The Logic of Recursive Equations Author(S): A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
6.5 the Recursion Theorem
6.5. THE RECURSION THEOREM 417 6.5 The Recursion Theorem The recursion Theorem, due to Kleene, is a fundamental result in recursion theory. Theorem 6.5.1 (Recursion Theorem, Version 1 )Letϕ0,ϕ1,... be any ac- ceptable indexing of the partial recursive functions. For every total recursive function f, there is some n such that ϕn = ϕf(n). The recursion Theorem can be strengthened as follows. Theorem 6.5.2 (Recursion Theorem, Version 2 )Letϕ0,ϕ1,... be any ac- ceptable indexing of the partial recursive functions. There is a total recursive function h such that for all x ∈ N,ifϕx is total, then ϕϕx(h(x)) = ϕh(x). 418 CHAPTER 6. ELEMENTARY RECURSIVE FUNCTION THEORY A third version of the recursion Theorem is given below. Theorem 6.5.3 (Recursion Theorem, Version 3 ) For all n ≥ 1, there is a total recursive function h of n +1 arguments, such that for all x ∈ N,ifϕx is a total recursive function of n +1arguments, then ϕϕx(h(x,x1,...,xn),x1,...,xn) = ϕh(x,x1,...,xn), for all x1,...,xn ∈ N. As a first application of the recursion theorem, we can show that there is an index n such that ϕn is the constant function with output n. Loosely speaking, ϕn prints its own name. Let f be the recursive function such that f(x, y)=x for all x, y ∈ N. 6.5. THE RECURSION THEOREM 419 By the s-m-n Theorem, there is a recursive function g such that ϕg(x)(y)=f(x, y)=x for all x, y ∈ N. -
The Matrix Calculus You Need for Deep Learning
The Matrix Calculus You Need For Deep Learning Terence Parr and Jeremy Howard July 3, 2018 (We teach in University of San Francisco's MS in Data Science program and have other nefarious projects underway. You might know Terence as the creator of the ANTLR parser generator. For more material, see Jeremy's fast.ai courses and University of San Francisco's Data Institute in- person version of the deep learning course.) HTML version (The PDF and HTML were generated from markup using bookish) Abstract This paper is an attempt to explain all the matrix calculus you need in order to understand the training of deep neural networks. We assume no math knowledge beyond what you learned in calculus 1, and provide links to help you refresh the necessary math where needed. Note that you do not need to understand this material before you start learning to train and use deep learning in practice; rather, this material is for those who are already familiar with the basics of neural networks, and wish to deepen their understanding of the underlying math. Don't worry if you get stuck at some point along the way|just go back and reread the previous section, and try writing down and working through some examples. And if you're still stuck, we're happy to answer your questions in the Theory category at forums.fast.ai. Note: There is a reference section at the end of the paper summarizing all the key matrix calculus rules and terminology discussed here. arXiv:1802.01528v3 [cs.LG] 2 Jul 2018 1 Contents 1 Introduction 3 2 Review: Scalar derivative rules4 3 Introduction to vector calculus and partial derivatives5 4 Matrix calculus 6 4.1 Generalization of the Jacobian . -
IVC Factsheet Functions Comp Inverse
Imperial Valley College Math Lab Functions: Composition and Inverse Functions FUNCTION COMPOSITION In order to perform a composition of functions, it is essential to be familiar with function notation. If you see something of the form “푓(푥) = [expression in terms of x]”, this means that whatever you see in the parentheses following f should be substituted for x in the expression. This can include numbers, variables, other expressions, and even other functions. EXAMPLE: 푓(푥) = 4푥2 − 13푥 푓(2) = 4 ∙ 22 − 13(2) 푓(−9) = 4(−9)2 − 13(−9) 푓(푎) = 4푎2 − 13푎 푓(푐3) = 4(푐3)2 − 13푐3 푓(ℎ + 5) = 4(ℎ + 5)2 − 13(ℎ + 5) Etc. A composition of functions occurs when one function is “plugged into” another