Literaturverzeichnis

[1] Aad, G. et al. (ATLAS Collaboration): ATLAS pixel detector electronics and sensors. In: JINST 3 (2008), S. P07007. doi: 10.1088/1748-0221/3/07/P07007 [2] Aad, G. et al. (ATLAS Collaboration): The ATLAS Experiment at the CERN Large Collider. In: JINST 3 (2008), S. S08003. doi: 10.1088/1748-0221/3/08/S08003 [3] Aad, G. et al. (ATLAS Collaboration): Performance of the ATLAS b-tagging algorithms. ATL-PHYS-PUB-2009-018, ATL-COM-PHYS-2009-206. 2009 [4] Aad, G. et al. (ATLAS Collaboration): Drift Time Measurement in the ATLAS Liquid Argon Electromagnetic Calorimeter using Cosmic . In: Eur. Phys. J. C70 (2010), S. 755. doi: 10.1140/epjc/s10052-010-1403-6 [5] Aad, G. et al.: Searches for√ heavy long-lived sleptons and R- with the ATLAS detector in pp collisions at s = 7 TeV. In: Physics Letters B 720 (2013), S. 277. doi: 10.1016/j.physletb.2013.02.015 [6] Aad, Georges et al. (ATLAS): Electron performance measurements with the ATLAS detector using the 2010 LHC -proton collision data. In: Eur. Phys. J. C72 (2012), S. 1909. doi: 10.1140/epjc/s10052-012-1909-1 [7] Aamodt, K. et al. (ALICE Collaboration): The ALICE experiment at the CERN LHC. In: JINST 3 (2008), S. S08002. doi: 10.1088/1748-0221/3/08/S08002 [8] Aarnio, P.A. et al. (DELPHI Collaboration): The DELPHI detector at LEP. In: Nucl. Inst. and Meth. A 303 (1991), S. 233. doi: 10.1016/0168-9002(91)90793-P [9] Abachi, S. et al. (D0 Collaboration): The D0 Detector. In: Nucl. Inst. and Meth. A 338 (1994), S. 185. doi: 10.1016/0168-9002(94)91312-9 [10] Abbasi, R. et al. (IceCube Collaboration): The IceCube data acquisition system: Signal capture, digitization, and timestamping. In: Nucl. Inst. and Meth. A 601 (2009), S. 294 [11] Abbasi, R. et al. (IceCube Collaboration): IceTop: The surface component of IceCube. In: Nucl. Inst. and Meth. A 700 (2013), S. 188. doi: 10.1016/j.nima.2012.10.067 [12] Abdurashitov et al. (SAGE): Results from SAGE. In: Phys. Lett. B328 (1994), S. 234. doi: 10.1016/0370-2693(94)90454-5 [13] Abe, F. et al. (CDF Collaboration): The CDF detector: an overview. In: Nucl. Inst. and Meth. A 271 (1988), S. 387. doi: 10.1016/0168-9002(88)90298-7 [14] Abe, K. et al. (SLD Collaboration): Measurements of R(b) with impact parameters and displaced vertices. In: Phys. Rev. D53 (1996), S. 1023. doi: 10.1103/PhysRevD.53.1023 [15] Abe, T. et al.: R&D status of HAPD. In: International Workshop on New Photon Detectors (PD09), Shinshu Univ. Matsumoto Japan, 2009, S. PoS(PD09)014. http://pos.sissa.it/ archive/conferences/090/014/PD09_014.pdf [16] Abe, T. et al. (Belle-II Collaboration): Belle II Technical Design Report. In: arXiv:1011.0352 (2010) [17] Abelev, B. et al. (ALICE Collaboration): Performance of the ALICE Experi- ment at the CERN LHC. In: Int. J. Mod. Phys. A29 (2014), S. 1430044. doi: 10.1142/S0217751X14300440 [18] Abelev, Betty√ et al. (ALICE): Centrality dependence of π, K, p production in Pb-Pb collisions at sNN = 2.76 TeV. In: Phys. Rev. C88 (2013), S. 044910. doi: 10.1103/Phys- RevC.88.044910 [19] Abgrall, N. et al. (T2K ND280 TPC collaboration): Time Projection Chambers for the T2K Near Detectors. In: Nucl. Inst. and Meth. A 637 (2011), S. 25. doi: 10.1016/j.nima.2011.02.036 [20] Abraham, J. et al. (Pierre Auger Collaboration): Properties and performance of the prototype instrument for the Pierre Auger Observatory. In: Nucl. Inst. and Meth. A 523 (2004), S. 50. doi: 10.1016/j.nima.2003.12.012

© Springer-Verlag Berlin Heidelberg 2016 H. Kolanoski, N. Wermes, Teilchendetektoren, DOI 10.1007/978-3-662-45350-6 866 Literaturverzeichnis

[21] Abraham, J. et al. (Pierre Auger Collaboration): The Fluorescence Detector of the Pierre Auger Observatory. In: Nucl. Inst. and Meth. A 620 (2010), S. 227. doi: 10.1016/j.nima.2010.04.023 [22] Abramowicz, H. et al.: The Response and Resolution of an Iron Calorimeter for Hadronic and Electromagnetic Showers between 10 GeV and 140 GeV. In: Nucl. Inst. and Meth. 180 (1981), S. 429. doi: 10.1016/0029-554X(81)90083-5 [23] Abrams, G.S. et al.: The Mark-II Detector for the SLC. In: Nucl. Inst. and Meth. A 281 (1989), S. 55. doi: 10.1016/0168-9002(89)91217-5 [24] Abreu, P et al.: The DELPHI detector at LEP. In: Nucl. Inst. and Meth. 303 (1991), S. 233. doi: 10.1016/0168-9002(91)90793-P [25] Abreu, P. et al. (DELPHI Collaboration): Performance of the DELPHI detector. In: Nucl. Inst. and Meth. A 378 (1996), S. 57. doi: 10.1016/0168-9002(96)00463-9 [26] Abt, I. et al. (H1 Collaboration): The H1 detector at HERA. In: Nucl. Inst. and Meth. A 386 (1997), S. 310. doi: 10.1016/S0168-9002(96)00893-5 [27] Abt, I. et al. (H1 Collaboration): The Tracking, calorimeter and detectors of the H1 experiment at HERA. In: Nucl. Inst. and Meth. A 386 (1997), S. 348. doi: 10.1016/S0168- 9002(96)00894-7 [28] Achterberg, A. et al. (IceCube Collaboration): First year performance of the IceCube telescope. In: Astropart. Phys. 26 (2006), S. 155 [29] Achterberg, A. et al. (The IceCube Collaboration): Detection of Atmospheric Muon with the IceCube 9-String Detector. In: Phys. Rev. D 76 (2007), S. 027101. doi: 10.1103/PhysRevD.76.027101 [30] Acosta, D. et al.: Results Of Prototype Studies For A Spaghetti Calorimeter. In: Nucl. Inst. and Meth. A 294 (1990), S. 193 [31] Acosta, D. et al.: Detection of muons with a lead/scintillating-fiber calorimeter. In: Nucl. Inst. and Meth. A 320 (1992), S. 128 [32] Acquafredda, R. et al.: The OPERA experiment in the CERN to Gran Sasso neutrino beam. In: JINST 4 (2009), S. P04018. doi: 10.1088/1748-0221/4/04/P04018 [33] Adachi, I. et al.: Study of 144-channel multi-anode hybrid avalanche photo-detector for the Belle RICH counter. In: Nucl. Inst. and Meth. A 623 (2010), S. 285. doi: 10.1016/j.nima.2010.02.223 [34] Adam, I. et al. (BaBar-DIRC Collaboration): The DIRC particle identification sys- tem for the BaBar experiment. In: Nucl. Inst. and Meth. A 538 (2005), S. 281. doi: 10.1016/j.nima.2004.08.129 [35] Adam, W. et al.: The forward ring imaging Cherenkov detector of DELPHI. In: Nucl. Inst. and Meth. A 338 (1994), S. 284. doi: 10.1016/0168-9002(94)91314-5 [36] Adam, W. et al.: The Ring imaging Cherenkov detector of DELPHI. In: Nucl. Inst. and Meth. A 343 (1994), S. 68. doi: 10.1016/0168-9002(94)90535-5 [37] Adam, W. et al.: The ring imaging Cherenkov detectors of DELPHI. In: IEEE Trans. Nucl. Sci. 42 (1995), S. 499. doi: 10.1109/23.467922 [38] Adam, W. et al.: Radiation hard diamond sensors for future tracking applications. In: Nucl. Inst. and Meth. A 565 (2006), S. 278 [39] Adamova, D. et al. (CERES Collaboration): The CERES/NA45 Radial Drift Ti- me Projection Chamber. In: Nucl. Inst. and Meth. A 593 (2008), S. 203. doi: 10.1016/j.nima.2008.04.056 [40] Adeva, B. et al.: The construction of the L3 experiment. In: Nucl. Inst. and Meth. A 289 (1990), S. 35 [41] Adinolfi, M. et al.: Performance of the LHCb RICH detector at the LHC. In: Eur. Phys. J. C73 (2013), S. 2431. doi: 10.1140/epjc/s10052-013-2431-9 [42] Adloff, C. et al. (CALICE): Tests of a particle flow algorithm with CALICE test beam data. In: JINST 6 (2011), S. P07005. doi: 10.1088/1748-0221/6/07/P07005 Literaturverzeichnis 867

[43] Adloff, C. et al. (CALICE): Calorimetry for Lepton Collider Experiments – CALICE results and activities. In: arXiv:1212.5127 (2012) [44] Adragna, P. et al. (ATLAS Collaboration): Testbeam studies of production modules of the ATLAS Tile Calorimeter. In: Nucl. Inst. and Meth. A 606 (2009), S. 362. doi: 10.1016/j.nima.2009.04.009 [45] Adriani, O. et al.: The Pamela experiment ready for flight. In: Nucl. Inst. and Meth. A 572 (2007), S. 471. doi: 10.1016/j.nima.2006.10.316 [46] Adriani, O. et al. (PAMELA Collaboration): An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV. In: Nature 458 (2009), S. 607. doi: 10.1038/nature07942 [47] Adriani, O. et al.: A statistical procedure for the identification of positrons in the PAMELA experiment. In: Astropart. Phys. 34 (2010), S. 1. doi: 10.1016/j.astropartphys.2010.04.007 [48] Affolder, A.A. et al. (CDF Collaboration): CDF central outer tracker. In: Nucl. Inst. and Meth. A 526 (2004), S. 249. doi: 10.1016/j.nima.2004.02.020 [49] Agakichiev, G. et al.: Performance of the CERES electron spectrometer in the CERN SPS lead beam. In: Nucl. Inst. and Meth. A 371 (1996), S. 16. doi: 10.1016/0168-9002(95)01135- 8 [50] Agakishiev, G. et al. (CERES Collaboration): Performance of the CERES electron spec- trometer in the CERN SPS lead beam. In: Nucl. Inst. and Meth. A 371 (1996), S. 16. doi: 10.1016/0168-9002(95)01135-8 [51] Ahmed, S.N.: Physics and Engineering of Radiation Detection. Academic Press, 2007 [52] Ahmet, K. et al.: The OPAL detector at LEP. In: Nucl. Inst. and Meth. A 305 (1991), S. 275. doi: 10.1016/0168-9002(91)90547-4 [53] Ahn, H.S. et al.: The Cosmic Ray Energetics and Mass (CREAM) instrument. In: Nucl. Inst. and Meth. A 579 (2007), S. 1034. doi: 10.1016/j.nima.2007.05.203 [54] Ahn, H.S. et al.: Measurements of cosmic-ray secondary nuclei at high energies with the first flight of the CREAM balloon-borne experiment. In: Astropart.Phys. 30 (2008), S. 133. doi: 10.1016/j.astropartphys.2008.07.010 [55] Aker, E. et al. (Crystal Barrel Collaboration): The Crystal Barrel spectrometer at LEAR. In: Nucl. Inst. and Meth. A 321 (1992), S. 69. doi: 10.1016/0168-9002(92)90379-I [56] Akerib, D.S. et al. (CDMS Collaboration): First results from the cryogenic dark matter search in the Soudan Underground Lab. In: Phys. Rev. Lett. 93 (2004), S. 211301. doi: 10.1103/PhysRevLett.93.211301 [57] Akesson, T. et al.: Properties of A Fine-Sampling Uranium-Copper Scintillator Hadron Ca- lorimeter. In: Nucl. Inst. and Meth. A 241 (1985), S. 17. doi: 10.1016/0168-9002(85)90513-3 [58] Akhmadaliev, S. et al.: Hadron energy reconstruction for the ATLAS calorimetry in the framework of the non-parametrical method ATLAS. In: Nucl. Inst. and Meth. A 480 (2002), S. 508. doi: 10.1016/S0168-9002(01)01229-3 [59] Albrecht, E. et al.: Operation, optimisation, and performance of the DELPHI RICH detectors. In: Nucl. Inst. and Meth. A 433 (1999), S. 47. doi: 10.1016/S0168-9002(99)00320- 4 [60] Albrecht, H. et al. (ARGUS Collaboration): ARGUS: A Universal Detector at DORIS-II. In: Nucl. Inst. and Meth. A 275 (1989), S. 1. doi: 10.1016/0168-9002(89)90334-3 [61] Albrecht, H. et al. (ARGUS Collaboration): Physics with ARGUS. In: Phys. Rept. 276 (1996), S. 223. doi: 10.1016/S0370-1573(96)00008-7 [62] Albrecht, H. et al. (HERA-B Outer Tracker Group): Aging studies for the large honey- comb drift tube system of the Outer Tracker of HERA-B. In: Nucl. Inst. and Meth. A 515 (2003), S. 155. doi: 10.1016/j.nima.2003.08.144 [63] Albrecht, H. et al. (HERA-B Outer Tracker Group): The Outer Tracker Detector of the HERA-B Experiment. Part I: Detector. In: Nucl. Inst. and Meth. A 555 (2005), S. 310 [64] Albrecht, H. et al. (HERA-B Outer Tracker Group): The Outer Tracker Detector of the HERA-B Experiment. Part III. Operation and performance. In: Nucl. Inst. and Meth. A 868 Literaturverzeichnis

