. NMFS- NWFSC-62, 73 p. NOAA Technical Memorandum NMFS-NWFSC-62 2004 Status Review of Southern Resident Killer Whales (Orcinus orca) under the Endangered Species Act Margaret M.
    [Show full text]
  • Sharkcam Fishes
    SharkCam Fishes A Guide to Nekton at Frying Pan Tower By Erin J. Burge, Christopher E. O’Brien, and jon-newbie 1 Table of Contents Identification Images Species Profiles Additional Info Index Trevor Mendelow, designer of SharkCam, on August 31, 2014, the day of the original SharkCam installation. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition by Erin J. Burge, Christopher E. O’Brien, and jon-newbie is licensed under the Creative Commons Attribution-Noncommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/. For questions related to this guide or its usage contact Erin Burge. The suggested citation for this guide is: Burge EJ, CE O’Brien and jon-newbie. 2020. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition. Los Angeles: Explore.org Ocean Frontiers. 201 pp. Available online http://explore.org/live-cams/player/shark-cam. Guide version 5.0. 24 February 2020. 2 Table of Contents Identification Images Species Profiles Additional Info Index TABLE OF CONTENTS SILVERY FISHES (23) ........................... 47 African Pompano ......................................... 48 FOREWORD AND INTRODUCTION .............. 6 Crevalle Jack ................................................. 49 IDENTIFICATION IMAGES ...................... 10 Permit .......................................................... 50 Sharks and Rays ........................................ 10 Almaco Jack ................................................. 51 Illustrations of SharkCam
    [Show full text]
  • Mapping Ontogenetic Habitat Shifts of Coral Reef Fish at Mona Island, Puerto Rico Cartografía De Las Mudanzas De Habitáculos D
    Mapping ontogenetic habitat shifts of coral reef fish at Mona Island, Puerto Rico Item Type conference_item Authors Schärer, M.T.; Nemeth, M.I.; Appeldoorn, R.S. Download date 02/10/2021 07:32:38 Link to Item http://hdl.handle.net/1834/31272 Mapping Ontogenetic Habitat Shifts of Coral Reef Fish at Mona Island, Puerto Rico MICHELLE T. SCHÄRER, MICHAEL I. NEMETH, and RICHARD S. APPELDOORN Department of Marine Sciences, University of Puerto Rico, Mayagüez, Puerto Rico 00681 ABSTRACT Coral reef fishes use a variety of habitats throughout daily, ontogenetic, and spawning migrations, therefore requiring a suite of habitats to complete their life cycle. The use of multiple habitats by grunts (Haemulidae) and snappers (Lutjanidae) was investigated at Mona Island, a remote island off western Puerto Rico. The objective of this study was to determine if the distribution of three different life stages was random in relation to benthic habitat types. Coral reef fish were sampled throughout all habitat types randomly over a period of six months. For seven species of grunts and snappers median fork length was significantly different by habitat type identifying critical habitats for juveniles distinct from adult habitats. Within a life stage significant differences were observed in fish density by habitat type. Early juvenile grunts and snappers were more abundant in habitats of depths less than 5 m, mainly in rocky shores and seagrass areas with patches of coral or other hard structures. Larger juveniles were significantly more abundant in depths less than 5m in coral dominated habitats. Adults were abundant throughout the habitats of all depth ranges, except for two species Haemulon chrysargyreum and Lutjanus mahogoni, which were limited to shallower habitats.
    [Show full text]
  • Eagle Creek Radio Telemetry Report
    Ecological and Genetic Interactions between Hatchery and Wild Steelhead in Eagle Creek, Oregon Final Report Jeff Hogle and Ken Lujan collecting genetic and fish health samples in Eagle Creek, Oregon. Photo Credit: Maureen Kavanagh Ecological and Genetic Interactions between Hatchery and Wild Steelhead in Eagle Creek, Oregon Final Report Prepared by: Maureen Kavanagh, William R. Brignon and Doug Olson U.S. Fish and Wildlife Service Columbia River Fisheries Program Office Hatchery Assessment Team Vancouver, WA 98683 -and- Susan Gutenberger U.S. Fish and Wildlife Service Lower Columbia River Fish Health Center Willard, WA 98605 -and- Andrew Matala and William Ardren U.S. Fish and Wildlife Service Abernathy Fish Technology Center Applied Research Program in Conservation Genetics Longview, WA 98632 July 23, 2009 Table of Contents 1.0 Executive Summary ................................................................................................................................ 9 2.0 Introduction ........................................................................................................................................... 10 3.0 Geographic Area ................................................................................................................................... 12 4.0 Background Information on Winter Steelhead in the Clackamas River & Eagle Creek ....................... 13 5.0 Methods ...............................................................................................................................................
