Partition Function for Quantum Gravity in 4 Dimensions As a 1/N Expansion Godwill Mbiti Kanyolo, Titus Masese

Total Page:16

File Type:pdf, Size:1020Kb

Partition Function for Quantum Gravity in 4 Dimensions As a 1/N Expansion Godwill Mbiti Kanyolo, Titus Masese Partition function for quantum gravity in 4 dimensions as a 1/N expansion Godwill Mbiti Kanyolo, Titus Masese To cite this version: Godwill Mbiti Kanyolo, Titus Masese. Partition function for quantum gravity in 4 dimensions as a 1/N expansion. 2021. hal-03335930v2 HAL Id: hal-03335930 https://hal.archives-ouvertes.fr/hal-03335930v2 Preprint submitted on 7 Sep 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License Partition function for quantum gravity in 4 dimensions as a 1/ expansion N Godwill Mbiti Kanyolo1, ∗ and Titus Masese2,3, † 1The University of Electro-Communications, Department of Engineering Science, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 2Research Institute of Electrochemical Energy (RIECEN), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan 3AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), Yoshidahonmachi, Sakyo-ku, Kyoto-shi 606-8501, Japan Quantum gravity is the solution ascribed to rendering the geometric description of classi- cal gravity, in any dimensions, completely consistent with principles of quantum theory. The serendipitous theoretical discovery that black holes are thermodynamical objects that must participate in the second law has led to these purely gravitational objects to be dubbed, ‘the hydrogen atom for quantum gravity’, analogous to the atomic spectrum of hydrogen, effectively used by Neils Bohr and his contemporaries to successfully for- mulate quantum mechanics in the early 20th century. Here, we employ the temperature and entropy formulae describing Schwarzschild black holes to consider the emergence of Einstein Field Equations from a complex-Hermitian structure, [Ricci tensor √ 1 Yang-Mills field strength], where the gravitational degrees of freedom are the SU(± N−) colors with N Z 0 and a condensate comprising color pairs, k = N/2, appropri- ately coupled to∈ the≥ Yang-Mills gauge field. The foundations of our approach reveal the complex-Hermitian structure is analogous to Cayley-Dickson algebras, which aids in formulating the appropriate action principle for our formalism. The SU(N) gauge group is broken into an effective SU(4) SO(4) SO(1, 3) field theory on the tangent space with two terms: the Einstein-Hilbert→ action↔ and a Gauss-Bonnet topological term. Moreover, since topologically classifying all n = 4 (dimensional) Riemannian manifolds is not a clear-cut endeavor, we only consider the Euclidean path integral as the sum over manifolds with distinct topologies, h Z 0 homeomorphic to connected sums of an arbitrary number of n = 4-spheres and∈ h number≥ of n = 4-tori. Consequently, the par- tition function adopts a reminiscent form of the sum of the vacuum Feynman diagrams for a large = exp(βM/2) theory, provided = βM/2 = πN is the Schwarzschild black hole entropy,N β = 8πGM is the inverse temperature,S G is gravitational constant, M is the black hole mass and horizon area, = 2GβM = 4πGN is pixelated in units of 4πG. This leads us to conclude that theA partition function for quantum gravity is equivalent to the vacuum Feynman diagrams of a yet unidentified large theory in n = 4 dimensions. Our approach also sheds new light on the asymptoticN behavior of dark matter-dominated galaxy rotation curves (the empirical baryonic Tully-Fisher re- lation) and emergent gravity in condensed matter systems with defects such as layered materials with cationic vacancies as topological defects. CONTENTS 2. Defining the central mass 13 3. Constraint 2 14 I. Introduction 2 