576 (2007), S. 312. doi: 10.1016/j.nima.2007.03.025 [65] Alfonsi, M. et al.: High-rate particle triggering with triple-GEM detector. In: Nucl. Inst. and Meth. A 518 (2004), S. 106 [66] Alici, A. (ALICE Collaboration): The MRPC-based ALICE Time-Of-Flight detec- tor: status and performance. In: Nucl. Inst. and Meth. A 706 (2013), S. 29. doi: 10.1016/j.nima.2012.05.004 [67] Alig,R.C.;Bloom, S.; Struck, C. W.: Scattering by ionization and phonon emission in semiconductors. In: Phys. Rev. B 22 (1980), S. 5565. doi: 10.1103/PhysRevB.22.5565 [68] Alikhanian, A.I.; Avakina, K.M; Garibian, G.M.; Lorikian, M.P.; Shikhlia, K.K.: Detection of X-Ray Transition Radiation by Means of a Spark Chamber. In: Phys. Rev. Lett. 25 (1970), S. 635 [69] Allison, W.W.M.; Cobb, J.H.: Relativistic Charged Particle Identification By Energy Loss. In: Ann. Rev. Nucl. Part. Sci. 30 (1980), S. 253 [70] Allison, W.W.M.; Wright, P.R.S.: The Physics of Charged Particle Identification dE/dx, Cerenkov and Transition Radiation. In: [323] S. 371. – doi: 10.1142/9789814355988_0006 [71] Alme, J. et al.: The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events. In: Nucl. Inst. and Meth. A 622 (2010), S. 316. doi: 10.1016/j.nima.2010.04.042 [72] Alvarez, L.W. et al.: Search for Hidden Chambers in the Pyramids. In: Science 167 (1970), Nr. 3919, S. 832. doi: 10.1126/science.167.3919.832 [73] Alves Jr., A.A. et al. (LHCb Collaboration): The LHCb Detector at the LHC. In: JINST 3 (2008), S. S08005. doi: 10.1088/1748-0221/3/08/S08005 [74] Amaldi, U.: Fluctuations in Calorimetry Measurements. In: Physics Scripta 23 (1981), S. 409. doi: 10.1088/0031-8949/23/4A/012 [75] Amerio, S. et al. (ICARUS Collaboration): Design, construction and tests of the ICARUS T600 detector. In: Nucl. Inst. and Meth. A 527 (2004), S. 329. doi: 10.1016/j.nima.2004.02.044 [76] Anderson, C.D.: The Positive Electron. In: Phys. Rev. 43 (1933), Mar, S. 491. doi: 10.1103/PhysRev.43.491 [77] Andivahis, L. et al.: A Precise calibration of the SLAC 8-GeV spectrometer using the floating wire technique. SLAC-PUB-5753. 1992. http://slac.stanford.edu/pubs/slacpu bs/5750/slac-pub-5753.pdf [78] Andresen, A. et al. (ZEUS Calorimeter Group): Construction and beam test of the ZEUS forward and rear calorimeter. In: Nucl. Inst. and Meth. A 309 (1991), S. 101. doi: 10.1016/0168-9002(91)90095-8 [79] Andricek, L.; Lutz, G.; Richter,R.;Reiche, M.: Processing of ultra-thin silicon sensors for future e+e- linear collider experiments. In: IEEE Trans. Nucl. Sci. 51 (2004), S. 1117. doi: 10.1109/TNS.2004.829531 [80] Andrieu, B. et al. (H1 Calorimeter Group): The H1 liquid argon calorimeter system,. In: Nucl. Inst. and Meth. A 336 (1993), S. 460 [81] Andrieu, B. et al. (H1 Calorimeter Group): Electron / pion separation with the H1 LAr calorimeters. In: Nucl. Inst. and Meth. A 344 (1994), S. 492. doi: 10.1016/0168- 9002(94)90870-2 [82] Andronic, A.; Wessels, J.P.: Transition Radiation Detectors. In: Nucl. Inst. and Meth. A 666 (2012), S. 130. doi: 10.1016/j.nima.2011.09.041 [83] Angloher, G. et al.: Results from 730 kg days of the CRESST-II Dark Matter Search. In: Eur. Phys. J. C72 (2012), S. 1971. doi: 10.1140/epjc/s10052-012-1971-8 [84] Antokhonov, B.A. et al.: A new 1-km2 EAS Cherenkov array in the Tunka valley. In: Nucl. Inst. and Meth. A 639 (2011), S. 42. doi: 10.1016/j.nima.2010.09.142 Literaturverzeichnis 869

[85] Antoni, T. et al. (KASCADE Collaboration): The Cosmic ray experiment KASCADE. In: Nucl. Inst. and Meth. A 513 (2003), S. 490. doi: 10.1016/S0168-9002(03)02076-X [86] Aoki, S. et al.: The Fully Automated Emulsion Analysis System. In: Nucl. Inst. and Meth. B 51 (1990), S. 466. doi: 10.1016/0168-583X(90)90569-G [87] Apel, W.D. et al.: KASCADE-Grande – Contributions to the 32nd International Cosmic Ray Conference, Beijing, August, 2011. In: arXiv:1111.5436 (2011) [88] Appuhn, R.D. et al. (H1 SPACAL Group): The H1 lead/scintillating-fibre calorimeter. In: Nucl. Inst. and Meth. A 386 (1997), S. 397. doi: 10.1016/S0168-9002(96)01171-0 [89] Aprile, E. et al. (XENON100 Collaboration): The XENON100 Dark Matter Experiment. In: Astropart. Phys. 35 (2012), S. 573. doi: 10.1016/j.astropartphys.2012.01.003 [90] Arai, Y. et al.: Developments of SOI monolithic pixel detectors. In: Nucl. Inst. and Meth. A 623 (2010), S. 186. doi: 10.1016/j.nima.2010.02.190 [91] Arfken, G.B.; Weber, H.J.: Mathematical Methods for Physicists. San Diego, New York : Academic Press, 2012. – ISBN 978–0123846549 [92] Artru, X.; Yodh, G.B.; Mennessier, G.: Practical theory of the multilayered transition radiation detector. In: Phys. Rev. D12 (1975), S. 1289. doi: 10.1103/PhysRevD.12.1289 [93] Ashcroft, N.W.; Mermin, N.D.: Solid State Physics. Fort Worth : Saunders, 1976 [94] Ashcroft, N.W.; Mermin, N.D.: Festkörperphysik. München, Wien : Oldenburg, 2005 [95] Askariyan, G. A.: Excess Negative Charge of an Electron-Photon Shower and its Coherent Radio Emission. In: Sov. Phys. JETP 14 (1962), S. 441 [96] Assamagan, K.A. et al. (ATLAS Collaboration): Muons in the calorimeters: Energy loss corrections and muon tagging. ATL-PHYS-PUB-2009-009. 2009. http://cds.cern.ch/re cord/1169055/files/ATL-PHYS-PUB-2009-009.pdf [97] ATLAS Collaboration: Impact parameter-based b-tagging algorithms in the 7 TeV collision data with the ATLAS detector: the TrackCounting and JetProb algorithms. CERN Document Server: ATLAS-CONF-2010-041. http://cds.cern.ch/record/1277681. Version: 2010 [98] ATLAS Collaboration: Particle Identification Performance of the ATLAS Transition Radiation Tracker. CERN Document Server: ATLAS-CONF-2011-128. http://cds.cern.c h/record/1383793. Version: 2011 [99] Atwood, W. et al.: Performance of the ALEPH time projection chamber. In: Nucl. Inst. and Meth. A 306 (1991), S. 446 [100] Atwood, W.B. et al. (LAT Collaboration): The Large Area Telescope on the Fer- mi Gamma-ray Space Telescope Mission. In: Astrophys.J. 697 (2009), S. 1071. doi: 10.1088/0004-637X/697/2/1071 [101] Aubert, B. et al. (BABAR Collaboration): The BaBar detector. In: Nucl. Inst. and Meth. A 479 (2002), S. 1. doi: 10.1016/S0168-9002(01)02012-5 [102] Avdeichikov,V;Fomichev, A.S.; Jakobsson,B;Rodin, A.M; Ter-Akopian, G.M.: Range–energy relation, range straggling and response function of CsI(Tl), BGO and GSO(Ce) for light ions. In: Nucl. Inst. and Meth. A 439 (2000), S. 158. doi: 10.1016/S0168-9002(99)00944-4 [103] Avdeichikov, V.; Jakobsson, B.; Nikitin, V.A.; Nomokonov, P.V.; Wegner, A.: Syste- matics in the light response of BGO, CsI(Tl) and GSO(Ce) scintillators to charged particles. In: Nucl. Inst. and Meth. A 484 (2002), S. 251. doi: 10.1016/S0168-9002(01)01963-5 [104] Avery, Paul: Fitting Theory Writeups and References. http://www.phys.ufl.edu/~avery /fitting.html [105] Avoni, G. et al.: The electromagnetic calorimeter of the HERA-B experiment. In: Nucl. Inst. and Meth. A 580 (2007), S. 1209. doi: 10.1016/j.nima.2007.06.030 [106] Axen, D. et al.: The Lead liquid argon sampling calorimeter of the SLD detector. In: Nucl. Inst. and Meth. A 328 (1993), S. 472. doi: 10.1016/0168-9002(93)90664-4 870 Literaturverzeichnis

[107] Ayzenshtat, A.I.; Budnitsky, D.L.; Koretskaya, O.B.; Okaevich, L.S.; Novikov, V.A. et al.: GaAs as a material for particle detectors. In: Nucl. Inst. and Meth. A 494 (2002), S. 120. doi: 10.1016/S0168-9002(02)01455-9 [108] Bacci, C. et al.: Results from the analysis of data collected with a 50-m**2 RPC carpet at YangBaJing. In: Nucl. Inst. and Meth. A 456 (2000), S. 121. doi: 10.1016/S0168- 9002(00)00976-1 [109] Bachmann, S. et al.: Charge amplification and transfer processes in the gas electron mul- tiplier. In: Nucl. Inst. and Meth. A 438 (1999), S. 376. doi: 10.1016/S0168-9002(99)00820-7 [110] Bagaturia, Y. et al. (HERA-B Inner Tracker Collaboration): Studies of aging and HV break down problems during development and operation of MSGC and GEM detectors for the inner tracking system of HERA-B. In: Nucl. Inst. and Meth. A 490 (2002), S. 223 [111] Bailey, R. et al.: First Measurement of Efficiency and Precision of CCD Detectors for High-Energy Physics. In: Nucl. Inst. and Meth. 213 (1983), S. 201. doi: 10.1016/0167- 5087(83)90413-1 [112] Baird, A. et al.: A Fast high resolution track trigger for the H1 experiment. In: IEEE Trans. Nucl. Sci. 48 (2001), S. 1276. doi: 10.1109/23.958765 [113] Balagura, V. et al.: The first-level trigger of the HERA-B experiment: Performance and expectations. In: Nucl. Inst. and Meth. A 494 (2002), S. 526. doi: 10.1016/S0168- 9002(02)01544-9 [114] Ballabriga,R.;Campbell, M.; Heijne, E.H.M.; Llopart, X.; Tlustos, L.: The Me- dipix3 Prototype, a Pixel Readout Chip Working in Single Photon Counting Mode With Improved Spectrometric Performance. In: IEEE Trans. Nucl. Sci. NS-54 (2007), S. 1824. doi: 10.1109/TNS.2007.906163 [115] Ballin, J.A. et al.: Monolithic Active Pixel Sensors (MAPS) in a quadruple well technology for nearly 100 per cent fill factor and full CMOS pixels. In: Sensors 8 (2008), S. 5336 [116] Barbarino, G.C.; Cerrito, L.; Paternoster, G.; Patricelli, S.: Measurement of the Second Coordinate in a Drift Chamber Using the Charge Division Method. In: Nucl. Inst. and Meth. 179 (1981), S. 353. doi: 10.1016/0029-554X(81)90060-4 [117] Barbero, M. et al. (RD42 Collaboration): Development of diamond tracking detectors for high luminosity experiments at LHC. 2007. http://cds.cern.ch/record/1009654/files/ lhcc-2007-002.pdf [118] Barbero, M. et al. (RD42 Collaboration): Development of Diamond Tracking Detectors for High Luminosity Experiments at the LHC. 2008. http://cds.cern.ch/record/1098155/ files/lhcc-2008-005.pdf [119] Barbosa Marinho, P.R. et al. (LHCb Collaboration): LHCb: Outer tracker technical design report. 2001. http://cds.cern.ch/record/519146/files/cer-2275568.pdf [120] Bardeen, J.; Shockley, W.: Deformation Potentials and Mobilities in Nonpolar Crystals. In: Phys. Rev. 80 (1950), S. 72 [121] Barlow, A. et al.: Instrumentation and Beam Diagnostics in the ISR. In: 8th International Conference on High-Energy Accelerators (HEACC 71), CERN, 1971, S. 426. http://cds.c ern.ch/record/309851 [122] Barlow, R.J.: Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences. Wiley, 1989 [123] Barnes, V.E. et al.: Observation of a Hyperon with Strangeness Minus Three. In: Phys. Rev. Lett. 12 (1964), S. 204. doi: 10.1103/PhysRevLett.12.204 [124] Barnett, R.M. et al. (Particle Data Group): Review of particle physics. In: Phys.Rev. D54 (1996), S. 1. doi: 10.1103/PhysRevD.54.1 [125] Barrelet, E. et al.: A Two-dimensional, Single-Photoelectron Drift Detector for Che- renkov Ring Imaging. In: Nucl. Inst. and Meth. 200 (1982), S. 219. doi: 10.1016/0167- 5087(82)90434-3 Literaturverzeichnis 871