function. The notation (푓 ○푔)(푥) is pronounced “푓 of 푔 of 푥”, and it literally means 푓(푔(푥)). In other words, you “plug” the 푔(푥) function into the 푓(푥) function. Similarly, (푔 ○푓)(푥) is pronounced “푔 of 푓 of 푥”, and it literally means 푔(푓(푥)). In other words, you “plug” the 푓(푥) function into the 푔(푥) function. WARNING: Be careful not to confuse (푓 ○푔)(푥) with (푓 ∙ 푔)(푥), which means 푓(푥) ∙ 푔(푥) . EXAMPLES: 푓(푥) = 4푥2 − 13푥 푔(푥) = 2푥 + 1 a. (푓 ○푔)(푥) = 푓(푔(푥)) = 4[푔(푥)]2 − 13 ∙ 푔(푥) = 4(2푥 + 1)2 − 13(2푥 + 1) = [푠푚푝푙푓푦] … = 16푥2 − 10푥 − 9 b. (푔 ○푓)(푥) = 푔(푓(푥)) = 2 ∙ 푓(푥) + 1 = 2(4푥2 − 13푥) + 1 = 8푥2 − 26푥 + 1 A function can even be “composed” with itself: c. -
April 22 7.1 Recursion Theorem
CSE 431 Theory of Computation Spring 2014 Lecture 7: April 22 Lecturer: James R. Lee Scribe: Eric Lei Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor. An interesting question about Turing machines is whether they can reproduce themselves. A Turing machine cannot be be defined in terms of itself, but can it still somehow print its own source code? The answer to this question is yes, as we will see in the recursion theorem. Afterward we will see some applications of this result. 7.1 Recursion Theorem Our end goal is to have a Turing machine that prints its own source code and operates on it. Last lecture we proved the existence of a Turing machine called SELF that ignores its input and prints its source code. We construct a similar proof for the recursion theorem. We will also need the following lemma proved last lecture. ∗ ∗ Lemma 7.1 There exists a computable function q :Σ ! Σ such that q(w) = hPwi, where Pw is a Turing machine that prints w and hats. Theorem 7.2 (Recursion theorem) Let T be a Turing machine that computes a function t :Σ∗ × Σ∗ ! Σ∗. There exists a Turing machine R that computes a function r :Σ∗ ! Σ∗, where for every w, r(w) = t(hRi; w): The theorem says that for an arbitrary computable function t, there is a Turing machine R that computes t on hRi and some input. Proof: We construct a Turing Machine R in three parts, A, B, and T , where T is given by the statement of the theorem. -
Fractal Curves and Complexity
Perception & Psychophysics 1987, 42 (4), 365-370 Fractal curves and complexity JAMES E. CUTI'ING and JEFFREY J. GARVIN Cornell University, Ithaca, New York Fractal curves were generated on square initiators and rated in terms of complexity by eight viewers. The stimuli differed in fractional dimension, recursion, and number of segments in their generators. Across six stimulus sets, recursion accounted for most of the variance in complexity judgments, but among stimuli with the most recursive depth, fractal dimension was a respect able predictor. Six variables from previous psychophysical literature known to effect complexity judgments were compared with these fractal variables: symmetry, moments of spatial distribu tion, angular variance, number of sides, P2/A, and Leeuwenberg codes. The latter three provided reliable predictive value and were highly correlated with recursive depth, fractal dimension, and number of segments in the generator, respectively. Thus, the measures from the previous litera ture and those of fractal parameters provide equal predictive value in judgments of these stimuli. Fractals are mathematicalobjectsthat have recently cap determine the fractional dimension by dividing the loga tured the imaginations of artists, computer graphics en rithm of the number of unit lengths in the generator by gineers, and psychologists. Synthesized and popularized the logarithm of the number of unit lengths across the ini by Mandelbrot (1977, 1983), with ever-widening appeal tiator. Since there are five segments in this generator and (e.g., Peitgen & Richter, 1986), fractals have many curi three unit lengths across the initiator, the fractionaldimen ous and fascinating properties. Consider four. sion is log(5)/log(3), or about 1.47. -