C. Lagrangian density 16 II. Notation and Nomenclature 4 IV. Results 18 A. Group scalars and vectors (tensors) 4 A. Generating all mass terms 18 B. Introduction to p forms 7 B. Quantum gravity 19 C. Group scalars and vectors (p forms) 10 C. 1/ expansion 19 N D. Topology 20 III. Theory 11 1. Old quantum condition 20 A. Motivation 11 2. Entropy as an adiabatic invariant 20 B. Equations of motion 12 3. Random acceleration 21 1. Constraint 1 12 4. Gauss-Bonnet theorem 22 5. Euler characteristic, χ4 = χ2 22 E. Average energy of manifolds 23 ∗ [email protected] V. Ramifications 23 † [email protected] A. Fermion/boson picture 23 2 B. Asymptotic behavior in galaxy rotation curves 25 are not entirely guaranteed to be more than an anal- C. Layered materials with cationic vacancies 27 ogy.(Dougherty and Callender, 2016) Nonetheless, consistency with well-tested ther- VI. Discussion 30 modynamical behavior(Isi et al., 2021), coupled Acknowledgements 32 with experiments using analogue gravitational systems(Jacquet et al., 2020; Steinhauer, 2014) offer a References 32 robust test for the correctness of the results, albeit with major unresolved problems such as the black hole infor- mation paradox(Almheiri et al., 2021; Hawking, 1976b) I. INTRODUCTION related to the apparent violation of information conser- vation in such systems(Hawking, 2005), and the nature The gravitational field in general relativity has of the black hole microstates.(Bekenstein, 2008) In par- a geometric description that, on one hand avails a ticular, according to the no-hair theorem(Thorne et al., myriad of visual cues which aid to build physicists’ 2000), a charged-rotating (Kerr-Newman) black hole intuitions on the nature of space-time(Thorne et al., is completely characterized by its mass (M), charge 2000), but on the other hand, notoriously does not lend (Q) and angular momentum (L), implying that black itself to renormalization.(Doboszewski and Linnemann, holes are the ‘simplest’ objects in the universe, with no 2018; Feynman et al., 2018; Hamber, 2008; Shomer, other internal degrees of freedom. Moreover, Birkhoff’s 2007; Thorne et al., 2000; Zee, 2010) This has led theorem(Israel, 1967; Jebsen, 2005) guarantees that to theoretic descriptions of gravity as an emer- the simplest such black holes are static, uncharged and gent phenomenon garnering some traction(Jacobson, non-rotating (Schwarszchild) black holes. While these 1995; Kleinert, 1987; Konopka et al., 2008; Lee et al., theorems are consistent with classical general relativity, 2013; Markopoulou and Smolin, 2004; Oh et al., 2018; semi-classical approaches to black hole thermodynamics Padmanabhan, 2010; Swingle and Van Raamsdonk, pioneered by Hawking(Hawking, 1974, 1976a, 1975) 2014; Van Raamsdonk, 2010; Verlinde, 2011) over quan- introduce a quantum field theory in a fixed space-time tum field theoretic approaches since emergence appears background, leading to the serendipitous conclusion that to by-pass the need for renormalization.(Burgess, 2004; black holes not only are black bodies with a temperature, Linnemann and Visser, 2017) Arguments for a successful T = κ/2πkB proportional to their surface gravity, κ, quantum theory of gravity range from the need to under- and entropy, = /4G proportional to their surface S A stand the nature of cosmic inflation(Hartle and Hawking, area, , where G is the gravitational constant and kB 1983) and black holes(Hawking, 1976a,b, 2005), to aes- is Boltzmann’sA constant, but also pack the maximum thetic considerations in favor of the unification of gravity amount of information possible within a given space, with gauge symmetries in the Standard Model of particle often referred to as the Bekenstein bound.(Bekenstein, physics.