[126] Barszczak, T.: Images of Super-Kamiokande events from tscan. http://www.ps.uci.edu /~tomba/sk/tscan/pictures.html [127] Basolo, S. et al.: A 20 kpixels CdTe photon-counting imager using XPAD chip. In: Nucl. Inst. and Meth. A 589 (2008), S. 268. doi: 10.1016/j.nima.2008.02.042 [128] Battistoni, G. et al.: The FLUKA code: Description and benchmarking. In: AIP Conf. Proc. 896 (2007), S. 31. doi: 10.1063/1.2720455 [129] Bauer, C. et al.: The HERA-B vertex detector system. In: Nucl. Inst. and Meth. A 453 (2000), S. 103. doi: 10.1016/S0168-9002(00)00614-8 [130] Baur, R. et al.: The CERES RICH detector system. In: Nucl. Inst. and Meth. A 343 (1994), S. 87. doi: 10.1016/0168-9002(94)90537-1

[131] Becker, C. et al.: Gate-controlled diodes for characterization of the Si-SiO2 interface with respect to surface effects of silicon detectors. In: Nucl. Inst. and Meth. A 444 (2000), S. 605. doi: 10.1016/S0168-9002(99)01177-8 [132] Becquerel, H.: Nobel Lecture: On Radioactivity, a New Property of Matter. http://ww w.nobelprize.org/nobel_prizes/physics/laureates/1903/becquerel-lecture.html [133] Behnke, E. et al. (COUPP Collaboration): First Dark Matter Search Results from a 4-kg CF3I Bubble Chamber Operated in a Deep Underground Site. In: Phys.Rev. D86 (2012), S. 052001. doi: 10.1103/PhysRevD.86.052001 [134] Behnke, T. et al.: The International Linear Collider Technical Design Report – Volume 1: Executive Summary. In: arXiv:1306.6327 (2013) [135] Behnke, T. et al.: The International Linear Collider Technical Design Report – Volume 4: Detectors. In: arXiv:1306.6329 (2013) [136] Beitzel, V. et al.: The Transition radiation detector for ZEUS. In: Nucl. Inst. and Meth. A 323 (1992), S. 135. doi: 10.1016/0168-9002(92)90279-D [137] Belau, E. et al.: Charge Collection in Silicon Strip Detectors. In: Nucl. Inst. and Meth. 214 (1983), S. 253. doi: 10.1016/0167-5087(83)90591-4 [138] Bell, K.W. et al.: Vacuum phototriodes for the CMS electromagnetic calorimeter endcap. In: IEEE Trans. Nucl. Sci. 51 (2004), S. 2284. doi: 10.1109/TNS.2004.836053 [139] Bencivenni, G. et al.: Performance of a test prototype for MONOLITH. In: Nucl. Inst. and Meth. A 461 (2001), S. 319. doi: 10.1016/S0168-9002(00)01232-8 [140] Bencivenni, G. et al.: A triple GEM detector with pad readout for high rate charged particle triggering. In: Nucl. Inst. and Meth. A 488 (2002), S. 493. doi: 10.1016/S0168- 9002(01)01764-8 [141] Benitez, J. et al.: Status of the Fast Focusing DIRC (fDIRC). In: Nucl. Inst. and Meth. A 595 (2008), S. 104. doi: 10.1016/j.nima.2008.07.042 [142] Berger, M. J. et al.: XCOM: Photon Cross Sections Database (interactive). http://phys ics.nist.gov/PhysRefData/Xcom/Text/XCOM.html [143] Berger, M.J.; Coursey, J.S.; Zucker, M.A.; Chang, J.: ESTAR, PSTAR, and ASTAR: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Pro- tons, and Helium Ions (version 1.2.3). 2005. – Tabellen und grafische Darstellungen sind interaktiv verfügbar: http://www.nist.gov/pml/data/star [144] Beringer, J. et al. (Particle Data Group): Review of Particle Physics (RPP). In: Phys.Rev. D86 (2012), S. 010001. doi: 10.1103/PhysRevD.86.010001 [145] Bernabei, R. et al. (DAMA Collaboration): First results from DAMA/LIBRA and the combined results with DAMA/NaI. In: Eur. Phys. J. C56 (2008), S. 333. doi: 10.1140/epjc/s10052-008-0662-y [146] Bernlöhr, K.: Simulation of imaging atmospheric Cherenkov telescopes with CORSIKA and sim_telarray. In: Astropart. Phys. 30 (2008), S. 149. doi: 10.1016/j.astropartphys.2008.07.009 [147] Bernstein, D. et al.: The MARK-III Spectrometer. In: Nucl. Inst. and Meth. A 226 (1984), S. 301. doi: 10.1016/0168-9002(84)90043-3 872 Literaturverzeichnis

[148] Bertolin, A. et al.: The RPC system of the OPERA experiment. In: Nucl. Inst. and Meth. A 602 (2009), S. 631. doi: 10.1016/j.nima.2008.12.071 [149] Bethe, H.: Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. In: Annalen Phys. 5 (1930), S. 325. doi: 10.1002/andp.19303970303 [150] Bethe, H.; Heitler, W.: On the Stopping of fast particles and on the creation of positive electrons. In: Proc.Roy.Soc.AA146 (1934), S. 83. doi: 10.1098/rspa.1934.0140 [151] Bettini, A.: Introduction to Elementary Particle Physics. Cambridge University Press, 2008. – ISBN 9781139472555 [152] Betts,W.;Gong,W.;Hjort, E.; Wieman, H.: Studies of Several Wire and Pad Confi- gurations for the STAR TPC. STAR Note 263. 1996. http://drupal.star.bnl.gov/STAR/ starnotes/public/sn0263 [153] Beynon, J.D.E.; Lamb, D.R.: Charge-Coupled Devices and their Applications. McGraw- Hill, 1980 [154] Biagi, S.: Magboltz – transport of electrons in gas mixtures. http://consult.cern.ch/wr iteup/magboltz/ [155] Biagi, S.F.: Monte Carlo simulation of electron drift and diffusion in counting gases under the influence of electric and magnetic fields. In: Nucl. Inst. and Meth. A 421 (1999), S. 234. doi: 10.1016/S0168-9002(98)01233-9 [156] Bibber, K. van: Scaling up the search for dark matter. In: Physics 2 (2009), Jan, S. 2. doi: 10.1103/Physics.2.2 [157] Bichsel, H.: Multiple Scattering of . In: Phys. Rev. 112 (1958), S. 182. doi: 10.1103/PhysRev.112.182 [158] Bichsel, H.: Straggling in thin silicon detectors. In: Rev. Mod. Phys. 60, No. 3 (1988), S. 663 [159] Bichsel, H.: A method to improve tracking and particle identification in TPCs and silicon detectors. In: Nucl. Inst. and Meth. A 562 (2006), S. 154. doi: 10.1016/j.nima.2006.03.009 [160] Bichsel, H.; Groom, D.E.; Klein, S.R.: Passage of particles through matter. In: [621] (2014), S. 398 [161] Biebel, O. et al.: Performance of the OPAL jet chamber. In: Nucl. Inst. and Meth. A 323 (1992), S. 169. doi: 10.1016/0168-9002(92)90284-B [162] Binder, E.: Test eines Flüssig-Argon-Kalorimeters für den H1-Detektor mit Untersuchun- gen zur Kompensation durch Softwaremethoden, Universität Hamburg, Diplomarbeit, 1990. http://www-library.desy.de/preparch/desy/int_rep/f21-90-02.pdf [163] Binkley, M.E. et al.: Aging in large CDF tracking chambers. In: Nucl. Inst. and Meth. A 515 (2003), S. 53. doi: 10.1016/j.nima.2003.08.130 [164] Bionta, R.M. et al.: Observation of a Neutrino Burst in Coincidence with Supernova SN 1987a in the Large Magellanic Cloud. In: Phys. Rev. Lett. 58 (1987), S. 1494. doi: 10.1103/PhysRevLett.58.1494 [165] Birks, J.B.: The Theory and Practice of Scintillation Counting. London : Pergamon Press, 1964 [166] Blackett, P.M.S.: Nobel Lecture: Cloud Chamber Researches in Nuclear Physics and Cos- mic Radiation. http://www.nobelprize.org/nobel_prizes/physics/laureates/1948/bl ackett-lecture.html [167] Blackett, P.M.S.; Lees, D.S.: Investigations with a Wilson Chamber. I. On the Photogra- phy of Artificial Disintegration Collisions. In: Proceedings of the Royal Society of London. Series A 136 (1932), Nr. 829, S. 325. doi: 10.1098/rspa.1932.0084 [168] Blackett, P.M.S.; Occhialini, G.: Photography of Penetrating Corpuscular Radiation. In: Nature 130 (1932), S. 363. doi: 10.1038/130363a0 [169] Blackett, P.M.S.; Occhialini, G.P.S.: Some Photographs of the Tracks of Penetrating Radiation. In: Proc.Roy.Soc.A139 (1933), S. 699. doi: 10.1098/rspa.1933.0048 Literaturverzeichnis 873

[170] Bláha, B. et al.: Electrical properties of semiconducting glass. In: Nucl. Inst. and Meth. A 416 (1998), S. 345. doi: 10.1016/S0168-9002(98)00701-3 [171] Blanc, A.: Recherches sur les mobilites des ions dans les gaz. In: J. Phys. Theor. Appl. 7 (1908), S. 825. doi: 10.1051/jphystap:019080070082501 [172] Blobel, V.; Lohrmann, E.: Statistische und numerische Methoden der Datenanalyse. Teubner Studienbücher, 1998 [173] Bloch, F.: Bremsvermögen von Atomen mit mehreren Elektronen. In: Z. Physik 81 (1933), S. 363 [174] Bloch, F.: Zur Bremsung rasch bewegter Teilchen beim Durchgang durch Materie. In: Ann. Phys. 16 (1933), S. 285 [175] Bloom, E.D.; Feldman, G.J.: Quarkonium. In: Sci. Am. 246 (1982), S. 66. doi: 10.1038/scientificamerican0582-66. – Deutsch in Spektrum d. Wiss. 7/1982 [176] Bloom, E.D.; Peck, C.: Physics with the Crystal Ball Detector. In: Ann. Rev. Nucl. Part. Sci. 33 (1983), S. 143. doi: 10.1146/annurev.ns.33.120183.001043. – SLAC Report SLAC-PUB-3189 [177] Blum,W.;Rolandi, L.; Riegler,W.: Particle detection with drift chambers. Berlin- Heidelberg-New York : Springer, 2008. – ISBN 9783540766834 [178] Blümer, H.: Messungen zur Kalorimetrie von Elektronen und Hadronen, Universiät Dort- mund, Diplomarbeit, 1982 [179] Blümer, J.; Engel,R.;Hörandel, J.R.: Cosmic Rays from the Knee to the Highest Energies. In: Prog. Part. Nucl. Phys. 63 (2009), S. 293. doi: 10.1016/j.ppnp.2009.05.002 [180] Bock, P. et al.: Signal propagation in long wire chambers. In: JINST 7 (2012), S. P09003. doi: 10.1088/1748-0221/7/09/P09003 [181] Bode, H.W.: Network analysis and feedback amplifier design. New York : Van Nostrand, 1945 [182] Boerner, H. et al.: The large cylindrical drift chamber of TASSO. In: Nucl. Inst. and Meth. 176 (1980), S. 151. doi: 10.1016/0029-554X(80)90695-3 [183] Boger, J. et al. (SNO Collaboration): The Sudbury neutrino observatory. In: Nucl. Inst. and Meth. A 449 (2000), S. 172. doi: 10.1016/S0168-9002(99)01469-2 [184] Bohm, G.; Zech, G.: Einführung in Statistik und Messwertanalyse für Physiker. DESY, 2005 http://www-library.desy.de/preparch/books/vstatmp.pdf [185] Bohm, J. et al.: High rate operation and lifetime studies with microstrip gas chambers. In: Nucl. Inst. and Meth. A 360 (1995), S. 34. doi: 10.1016/0168-9002(94)01218-0 [186] Bohr, N.: II. On the Theory of the Decrease of Velocity of Moving Electrified Particles on passing through Matter. In: Phil. Mag. 25 (1913), S. 10. doi: 10.1080/14786440108634305 [187] Bohr, N.: The penetration of atomic particles through matter. Kopenhagen Munksgaard, 1948 (Det kgl. Danske videnskabernes selskab. Mathematisk-fysiske meddelelser. Bd. 18, no. 8) [188] Boie, R.A.; Hrisoho, A.T.; Rehak, P.: Signal Shaping and Tail Cancellation for Gas Proportional Detectors at High Counting Rates. In: IEEE Trans. Nucl. Sci. 28 (1981), S. 603. doi: 10.1016/0029-554X(82)90846-1 [189] Bollinger, L.M.; Thomas, G.E.: Measurement of Time Dependence of Scintillation In- tensity by a Delayed-Coincidence Method. In: Rev. Sci. Instr. 32 (1961), S. 1044. doi: 10.1063/1.1717610 [190] Bolmont, J.; Voigt, B.; Nahnhauer, R. (for the IceCube Collaboration): Very high energy electromagnetic cascades in the LPM regime with IceCube. In: Proc. of the 30th Int. Cosmic Ray Conference, Merida, Mexico Bd. 3, 2007, S. 1245. arXiv:0711.0353 [191] Bondarenko, G. et al.: Limited Geiger-mode microcell silicon photodiode: New results. In: Nucl. Inst. and Meth. A 442 (2000), S. 187. doi: 10.1016/S0168-9002(99)01219-X 874 Literaturverzeichnis