I Want to Start My Story in Germany, in 1877, with a Mathematician Named Georg Cantor
LISTENING - Ron Eglash is talking about his project http://www.ted.com/talks/ 1) Do you understand these words? iteration mission scale altar mound recursion crinkle 2) Listen and answer the questions. 1. What did Georg Cantor discover? What were the consequences for him? 2. What did von Koch do? 3. What did Benoit Mandelbrot realize? 4. Why should we look at our hand? 5. What did Ron get a scholarship for? 6. In what situation did Ron use the phrase “I am a mathematician and I would like to stand on your roof.” ? 7. What is special about the royal palace? 8. What do the rings in a village in southern Zambia represent? 3)Listen for the second time and decide whether the statements are true or false. 1. Cantor realized that he had a set whose number of elements was equal to infinity. 2. When he was released from a hospital, he lost his faith in God. 3. We can use whatever seed shape we like to start with. 4. Mathematicians of the 19th century did not understand the concept of iteration and infinity. 5. Ron mentions lungs, kidney, ferns, and acacia trees to demonstrate fractals in nature. 6. The chief was very surprised when Ron wanted to see his village. 7. Termites do not create conscious fractals when building their mounds. 8. The tiny village inside the larger village is for very old people. I want to start my story in Germany, in 1877, with a mathematician named Georg Cantor. And Cantor decided he was going to take a line and erase the middle third of the line, and take those two resulting lines and bring them back into the same process, a recursive process. -
Monoids: Theme and Variations (Functional Pearl)
University of Pennsylvania ScholarlyCommons Departmental Papers (CIS) Department of Computer & Information Science 7-2012 Monoids: Theme and Variations (Functional Pearl) Brent A. Yorgey University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/cis_papers Part of the Programming Languages and Compilers Commons, Software Engineering Commons, and the Theory and Algorithms Commons Recommended Citation Brent A. Yorgey, "Monoids: Theme and Variations (Functional Pearl)", . July 2012. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_papers/762 For more information, please contact [email protected]. Monoids: Theme and Variations (Functional Pearl) Abstract The monoid is a humble algebraic structure, at first glance ve en downright boring. However, there’s much more to monoids than meets the eye. Using examples taken from the diagrams vector graphics framework as a case study, I demonstrate the power and beauty of monoids for library design. The paper begins with an extremely simple model of diagrams and proceeds through a series of incremental variations, all related somehow to the central theme of monoids. Along the way, I illustrate the power of compositional semantics; why you should also pay attention to the monoid’s even humbler cousin, the semigroup; monoid homomorphisms; and monoid actions. Keywords monoid, homomorphism, monoid action, EDSL Disciplines Programming Languages and Compilers | Software Engineering | Theory and Algorithms This conference paper is available at ScholarlyCommons: https://repository.upenn.edu/cis_papers/762 Monoids: Theme and Variations (Functional Pearl) Brent A. Yorgey University of Pennsylvania [email protected] Abstract The monoid is a humble algebraic structure, at first glance even downright boring. -
Contents 3 Homomorphisms, Ideals, and Quotients