(Ross, 2003) 2005; Bousso, 1999) The Bekenstein bound, coupled Employing a semi-classical approach, Bekenstein and with the no-hair theorem, already implies an apparent his contemporaries showed that black holes are thermo- contradiction, namely that the ‘simplest’ objects in the dynamical objects that must participate in the second universe simultaneously harbor the most amount of law.(Bardeen et al., 1973; Bekenstein, 1973; Hawking, information. 1974, 1975) As a consequence, some proponents of emer- However, the black hole information paradox is a gent gravity have argued that gravity in general relativ- far more insidious problem than the aforementioned ity may not be as fundamental as the other gauge the- apparent contradiction, since black hole entropy and ories after all, since Boltzmann’s investigations demon- temperature require the black hole to eventually evap- strated that the second law is statistical, as it emerges orate by Unruh-Hawking radiation.(Hawking, 1974; from underlying microscopic physics.(Jacobson, 1995; Unruh, 1977) In particular, the radiation is essentially Padmanabhan, 2010; Verlinde, 2011) Nonetheless, these a black body spectrum in a mixed quantum state. considerations have led to black holes being dubbed, ‘the Whence, according to the semi-classical approach, hydrogen atom for quantum gravity’(Corda and Feleppa, quantum objects in a pure quantum state which fall 2019; ’t Hooft, 2016), setting up black hole thermody- into a black hole will eventually escape as Unruh- namics as an indispensable tool, analogous to the atomic Hawking radiation in a mixed state via particle-pair spectrum of hydrogen, effectively used by Neils Bohr
Recommended publications
  • Uncertainty Relation on a World Crystal and Its Applications to Micro Black Holes
    PHYSICAL REVIEW D 81, 084030 (2010) Uncertainty relation on a world crystal and its applications to micro black holes Petr Jizba,1,2,* Hagen Kleinert,1,† and Fabio Scardigli3,‡ 1ITP, Freie Universita¨t Berlin, Arnimallee 14 D-14195 Berlin, Germany 2FNSPE, Czech Technical University in Prague, Brˇehova´ 7, 115 19 Praha 1, Czech Republic 3Leung Center for Cosmology and Particle Astrophysics (LeCosPA), Department of Physics, National Taiwan University, Taipei 106, Taiwan (Received 17 December 2009; published 16 April 2010) We formulate generalized uncertainty relations in a crystal-like universe—a ‘‘world crystal’’—whose lattice spacing is of the order of Planck length. In the particular case when energies lie near the border of the Brillouin zone, i.e., for Planckian energies, the uncertainty relation for position and momenta does not pose any lower bound on involved uncertainties. We apply our results to micro black holes physics, where we derive a new mass-temperature relation for Schwarzschild micro black holes. In contrast to standard results based on Heisenberg and stringy uncertainty relations, our mass-temperature formula predicts both a finite Hawking’s temperature and a zero rest-mass remnant at the end of the micro black hole evaporation. We also briefly mention some connections of the world-crystal paradigm with ’t Hooft’s quantization and double special relativity. DOI: 10.1103/PhysRevD.81.084030 PACS numbers: 04.70.Dy, 03.65. w À I. INTRODUCTION from numerical computations. One may, however, inves- tigate the consequences of taking the lattice no longer as a Recent advances in gravitational and quantum physics mere computational device, but as a bona fide discrete indicate that in order to reconcile the two fields with each network, whose links define the only possible propagation other, a dramatic conceptual shift is required in our under- directions for signals carrying the interactions between standing of spacetime.