[192] Börner, H.: Die zylindrische Driftkammer des TASSO-Experiments am e+e−-Speicherring PETRA, Universität Bonn, Dissertation, 1981 [193] Bothe,W.: Nobel Lecture: The Coincidence Method. http://www.nobelprize.org/nobel _prizes/physics/laureates/1954/bothe-lecture.html [194] Bothe, W.: Zur Vereinfachung von Koinzidenzzählungen. In: Zeitschrift für Physik 59 (1930), S. 1. doi: 10.1007/BF01337830 [195] Bothe,W.;Kolhörster, W.: Das Wesen der Höhenstrahlung. In: Zeitschrift für Physik 56 (1929), S. 751. doi: 10.1007/BF01340137 [196] Bouhova-Thacker, E.; Lichard,P.;Kostyukhin, V.; Liebig,W.;Limper, M. et al.: Vertex Reconstruction in the ATLAS Experiment at the LHC. ATL-INDET-PUB-2009-001, ATL-COM-INDET-2009-011. 2009 [197] Boyle, P.J.: The Elemental Composition of High-Energy Cosmic Rays: Measurements with TRACER. In: Mod. Phys. Lett. A23 (2008), S. 2031. doi: 10.1142/S0217732308028260 [198] Boyle, W.S.; Smith, G.E.: Charge coupled semiconductor deadapted devices. In: The Bell system technical journal (BSTJ) 49 (1970) [199] Braccini, S. et al.: First results on proton radiography with nuclear emulsion detectors. In: JINST 5 (2010), S. P09001. doi: 10.1088/1748-0221/5/09/P09001 [200] Braem, A.; Joram, C.; Piuz, F.; Schyns, E.; Seguinot, J.: Technology of photoca- thode production. In: Nucl. Inst. and Meth. A 502 (2003), S. 205. doi: 10.1016/S0168- 9002(03)00275-4 [201] Brandelik, R. et al. (TASSO Collaboration): Properties of Hadron Final States in e+e− Annihilation at 13-GeV and 17-GeV Center-Of-Mass Energies. In: Phys. Lett. B83 (1979), S. 261. doi: 10.1016/0370-2693(79)90699-3 [202] Brandt, S.: Datenanalyse mit statischen Methoden und Computerprogrammen. Spektrum, Akad. Verlag, 1999. – ISBN 9783827401588 [203] Brau, J.E.; Jaros, J.A.; Ma, H.: Advances in Calorimetry. In: Ann. Rev. Nucl. Part. Sci. 60 (2010), S. 615. doi: 10.1146/annurev.nucl.012809.104449 [204] Brennan, K.F.: The Physics of Semiconductors. Cambridge University Press, 1999 [205] Breskin, A.; Charpak, G.; Sauli, F.; Atkinson, M.; Schultz, G.: Recent Observations and Measurements with High Accuracy Drift Chambers. In: Nucl. Inst. and Meth. 124 (1975), S. 189. doi: 10.1016/0029-554X(75)90403-6 [206] Breuker, H. et al.: Particle identification with the OPAL jet chamber in the region of the relativistic rise. In: Nucl. Inst. and Meth. A 260 (1987), S. 329. doi: 10.1016/0168- 9002(87)90097-0 [207] Brock, I.C. et al.: Luminosity measurement in the L3 detector at LEP. In: Nucl. Inst. and Meth. A 381 (1996), S. 236. doi: 10.1016/S0168-9002(96)00734-6 [208] Brockmann, R. et al.: Development of a time projection chamber with high two track resolution capability for collider experiments: RD-32 status report. CERN-DRDC-94-10, CERN-RD-32-STATUS-REPORT. 1994. http://cds.cern.ch/record/290990/files/SC 00000064.pdf [209] Bross, A. et al.: The D0 scintillating fiber tracker. In: AIP Conf. Proc. 450 (1998), S. 221 [210] Brown, J.S. et al.: The Mark-III Time-of-flight System. In: Nucl. Inst. and Meth. A 221 (1984), S. 503. doi: 10.1016/0167-5087(84)90058-9 [211] Brückmann, H. et al.: Hadron sampling calorimetry, a puzzle of physics. In: Nucl. Inst. and Meth. A 263 (1988), S. 136. doi: 10.1016/0168-9002(88)91026-1 [212] Budnev, N. et al.: Tunka-25 Air Shower Cherenkov array: The main results. In: Astropart. Phys. 50-52 (2013), S. 18. doi: 10.1016/j.astropartphys.2013.09.006 [213] Burger, J. et al.: The Central jet chamber of the H1 experiment. In: Nucl. Inst. and Meth. A 279 (1989), S. 217. doi: 10.1016/0168-9002(89)91084-X Literaturverzeichnis 875

[214] Burkhardt, H. et al.: The Tasso Gas and Aerogel Cherenkov Counters. In: Nucl. Inst. and Meth. 184 (1981), S. 319. doi: 10.1016/0029-554X(81)90732-1 [215] Buskulic, D. et al. (ALEPH Collaboration): Performance of the ALEPH detector at LEP. In: Nucl. Inst. and Meth. A 360 (1995), S. 481. doi: 10.1016/0168-9002(95)00138-7 [216] Buton, C. et al.: Comparison of three types of XPAD3.2/CdTe single chip hybrids for hard X-ray applications in material science and biomedical imaging. In: Nucl. Inst. and Meth. A 758 (2014), S. 44. doi: 10.1016/j.nima.2014.04.067 [217] Buzhan, P. et al.: An advanced study of silicon photomultiplier. In: ICFA Instrum. Bull. 23 (2001), S. 28. http://www.slac.stanford.edu/pubs/icfa/fall01/paper3/paper3a.html [218] Buzhan, P. et al.: Silicon photomultiplier and its possible applications. In: Nucl. Inst. and Meth. A 504 (2003), S. 48. doi: 10.1016/S0168-9002(03)00749-6 [219] C. Davoisne et al.: Chemical and morphological evolution of a silicate surface under low-energy ion irradiation. In: A&A 482 (2008), S. 541. doi: 10.1051/0004-6361:20078964 [220] CADENCE PSPICE. http://www.cadence.com/products/orcad/pspice_simulation/Pa ges/default.aspx [221] Campbell, M.; Heijne, E.H.M.; Meddeler, G.J.; Pernigotti, E.; Snoeys, W.: A Read- out chip for a 64 x 64 pixel matrix with 15 bit single photon counting. In: IEEE Trans. Nucl. Sci. 45 (1998), S. 751. doi: 10.1109/23.682629 [222] Cardarelli,R.;Santonico,R.;Biagio,A.D.;Lucci, A.: Progress in resistive plate counters. In: Nucl. Inst. and Meth. A 263 (1988), S. 20. doi: 10.1016/0168-9002(88)91011- X [223] Carter, J.R. et al.: The OPAL vertex drift chamber. In: Nucl. Inst. and Meth. A 286 (1990), S. 99. doi: 10.1016/0168-9002(90)90211-N [224] Cassel, D.G. et al.: Design and Construction of the CLEO-II Drift Chamber. In: Nucl. Inst. and Meth. A 252 (1986), S. 325. doi: 10.1016/0168-9002(86)91201-5 [225] Caughey, D.M.; Thomas, R.E.: Carrier Mobilities in Silicon Empirically Related to Do- ping and Field. In: Proc. IEEE 55 (1967), S. 2192 [226] Cavalleri, G.; Gatti, E.; Fabri, G.; Svelto, V.: Extension of Ramo’s theorem as applied to induced charge in semiconductor detectors. In: Nucl. Inst. and Meth. 92 (1971), S. 137. doi: 10.1016/0029-554X(71)90235-7 [227] CERN: MSGC-webpage. https://gdd.web.cern.ch/GDD/msgc.html [228] CERN: RD51-webpage. http://rd51-public.web.cern.ch/rd51-public [229] CERN: High School Teachers at CERN – Bubble Chambers HST2001. http://teachers .web.cern.ch/teachers/materials/bubblechambers.htm. Version: 2001 [230] Cerron Zeballos, E. et al.: A New type of resistive plate chamber: The Multigap RPC. In: Nucl. Inst. and Meth. A 374 (1996), S. 132. doi: 10.1016/0168-9002(96)00158-1 [231] Cherenkov, P.A.: Visible Emission of Clean Liquids by Action of γ Radiation. In: Doklady Akad. Nauk SSSR 2 (1934), S. 451 [232] Cherenkov, P.A.: Visible Radiation Produced by Electron Moving in a Medium with Velocities Exceeding that of Light. In: Phys. Rev. 52 (1937), S. 87. doi: 10.1103/Phys- Rev.52.378 [233] Chamanina, J. et al.: Si-pixel Transition Radiation Detector with Separation of TR-Photon and Particle Track by B-Field. 2000. – Linear Collider Note, published in 2nd ECFA/DESY Study, 1998-2001, p. 959-977 [234] Chamberlain, O.; Segre, E.; Wiegand, C.; Ypsilantis, T.: Observation of Antiprotons. In: Phys.Rev. 100 (1955), S. 947. doi: 10.1103/PhysRev.100.947 [235] Charpak, G.: Nobel Lecture: Electronic Imaging of Ionizing Radiation with Limited Avalan- ches in Gases. http://www.nobelprize.org/nobel_prizes/physics/laureates/1992/ch arpak-lecture.html 876 Literaturverzeichnis

[236] Charpak, G. et al.: First beam test results with Micromegas, a high rate, high resolution detector. In: Nucl. Inst. and Meth. A 412 (1998), S. 47. doi: 10.1016/S0168-9002(98)00311-8 [237] Charpak, G.; Derre, J.; Giomataris, Y.; Rebourgeard, P.: MICROMEGAS, a multi- purpose gaseous detector. In: Nucl. Inst. and Meth. A 478 (2002), S. 26. doi: 10.1016/S0168- 9002(01)01713-2 [238] Charpak, G.; Sauli, F.: High-resolution Electronic Particle Detectors. In: Ann. Rev. Nucl. Part. Sci. 34 (1984), S. 285 [239] Chatrchyan, S. et al. (CMS Collaboration): The CMS experiment at the CERN LHC. In: JINST 3 (2008), S. S08004. doi: 10.1088/1748-0221/3/08/S08004 [240] Chatrchyan, S. et al. (CMS√ Collaboration): Performance of CMS muon reconstruction in pp collision events at s = 7 TeV. In: JINST 7 (2012), S. P10002. doi: 10.1088/1748- 0221/7/10/P10002 [241] Chatrchyan, S. et al. (CMS): The performance of the CMS muon detector in proton- proton collisions at sqrt(s) = 7 TeV at the LHC. In: JINST 8 (2013), S. P11002. doi: 10.1088/1748-0221/8/11/P11002 [242] Chen, W. et al.: Performance of the multianode cylindrical silicon drift detector in the CERES NA45 experiment: First results. In: Nucl. Inst. and Meth. A 326 (1993), S. 273. doi: 10.1016/0168-9002(93)90363-M [243] Cherenkov, P.A.: Nobel Lecture: Radiation of particles moving at a velocity exceeding that of light, and some of the possibilities for their use in experimental physics. http: //www.nobelprize.org/nobel_prizes/physics/laureates/1958/cerenkov-lecture.html [244] Cherry, M.L.: Measurements of the spectrum and energy dependence of x-ray transition radiation. In: Phys. Rev. D 17 (1978), S. 2245. doi: 10.1103/PhysRevD.17.2245 [245] Cherry, M.L.; Hartmann, G.; Müller, D.; Prince, T.A.: Transition radiation from relativistic electrons in periodic radiators. In: Phys. Rev. D 10 (1974), S. 3594. doi: 10.1103/PhysRevD.10.3594 [246] Cherry, M.L.; Mueller, D.; Prince, T.A.: The efficient identification of relativistic particles by transition radiation. In: Nucl. Inst. and Meth. 115 (1974), S. 141. doi: 10.1016/0029-554X(74)90439-X [247] Chirkin, D.; Rhode, W.: Muon Monte Carlo: A High-precision tool for muon propagation through matter. In: arXiv:hep-ph/0407075 (2004)