Ring Theory (part 3): Homomorphisms, Ideals, and Quotients (by Evan Dummit, 2018, v. 1.01) Contents 3 Homomorphisms, Ideals, and Quotients 1 3.1 Ring Isomorphisms and Homomorphisms . 1 3.1.1 Ring Isomorphisms . 1 3.1.2 Ring Homomorphisms . 4 3.2 Ideals and Quotient Rings . 7 3.2.1 Ideals . 8 3.2.2 Quotient Rings . 9 3.2.3 Homomorphisms and Quotient Rings . 11 3.3 Properties of Ideals . 13 3.3.1 The Isomorphism Theorems . 13 3.3.2 Generation of Ideals . 14 3.3.3 Maximal and Prime Ideals . 17 3.3.4 The Chinese Remainder Theorem . 20 3.4 Rings of Fractions . 21 3 Homomorphisms, Ideals, and Quotients In this chapter, we will examine some more intricate properties of general rings. We begin with a discussion of isomorphisms, which provide a way of identifying two rings whose structures are identical, and then examine the broader class of ring homomorphisms, which are the structure-preserving functions from one ring to another. Next, we study ideals and quotient rings, which provide the most general version of modular arithmetic in a ring, and which are fundamentally connected with ring homomorphisms. We close with a detailed study of the structure of ideals and quotients in commutative rings with 1. 3.1 Ring Isomorphisms and Homomorphisms • We begin our study with a discussion of structure-preserving maps between rings. 3.1.1 Ring Isomorphisms • We have encountered several examples of rings with very similar structures. • For example, consider the two rings R = Z=6Z and S = (Z=2Z) × (Z=3Z). -
Lab 8: Recursion and Fractals
Lab 8: Recursion and Fractals In this lab you’ll get practice creating fractals with recursion. You will create a class that has will draw (at least) two types of fractals. Once completed, submit your .java file via Moodle. To make grading easier, please set up your class so that both fractals are drawn automatically when the constructor is executed. Create a Sierpinski triangle Step 1: In your class’s constructor, ask the user how large a canvas s/he wants. Step 2: Write a method drawTriangle that draws a triangle on the screen. This method will take the x,y coordinates of three points as well as the color of the triangle. For now, start with Step 3: In a method createSierpinski, determine the largest triangle that can fit on the canvas (given the canvas’s dimensions supplied by the user). Step 4: Create a method findMiddlePoints. This is the recursive method. It will take three sets of x,y coordinates for the outer triangle. (The first time the method is called, it will be called with the coordinates determined by the createSierpinski method.) The base case of the method will be determined by the minimum size triangle that can be displayed. The recursive case will be to calculate the three midpoints, defined by the three inputs. Then, by using the six coordinates (3 passed in and 3 calculated), the method will recur on the three interior triangles. Once these recursive calls have finished, use drawTriangle to draw the triangle defined by the three original inputs to the method. -
Abstract Recursion and Intrinsic Complexity
ABSTRACT RECURSION AND INTRINSIC COMPLEXITY Yiannis N. Moschovakis Department of Mathematics University of California, Los Angeles [email protected] October 2018 iv Abstract recursion and intrinsic complexity was first published by Cambridge University Press as Volume 48 in the Lecture Notes in Logic, c Association for Symbolic Logic, 2019. The Cambridge University Press catalog entry for the work can be found at https://www.cambridge.org/us/academic/subjects/mathematics /logic-categories-and-sets /abstract-recursion-and-intrinsic-complexity. The published version can be purchased through Cambridge University Press and other standard distribution channels. This copy is made available for personal use only and must not be sold or redistributed. This final prepublication draft of ARIC was compiled on November 30, 2018, 22:50 CONTENTS Introduction ................................................... .... 1 Chapter 1. Preliminaries .......................................... 7 1A.Standardnotations................................ ............. 7 Partial functions, 9. Monotone and continuous functionals, 10. Trees, 12. Problems, 14. 1B. Continuous, call-by-value recursion . ..................... 15 The where -notation for mutual recursion, 17. Recursion rules, 17. Problems, 19. 1C.Somebasicalgorithms............................. .................... 21 The merge-sort algorithm, 21. The Euclidean algorithm, 23. The binary (Stein) algorithm, 24. Horner’s rule, 25. Problems, 25. 1D.Partialstructures............................... ...................... -