    [Show full text]
  • Emergent Gravity As the Nematic Dual of Lorentz-Invariant Elasticity
    SMR 1646 - 12 ___________________________________________________________ Conference on Higher Dimensional Quantum Hall Effect, Chern-Simons Theory and Non-Commutative Geometry in Condensed Matter Physics and Field Theory 1 - 4 March 2005 ___________________________________________________________ Emergent gravity as the nematic dual of Lorentz-invariant Elasticity Johannes ZAANEN Stanford Univ., Stanford, U.S.A. ___________________________________________________________________ These are preliminary lecture notes, intended only for distribution to participants. EmergentEmergent gravitygravity asas thethe nematicnematic dualdual ofof LorentzLorentz--invariantinvariant ElasticityElasticityTalk Jan Zaanen Hagen Kleinert Sergei Mukhin Zohar Nussinov Vladimir Cvetkovic 1 Emergent Einstein Gravity c 3 S =− dV −g R + S 16πG ∫ matter Einstein’s space time = the Lorentz invariant topological nematic superfluid (at least in 2+1D) A medium characterized by: - emergent general covariance - absence of torsion- and compressional rigidity - presence of curvature rigidity (topological order) 2 Plan of talk 1. Plasticity (defected elasticity) and differential geometry 2. Fluctuating order and high Tc superconductivity 3. Dualizing non-relativistic quantum elasticity 3.a Quantum nematic orders 3.b Superconductivity: dual Higgs is Higgs 4. The quantum nematic world crystal and Einstein’s space time 3 Quantum-elasticity: basics Quantum elastic action, isotropic medium ν ⎡ 2 2 2 2 2 2⎤ S = µ u + 2u + u + ()u + u + ()∂τ u + ()∂τ u ⎣⎢ xx xy yy 1−ν xx yy x y ⎦⎥ Shear modulus µ, Poisson ratio ν, compression modulus κ = µ()1 + ν /1()− ν 2 = µ ρ = = = ()∂ + ∂ c ph 2 / 1, h 1, uab a ub b ua /2 Describes transversal- (T) and longitudinal (L) phonon, 2 2 ⎡⎛ q ⎞ ⎛ q ⎞ ⎤ S = µ ⎢⎜ + ω 2 ⎟ | uT |2 +⎜ + ω 2 ⎟ | uL |2⎥ ⎣⎝ 2 ⎠ ⎝ 1−ν ⎠ ⎦ 4 Elasticity and topology: the dislocation J.M.
    [Show full text]
  • Arxiv:0912.2253V2 [Hep-Th] 19 Dec 2009 ‡ † ∗ Rcsi Ellratmt 1,1,1,1,15]
    Uncertainty relation on world crystal and its applications to micro black holes Petr Jizba,1,2, ∗ Hagen Kleinert,1, † and Fabio Scardigli3, ‡ 1ITP, Freie Universit¨at Berlin, Arnimallee 14 D-14195 Berlin, Germany 2FNSPE, Czech Technical University in Prague, B˘rehov´a7, 115 19 Praha 1, Czech Republic 3Leung Center for Cosmology and Particle Astrophysics (LeCosPA), Department of Physics, National Taiwan University, Taipei 106, Taiwan We formulate generalized uncertainty relations in a crystal-like universe whose lattice spacing is of the order of Planck length — “world crystal”. In the particular case when energies lie near the border of the Brillouin zone, i.e., for Planckian energies, the uncertainty relation for position and momenta does not pose any lower bound on involved uncertainties. We apply our results to micro black holes physics, where we derive a new mass-temperature relation for Schwarzschild micro black holes. In contrast to standard results based on Heisenberg and stringy uncertainty relations, our mass-temperature formula predicts both a finite Hawking’s temperature and a zero rest-mass remnant at the end of the micro black hole evaporation. We also briefly mention some connections of the world crystal paradigm with ’t Hooft’s quantization and double special relativity. PACS numbers: 04.70.Dy, 03.65.-w I. INTRODUCTION tions. One may, however, investigate the consequences of taking the lattice no longer as a mere computational Recent advances in gravitational and quantum physics device, but as a bona-fide discrete network, whose links indicate that in order to reconcile the two fields with define the only possible propagation directions for sig- each other, a dramatic conceptual shift is required in nals carrying the interactions between fields sitting on our understanding of spacetime.