[248] Christophorou, L.G.; Olthoff, J.K.; Rao, M.V.V.S.: Electron Interactions with CF4. In: Journal of Physical and Chemical Reference Data 25 (1996), September, S. 1341. doi: 10.1063/1.555986 [249] Clemen, M.; Humanic, T.; Kraus, D.; Vilkelis, G.; Rehak, P. et al.: Double particle resolution measured in a silicon drift chamber. In: Nucl. Inst. and Meth. A 316 (1992), S. 283. doi: 10.1016/0168-9002(92)90911-M [250] Cleveland, B.T. et al.: Measurement of the Solar Electron Neutrino Flux with the Homestake Chlorine Detector. In: The Astrophysical Journal 496 (1998), S. 505. http: //stacks.iop.org/0004-637X/496/i=1/a=505 [251] Clevers, R.H.M.: Volume and Temperature Dependence of the 1/f Noise Parameter α in Si. In: Phys. Rev. B 154 (1988), S. 214. doi: 10.1016/0921-4526(89)90071-9 [252] CLIC Collaboration: The Compact Linear Collider (CLIC) Study. http://clic-stu dy.web.cern.ch/CLIC-Study [253] Cobb, J. et al.: Transition Radiators for Electron Identification at the CERN ISR. In: Nucl. Inst. and Meth. 140 (1977), S. 413. doi: 10.1016/0029-554X(77)90355-X [254] Conwell, E.; Weisskopf, V.F.: Theory of Impurity Scattering in Semiconductors. In: Phys. Rev. 77 (1950), S. 388 [255] Cormack, A.M.: Dead-time losses with pulsed beams. In: Nucl. Inst. and Meth. 15 (1962), S. 268. doi: 10.1016/0029-554X(62)90086-1 [256] Cowan, G.: Statistics. In: publiziert in [621] (2014) Literaturverzeichnis 877

[257] Coyle, P. et al.: The DIRC counter: A New type of Particle Identification Device for B Factories. In: Nucl. Inst. and Meth. A 343 (1994), S. 292 [258] Cozza, D. et al.: The CSI-based RICH detector array for the identification of high momen- tum particles in ALICE. In: Nucl. Inst. and Meth. A 502 (2003), S. 101. doi: 10.1016/S0168- 9002(02)02163-0 [259] Cramér, H.: Mathematical Methods of Statistics (PMS-9). Princeton University Press, 1945 (Princeton Landmarks in Mathematics and Physics Series). – ISBN 9780691005478 [260] Craun, R.L.; Smith, D.L.: Analysis of response data for several organic scintillators. In: Nucl. Inst. and Meth. 80 (1970), S. 239 [261] Cravens, J.P. et al. (Super-Kamiokande Collaboration): Solar neutrino measurements in Super-Kamiokande-II. In: Phys.Rev. D78 (2008), S. 032002. doi: 10.1103/Phys- RevD.78.032002 [262] Crawley, H.B. et al.: Characterization and radiation testing of the Harris HS9008RH flash analog-to-digital converter. In: Nucl. Inst. and Meth. A 345 (1994), S. 329. doi: 10.1016/0168-9002(94)91010-3 [263] Creusot, A. (ANTARES Collaboration): The Antares detector. In: Nucl. Inst. and Meth. A 718 (2013), S. 489. doi: 10.1016/j.nima.2012.11.071 [264] Creutz, E. (Hrsg.): Encyclopedia of Physics / Handbuch der Physik. Bd. 45: Nuclear Instrumentation II / Instrumentelle Hilfsmittel der Kernphysik II . Springer, 1958 doi: 10.1007/978-3-642-45903-0 [265] Crittenden, J.A. (ZEUS Calorimeter Group): The performance of the ZEUS calorimeter. In: Proc. 5th International Conference on Calorimetry in High Energy Physics, Brookhaven, NY (USA), 1994, S. 58. http://www-library.desy.de/cgi-bin/showprep.pl?desy94-234 [266] Cronin, G.; Haisty, R.: The preparation of semi-insulating gallium arsenide by chromium doping. In: Journal Electrochem Soc. 111, no 7 (1964), S. 874 [267] CTA Collaboration: CTA – Cherenkov Telescope Array. http://www.cta-observatory .org/ [268] Da Via, C. et al.: Radiation hardness properties of full-3D active edge silicon sensors. In: Nucl. Inst. and Meth. A 587 (2008), S. 243. doi: 10.1016/j.nima.2007.12.027 [269] Da Via, C. et al.: 3D active edge silicon sensors: Device processing, yield and QA for the ATLAS-IBL production. In: Nucl. Inst. and Meth. A 699 (2013), S. 18. doi: 10.1016/j.nima.2012.05.070 [270] Damerell, C.J.S.: CCD vertex detectors in particle physics. In: Nucl. Inst. and Meth. A 342 (1994), S. 78. doi: 10.1016/0168-9002(94)91412-5 [271] Damerell, C.J.S. et al.: A CCD based vertex detector for SLD. In: Nucl. Inst. and Meth. A 288 (1990), S. 236. doi: 10.1016/0168-9002(90)90491-N [272] Danilov, M. et al.: The ARGUS Drift Chamber. In: Nucl. Inst. and Meth. 217 (1983), S. 153. doi: 10.1016/0167-5087(83)90124-2 [273] Danysza, M.; Pniewskia, J.: Delayed disintegration of a heavy nuclear fragment: I. In: Phil. Mag. 44 (1953), S. 348. doi: 10.1080/14786440308520318 [274] Davidek,T;Leitner, R.: Parametrization of the Muon Response in the Tile Calorimeter. CERN-ATL-TILECAL-97-114. 1997. http://cdsweb.cern.ch/record/683578/files/ti lecal-97-114.pdf [275] Davies, H.; Bethe, H.A.; Maximon, L.C.: Theory of Bremsstrahlung and Pair Production. 2. Integral Cross Section for Pair Production. In: Phys. Rev. 93 (1954), S. 788. doi: 10.1103/PhysRev.93.788 [276] Daya Bay Collaboration: Daya Bay Reactor Neutrino Experiment. http://dayabay.i hep.ac.cn [277] De Lellis, G. et al.: Measurement of the fragmentation of Carbon nuclei used in hadron- therapy. In: Nucl. Phys. A 853 (2011), S. 124. doi: 10.1016/j.nuclphysa.2011.01.019 878 Literaturverzeichnis

[278] De Lellis, G.; Ereditato, A.; Niwa, K.: Nuclear Emulsions. In: [315] S. 262. – doi: 10.1007/978-3-642-03606-4_9 [279] Decamp, D. et al. (ALEPH Collaboration): ALEPH: A detector for electron-positron annnihilations at LEP. In: Nucl. Inst. and Meth. A 294 (1990), S. 121. doi: 10.1016/0168- 9002(90)91831-U [280] DELHI Collaboration: DELPHI. http://delphiwww.cern.ch/delfigs/export/pubde t4.html [281] Dell’Orso, M. (CDF Collaboration): The CDF Silicon Vertex Trigger. In: Nucl. Phys. Proc. Suppl. 156 (2006), S. 139. doi: 10.1016/j.nuclphysbps.2006.02.135 [282] Dell’Orso, M.; Ristori, L.: VLSI structures for track finding. In: Nucl. Inst. and Meth. A 278 (1989), S. 436. doi: 10.1016/0168-9002(89)90862-0 [283] Demtröder,W.: Experimentalphysik 1: Mechanik und Wärme. Springer Verlag, 2006. – ISBN 9783540299349 [284] Derrick, M. et al.: Design and construction of the ZEUS barrel calorimeter. In: Nucl. Inst. and Meth. A 309 (1991), S. 77. doi: 10.1016/0168-9002(91)90094-7 [285] Deutscher Wetterdienst: Standardatmosphäre. http://www.deutscher-wetterdiens t.de/lexikon/index.htm?ID=S&DAT=Standardatmosphaere. Version: 29.3.2014 [286] Dhawan, S.; Majka, R.: Development Status Of Microchannel Plate Photomultipliers. In: IEEE Trans. Nucl. Sci. 24 (1977), S. 270. doi: 10.1109/TNS.1977.4328688 [287] Diehl, E.: Calibration and Performance of the Precision Chambers of the ATLAS Muon Spectrometer. ATL-MUON-PROC-2011-005, ATL-COM-MUON-2011-021. 2011 [288] Dierickx,B.;Meynants, G.; Scheffer, D.: Near 100% fill factor CMOS active pixel. In: Proc. SPIE – Int. Soc. Opt. Eng. (USA) Bd. 3410, 1998, S. 68 [289] Diethorn,W.: A methane proportional counter system for natural radiocarbon mea- surements, Carnegie Institute of Technology, Pittsburgh, Pa 1956, PhD thesis, 1956. http://www.osti.gov/scitech/biblio/4345702. USAEC Report NYO-6628. – zitiert in [177] [290] Dolgoshein, B.: Transition radiation detectors. In: Nucl. Inst. and Meth. A 326 (1993), S. 434. doi: 10.1016/0168-9002(93)90846-A [291] Dolgoshein, B.A.; Rodionov, B.U.; Luchkov, B.I.: Streamer chamber. In: Nucl. Inst. and Meth. 29 (1964), S. 270. doi: 10.1016/0029-554X(64)90379-9 [292] Doll, D. et al.: A counting silicon microstrip detector for precision Compton polarimetry. In: Nucl. Inst. and Meth. A 492 (2002), S. 356. doi: 10.1016/S0168-9002(02)01396-7 [293] Dorenbos,P.;Haas, J.T.M. de; Eijk, C.W.E. van: Non-Proportionality in the Scintillation and the Energy Resolution with Scintillation Crystals. In: IEEE Trans. Nucl. Sci. 42(6) (1995), S. 2190 [294] Double Collaboration: . http://doublechooz.in2p3.fr [295] Drews, G. et al.: Experimental Determination of Sampling Fluctuations in Uranium and Lead Hadronic Calorimeters. In: Nucl. Inst. and Meth. A 290 (1990), S. 335. doi: 10.1016/0168-9002(90)90549-L [296] Driscoll, T.: Schwarz-Christoffel toolbox for MATLAB. http://www.math.udel.edu/~dri scoll/software/SC/ [297] Drude, P.: Zur Elektronentheorie der Metalle. In: Annalen der Physik 306 (1900), S. 566. doi: 10.1002/andp.19003060312 [298] Eberhardt, J.E.: Fano factor in silicon at 90 K. In: Nucl. Inst. and Meth. 80 (1970), S. 291. doi: 10.1016/0029-554X(70)90774-3 [299] Egger, J.; Hildebrandt, M.; Petitjean, C. (MuCap Collaboration): The 10 bar hydro- gen time projection chamber of the MuCap experiment. In: Nucl. Inst. and Meth. A 628 (2011), S. 199. doi: 10.1016/j.nima.2010.06.316 Literaturverzeichnis 879

[300] Eidelman, S. et al. (Particle Data Group): Review of particle physics. Particle Data Group. In: Phys. Lett. B592 (2004), S. 1. doi: 10.1016/j.physletb.2004.06.001 [301] Einstein, A.: Zur Theorie der Brownschen Bewegung. In: Annalen der Physik 19 (1906), S. 371 [302] Ekelof, T.: The Experimental Method Of Ring Imaging Cherenkov (RICH) Counters. In: Proc. of the 12th SLAC Summer Institute on Particle Physics, 1984, S. 006. http: //www.slac.stanford.edu/econf/C840723 [303] EMI: Photomultipier Catalog, EMI Industrial Electronics Ltd, Ruslip, Middlesex, UK. 1979 [304] Engler, J. et al.: A warm-liquid calorimeter for cosmic-ray hadrons. In: Nucl. Inst. and Meth. A 427 (1999), S. 528. doi: 10.1016/S0168-9002(99)00051-0 [305] Engstrom, R.W.: Photomultiplier Handbook. Burle Industries, Inc., 1989 http://psec.u chicago.edu/links.php [306] Erazo, F.; Lallena, A.M.: Calculation of beam quality correction factors for various thimble ionization chambers using the Monte Carlo code PENELOPE. In: Physica Medica 29 (2013), S. 163. doi: 10.1016/j.ejmp.2012.01.001 [307] Erginsoy, C: Neutral Impurity Scattering in Semiconductors. In: Phys. Rev. 79 (1950), S. 1013

[308] Eskut, E. et al. (CHORUS Collaboration): The CHORUS experiment to search for νμ → ντ oscillation. In: Nucl. Inst. and Meth. A 401 (1997), S. 7. doi: 10.1016/S0168-9002(97)00931- 5 [309] European Atomic Energy Community: CAMAC – A Modular Instumentation System for Data Handling – Description and Specification / Euratom, Luxemburg. Euratombericht EUR 4100 e. 1969 [310] Evans, R.D.: The Atomic Nucleus. New York : Krieger, 1982 [311] Fabjan, C. W. et al.: Iron Liquid-Argon and Uranium Liquid-Argon Calorimeters for Ha- dron Energy Measurement. In: Nucl. Inst. and Meth. 141 (1977), S. 61. doi: 10.1016/0029- 554X(77)90747-9 [312] Fabjan, C.W.: Calorimetry in High Energy Physics. In: NATO Adv. Study Inst. Ser. B Phys. 128 (1985). – (CERN-EP/85-54) [313] Fabjan, C.W.; Gianotti, F.: Calorimetry for Particle Physics. In: Reviews of Modern Physics 75 (2003), S. 1243. doi: 10.1103/RevModPhys.75.1243 [314] Fabjan, C.W.; Ludlam, T.: Calorimetry in High-energy Physics. In: Ann. Rev. Nucl. Part. Sci. 32 (1982), S. 335. doi: 10.1146/annurev.ns.32.120182.002003 [315] Fabjan, C.W. (Hrsg.); Schopper, H. (Hrsg.): Landolt-Börnstein – Group I Elementary Particles, Nuclei and Atoms. Bd. 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods. Springer Berlin Heidelberg, 2011 doi: 10.1007/978-3-642-03606-4. – ISBN 9783642036057 [316] Fabjan, C.W.; Struczinski, W.: Coherent Emission of Transition Radiation in Periodic Radiators. In: Phys.Lett. B57 (1975), S. 483. doi: 10.1016/0370-2693(75)90274-9 [317] Fairstein, E.: Bipolar Pulse Shaping Revisited. In: IEEE Trans. Nucl. Sci. 44(3) (1997), S. 424 [318] Fano, U.: Penetration of protons, alpha particles, and mesons. In: Ann. Rev. Nucl. Part. Sci. 13 (1963), S. 1. doi: 10.1146/annurev.ns.13.120163.000245 [319] Fanti, V. et al. (NA48 Collaboration): A new measurement of direct CP violation in two pion decays of the neutral kaon. In: Phys. Lett. B465 (1999), S. 335. doi: 10.1016/S0370- 2693(99)01030-8 [320] Farr,W.;Heuer, R.D.; Wagner, A.: Readout Of Drift Chambers with a 100-MHz FLASH ADC System. In: IEEE Trans. Nucl. Sci. 30 (1983), S. 95. doi: 10.1109/TNS.1983.4332227 [321] Faxén, H.; Holtsmark, J.: Beitrag zur Theorie des Durchganges langsamer Elektronen durch Gase. In: Zeitschrift für Physik 45 (1927), S. 307. doi: 10.1007/BF01343053 880 Literaturverzeichnis