Τα Cellular Automata Στο Σχεδιασμό
τα cellular automata στο σχεδιασμό μια προσέγγιση στις αναδρομικές σχεδιαστικές διαδικασίες Ηρώ Δημητρίου επιβλέπων Σωκράτης Γιαννούδης 2 Πολυτεχνείο Κρήτης Τμήμα Αρχιτεκτόνων Μηχανικών ερευνητική εργασία Ηρώ Δημητρίου επιβλέπων καθηγητής Σωκράτης Γιαννούδης Τα Cellular Automata στο σχεδιασμό μια προσέγγιση στις αναδρομικές σχεδιαστικές διαδικασίες Χανιά, Μάιος 2013 Chaos and Order - Carlo Allarde περιεχόμενα 0001. εισαγωγή 7 0010. χάος και πολυπλοκότητα 13 a. μια ιστορική αναδρομή στο χάος: Henri Poincare - Edward Lorenz 17 b. το χάος 22 c. η πολυπλοκότητα 23 d. αυτοοργάνωση και emergence 29 0011. cellular automata 31 0100. τα cellular automata στο σχεδιασμό 39 a. τα CA στην στην αρχιτεκτονική: Paul Coates 45 b. η φιλοσοφική προσέγγιση της διεπιστημονικότητας του σχεδιασμού 57 c. προσομοίωση της αστικής ανάπτυξης μέσω CA 61 d. η περίπτωση της Changsha 63 0101. συμπεράσματα 71 βιβλιογραφία 77 1. Metamorphosis II - M.C.Escher 6 0001. εισαγωγή Η επιστήμη εξακολουθεί να είναι η εξ αποκαλύψεως προφητική περιγραφή του κόσμου, όπως αυτός φαίνεται από ένα θεϊκό ή δαιμονικό σημείο αναφοράς. Ilya Prigogine 7 0001. 8 0001. Στοιχεία της τρέχουσας αρχιτεκτονικής θεωρίας και μεθοδολογίας προτείνουν μια εναλλακτική λύση στις πάγιες αρχιτεκτονικές μεθοδολογίες και σε ορισμένες περιπτώσεις υιοθετούν πτυχές του νέου τρόπου της κατανόησής μας για την επιστήμη. Αυτά τα στοιχεία εμπίπτουν σε τρεις κατηγορίες. Πρώτον, μεθοδολογίες που προτείνουν μια εναλλακτική λύση για τη γραμμικότητα και την αιτιοκρατία της παραδοσιακής αρχιτεκτονικής σχεδιαστικής διαδικασίας και θίγουν τον κεντρικό έλεγχο του αρχιτέκτονα, δεύτερον, η πρόταση μιας μεθοδολογίας με βάση την προσομοίωση της αυτο-οργάνωσης στην ανάπτυξη και εξέλιξη των φυσικών συστημάτων και τρίτον, σε ορισμένες περιπτώσεις, συναρτήσει των δύο προηγούμενων, είναι μεθοδολογίες οι οποίες πειραματίζονται με την αναδυόμενη μορφή σε εικονικά περιβάλλοντα. -
Recursion Theory Notes, Fall 2011 0.1 Introduction
Recursion Theory Notes, Fall 2011 Lecturer: Lou van den Dries 0.1 Introduction Recursion theory (or: theory of computability) is a branch of mathematical logic studying the notion of computability from a rather theoretical point of view. This includes giving a lot of attention to what is not computable, or what is computable relative to any given, not necessarily computable, function. The subject is interesting on philosophical-scientific grounds because of the Church- Turing Thesis and its role in computer science, and because of the intriguing concept of Kolmogorov complexity. This course tries to keep touch with how recursion theory actually impacts mathematics and computer science. This impact is small, but it does exist. Accordingly, the first chapter of the course covers the basics: primitive recur- sion, partial recursive functions and the Church-Turing Thesis, arithmetization and the theorems of Kleene, the halting problem and Rice's theorem, recur- sively enumerable sets, selections and reductions, recursive inseparability, and index systems. (Turing machines are briefly discussed, but the arithmetization is based on a numerical coding of combinators.) The second chapter is devoted to the remarkable negative solution (but with positive aspects) of Hilbert's 10th Problem. This uses only the most basic notions of recursion theory, plus some elementary number theory that is worth knowing in any case; the coding aspects of natural numbers are combined here ingeniously with the arithmetic of the semiring of natural numbers. The last chapter is on Kolmogorov complexity, where concepts of recursion theory are used to define and study notions of randomness and information content.