    [Show full text]
  • Three Duality Symmetries Between Photons and Cosmic String Loops, and Macro and Micro Black Holes
    Symmetry 2015, 7, 2134-2149; doi:10.3390/sym7042134 OPEN ACCESS symmetry ISSN 2073-8994 www.mdpi.com/journal/symmetry Article Three Duality Symmetries between Photons and Cosmic String Loops, and Macro and Micro Black Holes David Jou 1;2;*, Michele Sciacca 1;3;4;* and Maria Stella Mongiovì 4;5 1 Departament de Física, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain 2 Institut d’Estudis Catalans, Carme 47, Barcelona 08001, Spain 3 Dipartimento di Scienze Agrarie e Forestali, Università di Palermo, Viale delle Scienze, Palermo 90128, Italy 4 Istituto Nazionale di Alta Matematica, Roma 00185 , Italy 5 Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica (DICGIM), Università di Palermo, Viale delle Scienze, Palermo 90128, Italy; E-Mail: [email protected] * Authors to whom correspondence should be addressed; E-Mails: [email protected] (D.J.); [email protected] (M.S.); Tel.: +34-93-581-1658 (D.J.); +39-091-23897084 (M.S.). Academic Editor: Sergei Odintsov Received: 22 September 2015 / Accepted: 9 November 2015 / Published: 17 November 2015 Abstract: We present a review of two thermal duality symmetries between two different kinds of systems: photons and cosmic string loops, and macro black holes and micro black holes, respectively. It also follows a third joint duality symmetry amongst them through thermal equilibrium and stability between macro black holes and photon gas, and micro black holes and string loop gas, respectively. The possible cosmological consequences of these symmetries are discussed. Keywords: photons; cosmic string loops; black holes thermodynamics; duality symmetry 1. Introduction Thermal duality relates high-energy and low-energy states of corresponding dual systems in such a way that the thermal properties of a state of one of them at some temperature T are related to the properties of a state of the other system at temperature 1=T [1–6].
    [Show full text]
  • Verlinde's Emergent Gravity and Whitehead's Actual Entities
    The Founding of an Event-Ontology: Verlinde's Emergent Gravity and Whitehead's Actual Entities by Jesse Sterling Bettinger A Dissertation submitted to the Faculty of Claremont Graduate University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate Faculty of Religion and Economics Claremont, California 2015 Approved by: ____________________________ ____________________________ © Copyright by Jesse S. Bettinger 2015 All Rights Reserved Abstract of the Dissertation The Founding of an Event-Ontology: Verlinde's Emergent Gravity and Whitehead's Actual Entities by Jesse Sterling Bettinger Claremont Graduate University: 2015 Whitehead’s 1929 categoreal framework of actual entities (AE’s) are hypothesized to provide an accurate foundation for a revised theory of gravity to arise compatible with Verlinde’s 2010 emergent gravity (EG) model, not as a fundamental force, but as the result of an entropic force. By the end of this study we should be in position to claim that the EG effect can in fact be seen as an integral sub-sequence of the AE process. To substantiate this claim, this study elaborates the conceptual architecture driving Verlinde’s emergent gravity hypothesis in concert with the corresponding structural dynamics of Whitehead’s philosophical/scientific logic comprising actual entities. This proceeds to the extent that both are shown to mutually integrate under the event-based covering logic of a generative process underwriting experience and physical ontology. In comparing the components of both frameworks across the epistemic modalities of pure philosophy, string theory, and cosmology/relativity physics, this study utilizes a geomodal convention as a pre-linguistic, neutral observation language—like an augur between the two theories—wherein a visual event-logic is progressively enunciated in concert with the specific details of both models, leading to a cross-pollinized language of concepts shown to mutually inform each other.