[322] Fayard, L.: Transition Radiation. In: 7ème Ecole Joliot Curie 1988 – Instrumentation in Nuclear Physics and Particle Physics, Carcans, France, 1988, S. 327. http://inspirehep .net/record/268533 [323] Ferbel, T. (Hrsg.): Experimental Techniques in High-energy Nuclear and Particle Physics. World Scientific, 1991 (Frontiers in Physics). doi: 10.1142/1571 [324] Fermi Collaboration: The Fermi Large Area Telescope. http://www-glast.stanford.e du/ [325] Ferrari, A.; Sala, P.R.; Fasso, A.; Ranft, J.: FLUKA: A multi-particle transport code. 2011. http://www.fluka.org/content/manuals/FM.pdf. – (Program version 2011) [326] Ferry, D.: Semiconductor Transport. Taylor & Francis, 2000. – ISBN 9780748408665 [327] Feusels, Tom: Measurement of cosmic ray composition and energy spectrum between 1 PeV and 1 EeV with IceTop and IceCube., Ghent University, Diss., 2013. http://hdl.han dle.net/1854/LU-4337238 [328] Fidecaro, G.: The High Frequency Properties of a Coaxial Cable and the Distortion of Fast Pulses. In: Nuovo Cim. suppl. 15, Series X (1960), S. 254. doi: 10.1007/BF02724869 [329] Field, C. et al.: Timing and detection efficiency properties of multianode PMTs for a focusing DIRC. (2003) [330] Field, C.; Hadig, T.; Leith, David W.; Mazaheri, G.; Ratcliff, B. et al.: Development of Photon Detectors for a Fast Focusing DIRC. In: Nucl. Inst. and Meth. A 553 (2005), S. 96. doi: 10.1016/j.nima.2005.08.046 [331] Fink, J.: Characterization of the Imaging Performance of the Simultaneously Counting and Integrating X-ray Detector CIX, Universität Bonn, PhD-Thesis, 2009. http://hep1.physi k.uni-bonn.de/fileadmin/Publications/XRay/fink.pdf. BONN-IR-2009-10 [332] Fink, J.; Kraft, E.; Krueger, H.; Wermes, N.; Engel, K.J.; Herrmann, C.: Compa- rison of Pixelated CdZnTe, CdTe and Si Sensors with the Simultaneously Counting and Integrating CIX Chip. In: IEEE Trans. Nucl. Sci. 56(6) (2009), S. 3819 [333] Fink, J.; Lodomez,P.;Kruger, H.; Pernegger, H.; Weilhammer,P.;Wermes, N.: TCT characterization of different semiconductor materials for particle detection. In: Nucl. Inst. and Meth. A 565 (2006), S. 227. doi: 10.1016/j.nima.2006.05.003 [334] Finkelnburg,W.:Einführung in die Atomphysik. Springer, 1967 doi: 10.1007/978-3-642- 64980-6. – ISBN 9783540037910 [335] Fischer, H.G.: Multiwire Proportional Quantameters. In: Nucl. Inst. and Meth. 156 (1978), S. 81. doi: 10.1016/0029-554X(78)90695-X [336] Fischer, J.; Iwata, S.; Radeka, V.; Wang, C.L.; Willis, W.J.: Lithium Transition Radiator and Xenon Detector Systems for Particle Identification at High-Energies. In: Nucl. Inst. and Meth. 127 (1975), S. 525. doi: 10.1016/0029-554X(75)90655-2 [337] Fischer,P.:Zeichnungen. 2001. – private Mitteilung [338] Fischer,P.:Comments on the reconstruction of hit positions in segmented detectors. 2015. – private Mitteilung, to be published in JINST [339] Fischer,P.;Hausmann, J.; Overdick, M.; Raith, B.; Wermes, N. et al.: A Counting pixel readout chip for imaging applications. In: Nucl. Inst. and Meth. A 405 (1998), S. 53. doi: 10.1016/S0168-9002(97)01146-7 [340] FlexPDE software: http://www.pdesolutions.com/ [341] Fließbach, T.: Statistische Physik. Spektrum Akademischer Verlag GmbH, 2010 (Lehr- buch zur theoretischen Physik). – ISBN 9783827425287 [342] Fontanelli, F. (LHCb RICH Collaboration): The pixel hybrid photon detec- tor of the LHCb RICH. In: Nucl. Phys. Proc. Suppl. 197 (2009), S. 292. doi: 10.1016/j.nuclphysbps.2009.10.088 [343] Fonte, P.: Applications and new developments in resistive plate chambers. In: IEEE Trans. Nucl. Sci. 49 (2002), S. 881. doi: 10.1109/TNS.2002.1039583 Literaturverzeichnis 881

[344] Förster, T.: Zwischenmolekulare Energiewanderung und Fluoreszenz. In: Annalen der Physik 437 (1948), S. 55 [345] Foster, B. et al. (ZEUS Collaboration): The Design and construction of the ZEUS central tracking detector. In: Nucl. Inst. and Meth. A 338 (1994), S. 254. doi: 10.1016/0168- 9002(94)91313-7 [346] Frach, T.: Optimization of the digital silicon photomultiplier for Cherenkov light detection. In: JINST 7 (2012), S. C01112. doi: 10.1088/1748-0221/7/01/C01112 [347] Frach, T.; Prescher, G.; Degenhart, C.; Zwaans, B.: The Digital Silicon Photomul- tiplier – A novel sensor for the detection of scintillation light. In: IEEE Nuclear Science Symposium, Orlando, 2009, S. 2386. doi: 10.1109/NSSMIC.2009.5402190 [348] Frach, T.; Prescher, G.; Degenhart,C;Zwaans, B.: The Digital Silicon Photomulti- plier – Principle of Operation and Intrinsic Detector Performance. In: 2009 IEEE Nuclear Science Symposium, Orlando, 2009, S. 1959. doi: 10.1109/NSSMIC.2009.5402143 [349] Frank, I. M.; Ginsburg, V. L.: Radiation of a uniformly moving electron due to its transition from one medium into another. In: J. Phys.(USSR) 9 (1945), S. 353. – [Zh. Eksp. Teor. Fiz.16,15(1946)] [350] Frank, I.M.; Tamm, I.: Coherent visible radiation of fast electrons passing through matter. In: C.R.Acad.Sci.URSS (Doklady Akad. Nauk SSSR) 14 (1937), S. 109 [351] Freeman, J. et al.: Introduction to HOBIT, a b-Jet Identification Tagger at the CDF Experiment Optimized for Light Higgs Boson Searches. In: Nucl. Inst. and Meth. A 697 (2013), S. 64. doi: 10.1016/j.nima.2012.09.021 [352] Friedl, M. et al.: The Belle II Silicon Vertex Detector. In: Nucl. Inst. and Meth. A 732 (2013), S. 83. doi: 10.1016/j.nima.2013.05.171 [353] Fruhwirth, R.: Application of Kalman filtering to track and vertex fitting. In: Nucl. Inst. and Meth. A 262 (1987), S. 444. doi: 10.1016/0168-9002(87)90887-4 [354] Fujii, K. et al.: Automated monitoring and calibrating system of gas gain and electron drift velocity for:Prototype system and accumulation of reference data. In: Nucl. Inst. and Meth. A 245 (1986), S. 35. doi: 10.1016/0168-9002(86)90255-X [355] Fukuda, Y. et al. (Super-Kamiokande Collaboration): Evidence for oscillation of atmos- pheric neutrinos. In: Phys. Rev. Lett. 81 (1998), S. 1562. doi: 10.1103/PhysRevLett.81.1562 [356] Fukuda, Y. et al. (Super-Kamiokande Collaboration): The Super-Kamiokande detector. In: Nucl. Inst. and Meth. A 501 (2003), S. 418. doi: 10.1016/S0168-9002(03)00425-X [357] Fulbright, H.W.: Ionization Chambers in Nuclear Physics. In: [264] S. 1. – doi: 10.1007/978-3-642-45903-0_1 [358] Fülöp, L.; Biro, T.: Cherenkov Radiation Spectrum. In: Int. Journ. of Theor. Phys. 31 (1992), S. 61. doi: 10.1007/BF00674341 [359] Furletova, J.; Furletov, S.: New transition radiation detection technique based on DEPFET silicon pixel matrices. In: Nucl. Inst. and Meth. A 628 (2011), S. 309. doi: 10.1016/j.nima.2010.06.342 [360] Gabriel, T.A.; Groom, D.E.; Job, P.K.; Mokhov, N.V.; Stevenson, G.R.: Energy dependence of hadronic activity. In: Nucl. Inst. and Meth. A 338 (1994), S. 336. doi: 10.1016/0168-9002(94)91317-X [361] Gaillard, J.M. (UA2 Collaboration): The UA2 scintillating fibre detector. In: Nucl. Phys. Proc. Suppl. 16 (1990), S. 509 [362] Gaisser, T.K.: Cosmic rays and particle physics. Cambridge : Cambridge University Press, 1990. – ISBN 9780521339315 [363] Gaisser, T.K.; Hillas, A.M.: Reliability of the method of constant intensity cuts for reconstructing the average development of vertical showers. In: International Cosmic Ray Conference Bd. 8, 1977, S. 353. http://adsabs.harvard.edu/abs/1977ICRC....8..353G [364] Gandhi,R.;Quigg, C.; Reno, M.H.; Sarcevic, I.: Ultrahigh-energy neutrino interactions. In: Astropart.Phys. 5 (1996), S. 81. doi: 10.1016/0927-6505(96)00008-4 882 Literaturverzeichnis

[365] Garabatos, C.: The ALICE TPC. In: Nucl. Inst. and Meth. A 535 (2004), S. 197. doi: 10.1016/j.nima.2004.07.127 [366] Garibian, G.M.: Contribution to the theory of transition radiation. In: Soviet Physics JETP-USSR 6 (1958), S. 1079 [367] Garibyan, G.M.: Transition Radiation Under Inclined Incidence of the Charge. In: Transl.Sov.Phys. JETP-USSR 11 (1960), S. 1306 [368] Garwin, R.L.: The Design of Liquid Scintillation Cells. In: Rev. Sci. Instr. 23 (1952), S. 755. doi: 10.1063/1.1746152 [369] Gatti, E.; Geraci, A.: Considerations about Ramo’s theorem extension to conductor media with variable dielectric constant. In: Nucl. Inst. and Meth. A 525 (2004), S. 623 [370] Gatti, E.; Manfredi, P.F.: Processing the Signals From Solid State Detectors in Elemen- tary Particle Physics. In: Riv.Nuovo Cim. 9N1 (1986), S. 1. doi: 10.1007/BF02822156 [371] Gatti, E.; Rehak, P.: Semiconductor drift chamber – An application of a novel charge transport scheme. In: Nucl. Inst. and Meth. A 225 (1984), S. 608 [372] Gavrila, M.: Relativistic K-Shell Photoeffect. In: Phys. Rev. 113 (1959), Jan, S. 514. doi: 10.1103/PhysRev.113.514 [373] Geant4 Collaboration: Physics Reference Manual. http://www.geant4.org/geant4/su pport/index.shtml [374] Geiger, H.; Marsden, E.: LXI. The laws of deflexion of a particles through large angles. In: Phil. Mag. 25 (1913), Nr. 148, S. 604. doi: 10.1080/14786440408634197 [375] Geiger, H.; Müller, W.: Elektronenzählrohr zur Messung schwächster Aktivitäten. In: Naturwissenschaften 16 (1928), S. 617. doi: 10.1007/BF01494093 [376] Gessler, P. Next Generation Electronics based on μTCA for Beam-Diagnostics at FLASH and XFEL. In: Proc. 10th European Workshop on Beam Diagnostics and Instrumentation for Particle Accelerators, Hamburg, 2011, S. 294. http://adweb.desy.de/mpy/DIPAC2011/ papers/tuob03.pdf [377] Giesch, M. et al.: Status of magnetic horn and neutrino beam. In: Nucl. Inst. and Meth. 20 (1963), S. 58. doi: 10.1016/0029-554X(63)90391-4 [378] Ginsburg, D.: Applications of Electrodynamics in Theoretical Physics and Astrophy- sics. Taylor & Francis, 1989 https://books.google.de/books?id=Lh0tjaBNzg0C. – ISBN 9782881247194 [379] Ginzburg, V.L.: Transition Radiation And Transition Scattering. In: Proc. 16th Interna- tional Cosmic Ray Conference, Kyoto Bd. 14, 1979, S. 42 [380] Giomataris, Y.; Rebourgeard,P.;Robert, J.P.; Charpak, G.: MICROMEGAS: A High granularity position sensitive gaseous detector for high particle flux environments. In: Nucl. Inst. and Meth. A 376 (1996), S. 29 [381] Giunti, C.; Kim, C.W.: Fundamentals of Neutrino Physics and Astrophysics. Oxford University Press, 2007. – ISBN 9780198508717 [382] Glaser, D.A.: Nobel Lecture: Elementary Particles and Bubble Chambers. http://www.n obelprize.org/nobel_prizes/physics/laureates/1960/glaser-lecture.html [383] Glaser, D.A.; Rahm, D.C.: Characteristics of Bubble Chambers. In: Phys. Rev. 97 (1955), S. 474. doi: 10.1103/PhysRev.97.474 [384] Gluckstern, R.L.: Uncertainties in track momentum and direction, due to multiple scat- tering and measurement errors. In: Nucl. Inst. and Meth. 24 (1963), S. 381 [385] Goldsmith,P.;Jelley, J.V.: Optical Transition Radiation from protons entering metal surfaces. In: Phil. Mag. 4 (1959), S. 836. doi: 10.1080/14786435908238241 [386] Goldstein, H.; Charles P. Poole, J.; John L. Safko, S.: Klassische Mechanik. Wiley, 2012. – ISBN 9783527662074 [387] Gordon, H. et al. (Brookhaven-CERN-Copenhagen-Lund-Rutherford-Tel Aviv Collabo- ration): The Axial Field Spectrometer at the CERN ISR. In: Nucl. Inst. and Meth. 196 Literaturverzeichnis 883