    [Show full text]
  • FURTHER BIO-ACOUSTIC STUDIES OFF the WEST COAST of NORTH BIMINI, Bahamasl
    FURTHER BIO-ACOUSTIC STUDIES OFF THE WEST COAST OF NORTH BIMINI, BAHAMASl JOHN C. STEINBERG, WILLIAM C. CUMMINGS, BRADLEY D. BRAHY, ANDJUANITA Y. MAcBAIN (SPIRES) Institute of Marine Science, University of Miami ABSTRACT With acoustic-video techniques of observation, eight marine animal sounds were identified and an additional four were tentatively identified. These included sounds from longspine squirrelfish, queen triggerfish, bi- color damselfish, grouper, ocean surgeon, slippery dicks, jacks, cowfish, and drums. The sounds ranged from single pulses having duration times of fractions of a second and train durations of up to several seconds. cycles per second (cps) to trains of pulses having pulse repetition rates of fractions of a second and train durations of up to several seconds. Sound production was associated with feeding, locomotory, and agonistic behavior. The results of playback of these and other sounds were evidence of habituation by two species of snapper, and avoidance reactions. Some information obtained suggests interspecies communication by sound. Choruses of marine animal sounds contributed significantly to the am- bient noise level in the frequency range above 200 cps in the area of study. The studies suggested more effective instrumentation and methods of observation. INTRODUCTION The abundance of underwater biological sounds and the clarity of the water off Bimini, Bahamas, have attracted several workers in the field of marine bio-acoustics (Fish, 1954; Moulton, 1958; Fish & Mowbray, 1959; Kumpf & Loewenstein, 1962; Steinberg et al., 1962; Cummings, 1963, 1964; Cummings et al., 1964; Kumpf, 1964). Biologists, physicists, and engineers at the Institute of Marine Science, University of Miami, have been engaged in a four-year study of underwater sound with the Acoustic- video System located on Bimini.
    [Show full text]
  • Suborder ACANTHUROIDEI EPHIPPIDAE Chaetodipterus Faber
    click for previous page Perciformes: Acanthuroidei: Ephippidae 1799 Suborder ACANTHUROIDEI EPHIPPIDAE Spadefishes by W.E. Burgess, Red Bank, New Jersey, USA A single species occurring in the area. Chaetodipterus faber (Broussonet, 1782) HRF Frequent synonyms / misidentifications: None / None. FAO names: En - Atlantic spadefish; Fr - Disque portuguais; Sp - Paguara. Diagnostic characters: Body deep, included 1.2 to 1.5 times in standard length, orbicular, strongly compressed. Mouth small, terminal, jaws provided with bands of brush-like teeth, outer row larger and slightly compressed but pointed at tip. Vomer and palatines toothless. Preopercular margin finely serrate; opercle ends in blunt point. Dorsal fin with 9 spines and 21 to 23 soft rays. Spinous portion of dorsal fin low in adults, distinct from soft-rayed portion; anterior portion of soft dorsal and anal fins prolonged.Juve- niles with third dorsal fin spine prolonged, becoming proportionately smaller with age. Anal fin with 3 spines and 18 or 19 rays. Pectoral fins short, about 1.6 in head, with 17 or 18 soft rays. Caudal fin emarginate. Pelvic fins long, extending to origin of anal fin in adults, beyond that in young. Lateral-line scales 45 to 50. Head and fins scaled. Colour: silvery grey with blackish bars (bars may fade in large individuals) as follows: Eye bar extends from nape through eye to chest; first body bar starts at predorsal area, crosses body behind pectoral fin insertion, and ends on abdomen; second body bar incomplete, extending from anterior dorsal-fin spines vertically toward abdomen but ending just below level of pectoral-fin base;third body bar extends from anterior rays of dorsal fin across body to anterior rays of anal fin;last body bar runs from the middle soft dorsal fin rays to middle soft anal-fin rays; last bar crosses caudal peduncle at caudal-fin base.
    [Show full text]
  • Voestalpine Essential Fish Habitat Assessment for PSD Greenhouse Gas Permit
    Essential Fish Habitat Assessment: Texas Project Site voestalpine Stahl GmbH San Patricio County, Texas January 31, 2013 www.erm.com voestalpine Stahl GmbH Essential Fish Habitat Assessment: Texas Project Site January 31, 2013 Project No. 0172451 San Patricio County, Texas Alicia Smith Partner-in-Charge Graham Donaldson Project Manager Travis Wycoff Project Consultant Environmental Resources Management 15810 Park Ten Place, Suite 300 Houston, Texas 77084-5140 T: 281-600-1000 F: 281-600-1001 Texas Registered Engineering Firm F-2393 TABLE OF CONTENTS LIST OF ACRONYMS IV EXECUTIVE SUMMARY VI 1.0 INTRODUCTION 1 1.1 PROPOSED ACTION 1 1.2 AGENCY REGULATIONS 1 1.2.1 Magnuson-Stevens Fishery Conservation and Management Act 1 1.2.1 Essential Fish Habitat Defined 2 2.0 PROJECT DESCRIPTION 4 2.1 PROJECT SCHEDULE 4 2.2 PROJECT LOCATION 4 2.3 SITE DESCRIPTION 5 2.4 SITE HISTORY 7 2.5 EMISSIONS CONTROLS 8 2.6 NOISE 9 2.7 DUST 10 2.8 WATER AND WASTEWATER 10 2.8.1 Water Sourcing and Water Rights 11 2.8.2 Wastewater Discharge 13 3.0 IDENTIFICATION OF THE ACTION AREA 15 3.1 ACTION AREA DEFINED 15 3.2 ACTION AREA DELINEATION METHODOLOGY AND RESULTS 16 3.2.1 Significant Impact Level Dispersion Modeling 16 3.2.2 Other Contaminants 17 4.0 ESSENTIAL FISH HABITAT IN THE VICINITY OF THE PROJECT 19 4.1 SPECIES OF PARTICULAR CONCERN 19 4.1.1 Brown Shrimp 19 4.1.2 Gray Snapper 20 4.1.3 Pink Shrimp 20 4.1.4 Red Drum 20 4.1.5 Spanish Mackerel 21 4.1.6 White Shrimp 21 4.2 HABITAT AREAS OF PARTICULAR CONCERN 22 5.0 ENVIRONMENTAL BASELINE CONDITIONS AND EFFECTS ANALYSIS
    [Show full text]