    [Show full text]
  • Arxiv:1607.00955V1 [Gr-Qc] 4 Jul 2016 ML Second Law of Planetary Motion (Figure 1)
    Thermal Time and Kepler's Second Law∗ Deepak Vaidy National Institute of Technology, Karnataka (Dated: September 26, 2018) It is shown that a recent result regarding the average rate of evolution of a dynamical system at equilibrium in combination with the quantization of geometric areas coming from LQG, implies the validity of Kepler's Second Law of planetary motion. INTRODUCTION Ehrenfest effect and the rate of dynamical evolution of a system - i.e. the number of distinguishable (orthog- One of the leading contenders for a theory of quan- onal) states a given system transitions through in each tum gravity is the field known as Loop Quantum Grav- unit of time. The last of these is also the subject of ity (LQG) [1]. A fundamental result of this approach to- the Margolus-Levitin theorem [17] according to which the wards reconciling geometry and quantum mechanics, is rate of dynamical evolution of a macroscopic system with the quantization of geometric degrees of freedom such as fixed average energy (E), has an upper bound (ν?) given areas and volumes [2,3]. LQG predicts that the area of by: any surface is quantized in units of the Planck length 2E squared l2. ν ≤ (1) p ? h Despite its many impressive successes, in for instance, solving the riddle of black hole entropy [4,5] or in under- Note that ν? is the maximum possible rate of dy- standing the evolution of geometry near classical singu- namical evolution, not the average or mean rate, and larities such as at the Big Bang or at the center of black also that in [17] the bound is determined by the aver- P holes [6,7,8], LQG is yet to satisfy the primary criteria age energy: E = cnEnj ni of a system in a state P n for any successful theory of quantum gravity - agreement jΨi = n cnj ni, where fj nig is a basis of energy eigen- between predictions of the quantum gravity theory and states of the given system.
    [Show full text]
  • The Emergence of Gauge Invariance: the Stay-At-Home Gauge Versus Local–Global Duality
    The emergence of gauge invariance: the stay-at-home gauge versus local{global duality. J. Zaanen∗ and A.J. Beekman Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, P. O. Box 9506, 2300 RA Leiden, The Netherlands (Dated: August 13, 2011) In condensed matter physics gauge symmetries other than the U(1) of electromagnetism are of an emergent nature. Two emergence mechanisms for gauge symmetry are well established: the way these arise in Kramers{Wannier type local{global dualities, and as a way to encode local constraints encountered in (doped) Mott insulators. We demonstrate that these gauge structures are closely related, and appear as counterparts in either the canonical or field-theoretical language. The restoration of symmetry in a disorder phase transition is due to having the original local variables subjected to a coherent superposition of all possible topological defect configurations, with the effect that correlation functions are no longer well-defined. This is completely equivalent to assigning gauge freedom to those variables. Two cases are considered explicitly: the well-known vortex duality in bosonic Mott insulators serves to illustrate the principle. The acquired wisdoms are then applied to the less familiar context of dualities in quantum elasticity, where we elucidate the relation between the quantum nematic and linearized gravity. We reflect on some deeper implications for the emergence of gauge symmetry in general. PACS numbers: 11.25.Tq, 05.30.Rt, 04.20.Cv, 71.27. I. INTRODUCTION. ality) language. The case is very simple and we will illustrate it in section II with the most primitive of all many-particle systems governed by continuous symme- Breaking symmetry is easy but making symmetry is try: the Bose-Hubbard model at zero chemical poten- hard: this wisdom applies to global symmetry but not tial, or alternatively the Abelian-Higgs duality associ- to local symmetry.
    [Show full text]
  • Arxiv:2012.09158V2 [Gr-Qc] 5 Apr 2021 Quantum Cosmology With
    Quantum Cosmology with Dynamical Vacuum in a Minimal-Length Scenario M. F. Gusson, A. Oakes O. Gon¸calves,∗ R. G. Furtado, †‡ J. C. Fabris and J. A. Nogueira§ Universidade Federal do Esp´ırito Santo – Ufes Vit´oria, Esp´ırito Santo, 29.075-910, Brasil Abstract In this work, we consider effects of the dynamical vacuum in quan- tum cosmology in presence of a minimum length introduced by the GUP (generalized uncertainty principle) related to the modified commutation ~ relation [X,ˆ Pˆ] := i . We determine the wave function of the Uni- 1 βPˆ2 − verse ψqp(ξ,t), which is solution of the modified Wheeler-DeWitt equa- tion in the representation of the quasi-position space, in the limit where the scale factor of the Universe is small. Although ψqp(ξ,t) is a physi- cally acceptable state it is not a realizable state of the Universe because ψqp(ξ,t) has infinite norm, as in the ordinary case with no minimal length. PACS numbers: 98.80.Qc, 04.60.-m, 04.50.Kd, Keywords: Minimal length; generalized uncertainty principle; quantum gravity; quantum cos- mology; dynamical vacuum. arXiv:2012.09158v2 [gr-qc] 5 Apr 2021 1 Introduction The Standard Cosmological Model (SCM) is based on an expanding universe which has a very hot and dense origin. The extrapolation of the SCM for very early times leads to energy scales deep in the Planck regime and, strictly speaking, the expanding universe would have a singular initial state. On the other hand, in order to explain many features of the observed Universe today, a period of short but rapid, almost exponential, expansion, which is called inflationary phase, is necessary in the very early Universe.