(1982), S. 303. doi: 10.1016/0029-554X(82)90660-7 [388] Gorelov, I. et al.: Electrical characteristics of silicon pixel detectors. In: Nucl. Inst. and Meth. A 489 (2002), S. 202. doi: 10.1016/S0168-9002(02)00557-0 [389] Graaf, H. van der: New developments in gaseous tracking and imaging detectors. In: Nucl. Inst. and Meth. A 607 (2009), S. 78. doi: 10.1016/j.nima.2009.03.137 [390] Graaf, H. van der: Single electron sensitive GridPix TPCs and their application in Dark Matter search and ν-less experiments. In: J. Phys. Conf. Ser. 309 (2011), S. 012016. doi: 10.1088/1742-6596/309/1/012016 [391] Gray, P.R.; Hurst, P.J.; Lewis, S.R.; Meyer, R.G.: Analog Integrated Circuits. 5th edition. New York : Wiley and Sons, 2009. – ISBN 978–0470245996 [392] Green, M. A.: Intrinsic Concentration, effective Density of states, and effective Mass in Silicon. In: J. Appl. Phys. 67 (1990), S. 2944 [393] Greisen, K.: Cosmic ray showers. In: Ann. Rev. Nucl. Part. Sci. 10 (1960), S. 63. doi: 10.1146/annurev.ns.10.120160.000431 [394] Greisen, K.: End to the cosmic ray spectrum? In: Phys. Rev. Lett. 16 (1966), S. 748. doi: 10.1103/PhysRevLett.16.748 [395] Grimm, O.: Driftgeschwindigkeits- und Signalverstärkungsmessungen in Gasen für das äußere Spurkammersystem des HERA-B Detektors, Universität Hamburg, Diplomarbeit, 1998. http://www-library.desy.de/cgi-bin/showprep.pl?desy-thesis-98-023. DESY- THESIS-1998-023 [396] Groom, D.E.: Silicon Photodiode Detection of Bismuth Germanate Scintillation Light. In: Nucl. Inst. and Meth. A 219 (1984), S. 141. doi: 10.1016/0167-5087(84)90146-7 [397] Groom, D.E.: Energy loss in matter by heavy particles. http://pdg.lbl.gov/rpp/encoder s/pdg_note_9306.pdf. Version: 1993 [398] Groom, D.E.: Explanation of some entries in 'Atomic and Nuclear Properties of Materials'. http://pdg.lbl.gov/2012/AtomicNuclearProperties/explain_elem.html. Version: 2014 [399] Groom, D.E.; Mokhov, N.V.; Striganov, S.I.: Muon stopping power and range ta- bles 10-MeV to 100-TeV. In: Atom. Data Nucl. Data Tabl. 78 (2001), S. 183. doi: 10.1006/adnd.2001.0861 [400] Groom, D.E.: Temperature Dependence of Mean Number of e-h Pairs per eV of X-ray Energy Deposit. http://www-ccd.lbl.gov/w_Si.pdf. Version: 2004 [401] Grosse-Knetter, J.: Vertex Measurement at a Hadron Collider – The ATLAS Pixel Detector, Universität Bonn, Habilitationsschrift, 2008. http://hep1.physik.uni-bonn.de/ fileadmin/Publications/ATLAS_Analysis/habil_grosse-knetter.pdf. BONN-IR-2008- 04 [402] Grote, H.: Review of Pattern Recognition in High-energy Physics. In: Rept. Prog. Phys. 50 (1987), S. 473. doi: 10.1088/0034-4885/50/4/002 [403] Grove, A.S.: Physics and Technology of Semiconductor Devices. New York : Wiley, 1967 [404] Grove, A.S.; Fitzgerald, D.J.: Surface effects on p-n-junctions: characteristics of surface space-charge regions under non-equilibrium conditions. In: Solid State Electronics 9 (1966), S. 783. doi: 10.1016/j.nima.2006.05.003 [405] Grupen, C.: Teilchendetektoren. 3. Auflage. Berlin-Heidelberg-New York : BI-Verlag, 1993 [406] Grupen, C.: Astroteilchenphysik: Das Universum im Licht der kosmischen Strahlung. Springer, 2001. – ISBN 9783540415428 [407] Grupen, C.: Astroparticle Physics. Springer, 2005 (SpringerLink: Springer e-Books). – ISBN 9783540276708 [408] Grupen, C.: Grundkurs Strahlenschutz. Springer, Heidelberg, 2008. – ISBN 03540758496, 9783540758495 [409] Grupen, C. (Hrsg.); Buvat, I. (Hrsg.): Handbook of particle detection and imaging, vol. 1 and vol. 2. Springer, 2012 doi: 10.1007/978-3-642-13271-1 884 Literaturverzeichnis

[410] Grupen, C.; Shwartz, B.: Particle Detectors. 2nd edition. Cambridge University Press, 2008. – ISBN 97805218400064 [411] Gutierrez, E.A.; Deen, M.J.; C., Claeys: Low Tempereture Electronics: Physics, Devices, Circuits and Applications. Singapore : Academic Press, 2001 [412] Haidt, D.: Discovery of weak neutral currents in . In: AIP Conf. Proc. 300 (1994), S. 187. doi: 10.1063/1.45429 [413] Hamamatsu: Photonics-Handbook: Detectors. http://www.photonics.com/EDU/Handboo k.aspx?AID=25535 [414] Hamamatsu: Photonics Online. http://www.photonicsonline.com/doc/photomulitiplie r-tube-series-uba-sba-0002 Hamann [415] , M.: Studies for a linear√ collider drift chamber and search for heavy stable charged particles in e+e− collisions up to s = 209 GeV, Universität Hamburg, Dissertation, 2003. doi: 10.3204/DESY-THESIS-2003-046. DESY-THESIS-2003-046 [416] Hamel, L.-A.; Julien, M.: Generalized demonstration of Ramo’s theorem with space charge and polarization effects. In: Nucl. Inst. and Meth. A 597 (2008), S. 207. doi: 10.1016/j.nima.2008.09.008 [417] Hampel, W. et al. (GALLEX): GALLEX solar neutrino observations: Results for GALLEX IV. In: PL B447 (1999), S. 127. doi: 10.1016/S0370-2693(98)01579-2 [418] Hams, T. et al.: Measurement of the abundance of radioactive Be-10 and other light isotopes in cosmic radiation up to 2-GeV/ with the balloon-borne instrument ISOMAX. In: Astrophys.J. 611 (2004), S. 892. doi: 10.1086/422384 [419] Harigel, G.: Die Große Europäische Blasenkammer im CERN (Teil I). In: Physik Journal 31 (1975), Nr. 1, S. 13. doi: 10.1002/phbl.19750310105 [420] Harkonen, J. et al.: Radiation hardness of Czochralski silicon, float zone silicon and oxygenated float zone silicon studied by low energy protons. In: Nucl. Inst. and Meth. A 518 (2004), S. 346. doi: 10.1016/j.nima.2003.11.018 [421] Haungs, A.: KASCADE-Grande: Luftschauer über Karlsruhe. http://www.weltderphysik .de/gebiet/astro/kosmische-strahlung/detektoren/kascade-grande/. Version: 2007 [422] Hauschild, M.: Progress in dE/dx Techniques Used for Particle Identification. In: Nucl. Inst. and Meth. A 379 (1996), S. 436 [423] Hauschild, M. et al.: Particle identification with the OPAL jet chamber. In: Nucl. Inst. and Meth. A 314 (1992), S. 74. doi: 10.1016/0168-9002(92)90501-T [424] Havránek, M. et al.: DMAPS: a fully depleted monolithic active pixel sensor – analog performance characterization. In: arXiv:1407.0641 (2014) [425] Haynes, W.M. (Hrsg.); Lide, D.R. (Hrsg.); Bruno, T.J. (Hrsg.): CRC Handbook of Che- mistry and Physics 2012-2013. CRC Press, 2012 http://www.hbcpnetbase.com/. – ISBN 9781439880494 [426] Hazewinkel, M. (Hrsg.): Laplace transform, Encyclopedia of Mathematics. Springer, 2001 https://www.encyclopediaofmath.org/index.php/Laplace_transform. – ISBN 978– 1–55608–010–4 [427] He, Z.: Review of the Shockley-Ramo theorem and its application in semiconductor gamma-ray detectors. In: Nucl. Inst. and Meth. A 463 (2001), S. 250. doi: 10.1016/S0168- 9002(01)00223-6 [428] Hebbeker, T.; Hoepfner, K.: Muon spectrometers. In: [409] S. 473. – doi: 10.1007/978- 3-642-13271-1_19 [429] Heck, D. et al.: CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers. In: Report FZKA 6019, Forschungszentrum Karlsruhe (1998). https://web.ikp.kit.edu/cor sika [430] Heitler,W.:The Quantum Theory of Radiation. 3rd edition. Oxford : Clarendon Press, 1954 Literaturverzeichnis 885

[431] Hellmig, J. et al.: The CDMS II Z-sensitive ionization and phonon germanium detector. In: Nucl. Inst. and Meth. A 444 (2000), S. 308. doi: 10.1016/S0168-9002(99)01403-5 [432] Hemperek, T.; Kishishita, T.; Krüger, H.; Wermes, N.: A Monolithic active pixel sensor for ionizing radiation using a 180nm HV-SOI process. In: arXiv:1412.3973 (2014) [433] Hess, V.F.: Nobel Lecture: Unsolved Problems in Physics: Tasks for the Immediate Future in Cosmic Ray Studies. http://www.nobelprize.org/nobel_prizes/physics/laureates/ 1936/hess-lecture.html [434] H.E.S.S. Collaboration: H.E.S.S. High Energy Stereoscopic System. http://www.mpi-h d.mpg.de/hfm/HESS [435] Highland, V.L.: Some Practical Remarks on Multiple Scattering. In: Nucl. Inst. and Meth. 129 (1975), S. 497. doi: 10.1016/0029-554X(75)90743-0 [436] Hilke, H.J.: Time projection chambers. In: Rept.Prog.Phys. 73 (2010), S. 116201. doi: 10.1088/0034-4885/73/11/116201 [437] Hillas, A.M.: Cerenkov light images of EAS produced by primary gamma. In: Jones, F.C. (Hrsg.): International Cosmic Ray Conference Bd. 3, 1985, S. 445 [438] Hirata, K. et al. (KAMIOKANDE-II Collaboration): Observation of a Neutrino Burst from the Supernova SN 1987a. In: Phys. Rev. Lett. 58 (1987), S. 1490. doi: 10.1103/Phys- RevLett.58.1490 [439] Hoddeson, L.; Brown, L.; Riordan, M.; Dresden, M.: The Rise of the Standard Model – A History of Particle Physics from 1964 to 1979. Cambridge University Press, 1997 [440] Hofstadter, R. et al.: The CRYSTAL BALL Experiment. In: Proc. Particle Physics in GeV Region, Tokyo, Japan, 1979, S. 559 [441] Hohlmann, M. (Hrsg.); Padilla, C. (Hrsg.); Tesch, N. (Hrsg.); Titov, M. (Hrsg.): Proc. International Workshop on Aging Phenomena in Gaseous Detectors 2001, Hamburg, Ger- many. In: Nucl. Inst. and Meth. A 515, 2003. S. 1. doi: 10.1016/j.nima.2003.08.120 [442] Holder, M. et al.: A Detector for High-Energy Neutrino Interactions. In: Nucl. Inst. and Meth. 148 (1978), S. 235. doi: 10.1016/0029-554X(70)90173-4 [443] Holroyd, R.A.; Anderson, D.F.: The physics and chemistry of room-temperature liquid- filled ionization chambers. In: Nucl. Inst. and Meth. A 236 (1985), S. 294. doi: 10.1016/0168- 9002(85)90164-0 [444] Holst, G.C.: Ccd Arrays, Cameras and Displays. JCD Publishing, 1998 (CCD Arrays, Cameras, & Displays). – ISBN 9780819428530 [445] Holstein, T.: Energy Distribution of Electrons in High Frequency Gas Discharges. In: Phys. Rev. 70 (1946), S. 367. doi: 10.1103/PhysRev.70.367 [446] Höppner, C.: The Composition of Cosmic Rays at High Energies, Technische Universität München, Diplomarbeit, 2006. http://tracer.uchicago.edu/papers/thesis_hoppner.pdf [447] Horowitz,P.;Hill,W.: The Art of Electronics. Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo : Cambridge University Press, 2001. – ISBN 0521370957 [448] Hosaka, J. et al. (Super-Kamiokande Collaboration): Solar neutrino measurements in super-Kamiokande-I. In: Phys.Rev. D73 (2006), S. 112001. doi: 10.1103/Phys- RevD.73.112001 [449] Hott, T.: Aging problems of the Inner Tracker of HERA-B: An example for new detectors and new effects. In: Nucl. Inst. and Meth. A 515 (2003), S. 242. doi: 10.1016/j.nima.2003.09.005 [450] Huang, K.: Statistical mechanics. Wiley, 1987. – ISBN 9780471815181 [451] Hubbell, J.H.; Seltzer, S.M.: NIST Data Base. http://physics.nist.gov/PhysRefData /XrayMassCoef/cover.html [452] Huege, T.; Falcke, H.: Radio emission from cosmic ray air showers: Coherent geosynchro- tron radiation. In: Astron.Astrophys. 412 (2003), S. 19. doi: 10.1051/0004-6361:20031422 886 Literaturverzeichnis