    [Show full text]
  • Explaining Phenomenologically Observed Space-Time Flatness
    Explaining Phenomenologically Observed Spacetime Flatness Requires New Fundamental Scale Physics D. L. Bennett Brookes Institute for Advanced Studies, Bøgevej 6, 2900 Hellerup, Denmark [email protected] H. B. Nielsen The Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen Ø [email protected] February 27, 2018 Abstract The phenomenologically observed flatness - or near flatness - of spacetime cannot be understood as emerging from continuum Planck (or sub-Planck) scales using known physics. Using dimensional ar- guments it is demonstrated that any immaginable action will lead to Christoffel symbols that are chaotic. We put forward new physics in the form of fundamental fields that spontaneously break translational invariance. Using these new fields as coordinates we define the met- ric in such a way that the Riemann tensor vanishes identically as a Bianchi identity. Hence the new fundamental fields define a flat space. General relativity with curvature is recovered as an effective theory at larger scales at which crystal defects in the form of disclinations come into play as the sources of curvature. arXiv:1306.2963v1 [gr-qc] 12 Jun 2013 1 1 Introduction We address the fundamental mystery of why the spacetime that we experi- ence in our everyday lives is so nearly flat. More provocatively one could ask why the macroscopic spacetime in which we are immersed doesn’t consist of spacetime foam[1, 2]. This question is approached by putting up a NO-GO for having the spacetime flatness that we observe phenomenologically. This NO-GO builds upon an argumentation that starts with the assumption that spacetime is a continuum down to arbitrarily small scales a with a<<lP l where lP l is the Planck length.
    [Show full text]
  • Quantum Mechanics on a Planck Lattice and Black Hole Physics
    5th International Workshop DICE2010 IOP Publishing Journal of Physics: Conference Series 306 (2011) 012026 doi:10.1088/1742-6596/306/1/012026 Quantum Mechanics on a Planck Lattice and Black Hole Physics Petr Jizba1, Hagen Kleinert2, Fabio Scardigli3 1 FNSPE, Czech Technical University in Prague, B¸rehov¶a7, 115 19 Praha 1, Czech Republic 2 ITP, Freie UniversitÄatBerlin, Arnimallee 14 D-14195 Berlin, Germany 3 Leung Center for Cosmology and Particle Astrophysics (LeCosPA), Department of Physics, National Taiwan University, Taipei 106, Taiwan E-mail: [email protected] E-mail: [email protected] E-mail: [email protected] Abstract. We study uncertainty relations as formulated in a crystal-like universe, whose lat- tice spacing is of order of Planck length. For Planck energies, the uncertainty relation for position and momenta has a lower bound equal to zero. Connections of this result with double special relativity, and with 't Hooft's deterministic quantization proposal, are briefly pointed out. We then apply our formulae to micro black holes, and we derive a new mass-temperature relation for Schwarzschild (micro) black holes. In contrast to standard results based on Heisen- berg and stringy uncertainty relations, we obtain both a ¯nite Hawking's temperature and a zero rest-mass remnant at the end of the micro black hole evaporation. 1. Introduction The idea of a discrete structure of the space-time can be traced back to the mid 50's when John Wheeler presented his space-time foam concept [1]. Recent advances in physics indicate that the notion of space-time as a continuum is indeed likely to be superseded at the Planck scale, where gravitation and strong-electro-weak interactions become comparable in strength.
    [Show full text]
  • Vortex Duality in Higher Dimensions
    Vortex duality in higher dimensions PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE UNIVERSITEIT LEIDEN, OP GEZAG VAN RECTOR MAGNIFICUS PROF. MR. P. F. VAN DER HEIJDEN, VOLGENS BESLUIT VAN HET COLLEGE VOOR PROMOTIES TE VERDEDIGEN OP DONDERDAG 1 DECEMBER 2011 KLOKKE 13.45 UUR DOOR Aron Jonathan Beekman GEBOREN TE GOUDA IN 1979 Promotiecommissie Promotor: Prof. dr. J. Zaanen Overige leden: Prof. dr. N. Nagaosa Universiteit van Tokyo Prof. dr. A. Sudbø Norges teknisk-naturvitenskaplige universitet Trondheim Prof. dr. P.H. Kes Prof. dr. J.M. van Ruitenbeek Dr. K.E. Schalm Prof. dr. E.R. Eliel Dit werk maakt deel uit van het onderzoekprogramma van de Stichting voor Fundamenteel Onderzoek der Materie (FOM), die deel uit maakt van de Ne- derlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). Dit werk is tevens ondersteund vanuit een NWO Spinozapremie. This work is part of the research programme of the Foundation for Funda- mental Research on Matter (FOM), which is part of the Netherlands Organi- sation for Scientific Research (NWO). This work has also been supported via a NWO Spinoza grant. Typeset in LATEX cover design: Rolf de Jonker / Studio Loupe cover photo: Sander Foederer Casimir PhD series, Delft–Leiden 2011-24 ISBN 978-90-8593-113-3 On April 8, 1911, in the physics laboratory located at ‘het Steenschuur’ in Leiden, Heike Kamerlingh Onnes and his coworkers Cornelis Dorsman, Ger- rit Jan Flim and Gilles Holst, measured the instantaneous drop in resistivity of mercury when they cooled it below 4.2 degrees above absolute zero. They were the first people in the world to have beheld the phenomenon of super- conductivity, and thereby the first macroscopic quantum fluid.
    [Show full text]
  • Quantum Gravitational Decoherence from Fluctuating Minimal Length And
    ARTICLE https://doi.org/10.1038/s41467-021-24711-7 OPEN Quantum gravitational decoherence from fluctuating minimal length and deformation parameter at the Planck scale ✉ ✉ Luciano Petruzziello 1,2 & Fabrizio Illuminati 1,2 Schemes of gravitationally induced decoherence are being actively investigated as possible mechanisms for the quantum-to-classical transition. Here, we introduce a decoherence 1234567890():,; process due to quantum gravity effects. We assume a foamy quantum spacetime with a fluctuating minimal length coinciding on average with the Planck scale. Considering deformed canonical commutation relations with a fluctuating deformation parameter, we derive a Lindblad master equation that yields localization in energy space and decoherence times consistent with the currently available observational evidence. Compared to other schemes of gravitational decoherence, we find that the decoherence rate predicted by our model is extremal, being minimal in the deep quantum regime below the Planck scale and maximal in the mesoscopic regime beyond it. We discuss possible experimental tests of our model based on cavity optomechanics setups with ultracold massive molecular oscillators and we provide preliminary estimates on the values of the physical parameters needed for actual laboratory implementations. 1 Dipartimento di Ingegneria Industriale, Università degli Studi di Salerno, Fisciano, (SA), Italy. 2 INFN, Sezione di Napoli, Gruppo collegato di Salerno, Fisciano, ✉ (SA), Italy. email: [email protected]; fi[email protected] NATURE COMMUNICATIONS | (2021) 12:4449 | https://doi.org/10.1038/s41467-021-24711-7 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24711-7 ollowing early pioneering studies1–4, the investigation of the gravitational effects are deemed to be comparably important.
    [Show full text]