[453] Hügging, F. (ATLAS Collaboration): The ATLAS Pixel Insertable B-Layer (IBL). In: Nucl. Inst. and Meth. A 650 (2011), S. 45. doi: 10.1016/j.nima.2010.12.113 [454] Huhtinen, M.: Simulation of non-ionising energy loss and defect formation in silicon. In: Nucl. Inst. and Meth. A 491 (2002), S. 194. doi: 10.1016/S0168-9002(02)01227-5 [455] Huxley, L.G.H.; Crompton, R.W.: The diffusion and drift of electrons in gases. Wiley, 1974 (Wiley series in plasma physics). – ISBN 9780471425908 [456] Iarocci, E.: Plastic streamer tubes and their applications in high energy physics. In: Nucl. Inst. and Meth. 217 (1983), S. 30. doi: 10.1016/0167-5087(83)90107-2 [457] IEEE Standard: 1014-1987 – IEEE Standard for a Versatile Backplane Bus: VMEbus. https://standards.ieee.org/findstds/standard/1014-1987.html. Version: 1987 [458] IEEE Standard: IEEE 802.3 – IEEE Standard for Ethernet. http://standards.ieee.o rg/about/get/802/802.3.html. Version: 2012 [459] Iijima, T. et al.: A novel type of proximity focusing RICH counter with multiple re- fractive index Aerogel radiator. In: Nucl. Inst. and Meth. A 548 (2005), S. 383. doi: 10.1016/j.nima.2005.05.030 [460] ILC Collaboration: International Linear Collider (ILC). http://www.linearcollide r.org [461] Ilford Photo: Fact Sheet Ilford Nuclear Emulsions. http://www.ilfordphoto.com/produ cts/page.asp?n=136, 2011 [462] International commission on radiation units and measurements (ICRU): Stopping Powers for Electrons and Positrons. 1984. – Tabellen und grafische Darstellungen sind interaktiv verfügbar: http://physics.nist.gov/PhysRefData/Star/Text/contents.html [463] IOFFE Data Base: New Semiconductor Materials. Characteristics and Properties. http: //http://www.ioffe.rssi.ru/SVA/NSM/ [464] Irwin, K.D. et al.: A quasiparticle-trap-assisted transition-edge sensor for phonon-mediated particle detection. In: Rev. Sci. Instr. 66 (1995), S. 5322. doi: 10.1063/1.1146105 [465] Isberg, J. et al.: High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond. In: Science 297 (2002), Nr. 5587, S. 1670. doi: 10.1126/science.1074374 [466] Isberg, J.; Lindblom, A.; Tajani, A.; Twitchen, D.: Temperature dependence of hole drift mobility in high-purity single-crystal CVD diamond. In: Physica Status Solidi 202 (11) (2005), S. 2194 [467] Jackson, J.D.: Classical Electrodynamics. 3rd edition. New York : Wiley, 1998 [468] Jacoboni, C.; Canali, C.; Ottaviani, G.; Alberigi Quaranta, A.: A review of some charge transport properties of Silicon. In: Solid-State Electronics 20 (1977), S. 77. doi: 10.1016/0038-1101(77)90054-5 [469] James, F.: Statistical methods in experimental physics. Hackensack World Scientific, 2006 [470] Jansen, H.: CVD Diamond: Charge Carrier Movement at Low Tempera- tures and use in critical timing applications, Universität Bonn, Dissertation, 2013. http://hep1.physik.uni-bonn.de/fileadmin/Publications/ATLAS_Pixels/Diss/j ansenhendrik-klein.pdf. BONN-IR-2013-13 [471] Jansons, J.L.; Krumins, V.J.; Rachko, Z.A.; Valbis, J.A.: Luminescence due to Radiative Transitions between Valence Band and Upper Core Band in Ionic-Crystals (Crosslumine- scence). In: Phys. Stat. Sol. B 144 (1987), S. 835. doi: 10.1002/pssb.2221440244 [472] Jansweijer, P.P.M.; Peek, H.Z.; De Wolf, E.: White Rabbit: Sub-nanosecond timing over Ethernet. In: Nucl. Inst. and Meth. A 725 (2013), S. 187. doi: 10.1016/j.nima.2012.12.096 [473] Jean-Marie,B.;Lepeltier, V.; L’Hote, D.: Systematic Measurement of Electron Drift Velocity and Study of Some Properties of Four Gas Mixtures: A-CH4, A-C2 H4, A-C2H6, A-C3H8. In: Nucl. Inst. and Meth. 159 (1979), S. 213. doi: 10.1016/0029-554X(79)90349-5 [474] Jelley, J.V.: Cherenkov Radiation and its Applications. London : Pergamon Press, 1958 Literaturverzeichnis 887

[475] Jen, C.K.: On the induced current and energy balance in electronics. In: Proc. of the I.R.E. (1941), S. 345. doi: 10.1109/JRPROC.1941.230316 [476] Jiang, X. et al.: Coalescence and overgrowth of diamond grains for improved heteroepitaxy on silicon(001). In: J. Appl. Phys. 83 (1998), S. 2511 [477] Johns, D.A.; Martin, K.: Analog Integrated Circuit Design. New York : Wiley, 2011. – ISBN 9780470770108 [478] Johnson, J.B.: The Schottky Effect in Low Frequency Circuits. In: Phys. Rev. 26 (1925), S. 71. doi: 10.1103/PhysRev.26.71 [479] Johnson, J.B.: Thermal agitation of electricity in conductors. In: Phys. Rev. 32 (1928), S. 97. doi: 10.1103/PhysRev.32.97 [480] Kadyk, J.A. (Hrsg.): Workshop on Radiation Damage to Wire Chambers. Lawrence Ber- keley Nat. Lab. LBL-21170, 1986. http://www.escholarship.org/uc/item/0zx777vz [481] Kagan, H.: Recent advances in diamond detector development. In: Nucl. Inst. and Meth. A 541 (2005), S. 221. doi: 10.1016/j.nima.2005.01.060 [482] Kajita, T.: Atmospheric neutrinos. In: New J.Phys. 6 (2004), S. 194. doi: 10.1088/1367- 2630/6/1/194 [483] Kamata, K.; Nishimura, J.: The Lateral and Angular Structure Functions of Electron Showers. In: Progr. Theor. Phys. Suppl. 6 (1958), S. 93 [484] Kampert, K.-H.; Unger, M.: Measurements of the Cosmic Ray Composition with Air Shower Experiments. In: Astropart. Phys. 35 (2012), S. 660. doi: 10.1016/j.astropartphys.2012.02.004 [485] Kanaya, N. et al.: Test results on hybrid photodiodes. In: Nucl. Inst. and Meth. A 421 (1999), S. 512. doi: 10.1016/S0168-9002(98)01256-X [486] Kaplon, M.; Peters, B.; Ritson, D. M.: Emulsion Cloud-Chamber Study of a High Energy Interaction in the Cosmic Radiation. In: Phys. Rev. 85 (1952), Mar, S. 900. doi: 10.1103/PhysRev.85.900 [487] Kase, M.; Akioka, T.; Mamyoda, H.; Kikuchi, J.; Doke, T.: Fano factor in pure argon. In: Nucl. Inst. and Meth. 227 (1984), S. 311. doi: 10.1016/0168-9002(84)90139-6 [488] Kastli, H.C. et al.: CMS barrel pixel detector overview. In: Nucl. Inst. and Meth. A 582 (2007), S. 724. doi: 10.1016/j.nima.2007.07.058 [489] Katsura, T. et al.: Energy resolution of a multiwire proportional quantameter. In: Nucl. Inst. and Meth. 105 (1972), S. 245. doi: 10.1016/0029-554X(72)90565-4 [490] Katz, U.F.; Spiering, Ch.: High-Energy Neutrino Astrophysics: Status and Perspectives. In: Prog. Part. Nucl. Phys. 67 (2012), S. 651. doi: 10.1016/j.ppnp.2011.12.001 [491] Kawrakow, I.; Rogers, D.W.O.: The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport. In: NRCC Report PIRS-701 (2006) [492] Keil, G.: Design principles of fluorescence radiation converters. In: Nucl. Inst. and Meth. 89 (1970), S. 111. doi: 10.1016/0029-554X(70)90813-X [493] Kemmer, J. et al.: Experimental confirmation of a new semiconductor detector principle. In: Proc. Fifth European Symposium on Semiconductors Detectors, Nucl. Inst. and Meth. A 288, 1990, S. 92. doi: 10.1016/0168-9002(90)90470-Q [494] Kemmer, J.; Belau, E.; Prechtel, U.; Welser,W.;Lutz, G.: Low Capacity Drift Diode. In: Nucl. Inst. and Meth. A 253 (1987), S. 378. doi: 10.1016/0168-9002(87)90519-5 [495] Kenney, C.; Parker, S.; Segal, J.; Storment, C.: Silicon detectors with 3-D electrode arrays: fabrication and initial test results. In: IEEE Trans. Nucl. Sci. 48 (1999), S. 1224 [496] Kester,W.: Data Conversion Handbook. North Holland : Elsevier, 2005. – ISBN 9780750678414 [497] Ketek GmbH: SiPM Technology. http://www.ketek.net/products/sipm-technology/. Version: 2015 888 Literaturverzeichnis

√ [498] Khachatryan, V. et al. (CMS): Strange Particle Production in pp Collisions at s =0.9 and 7 TeV. In: JHEP 1105 (2011), S. 064. doi: 10.1007/JHEP05(2011)064 [499] Kharzheev, Y.N.: Use of silica aerogels in Cherenkov counters. In: Phys. Part. Nucl. 39 (2008), S. 107. doi: 10.1007/s11496-008-1008-3 [500] Kimura, M. et al.: Development of nuclear emulsions with 1 μm spatial resoluti- on for the AEgIS experiment. In: Nucl. Inst. and Meth. A 732 (2013), S. 325. doi: 10.1016/j.nima.2013.04.082 [501] Kirsten, T.A.: Solar neutrino experiments: Results and implications. In: Rev.Mod.Phys. 71 (1999), S. 1213. doi: 10.1103/RevModPhys.71.1213 [502] Kishishita, T.; Krüger,H.;Hemperek, T.; Lemarenko, M.; Koch, M.; Gronewald, M.; Wermes, N.: Prototype of a gigabit data transmitter in 65 nm CMOS for DEP- FET pixel detectors at Belle-II. In: Nucl. Inst. and Meth. A 718 (2013), S. 168. doi: 10.1016/j.nima.2012.11.013 [503] Klages, C.P.: Chemical vapour deposition of diamond. In: Appl. Phys. A 56 (1993), S. 513 [504] Klein, S.: Suppression of bremsstrahlung and pair production due to environmental factors. In: Rev. Mod. Phys. 71 (1999), Oct, S. 1501. doi: 10.1103/RevModPhys.71.1501 [505] Klein, S.: The time projection chamber turns 25. In: CERN Cour. 44N1 (2004), S. 40. http://cerncourier.com/cws/article/cern/29014 [506] Kleinknecht, K.: Detektoren für Teilchenstrahlung. Wiesbaden : Teubner Verlag, 4. Auf- lage, 2005 [507] Knoll, G.F.: Radiation Detection and Measurement. 4th edition. New York : J. Wiley and Sons, 2010 [508] Knopf, A.-C.; Lomax, A.: In vivo proton range verification: a review. In: Physics in Medicine and Biology 58 (2013), S. R131. doi: 10.1088/0031-9155/58/15/R131 [509] Koch, H.W.; Motz, J.W.: Bremsstrahlung Cross-Section Formulae and Related Data. In: Rev. Mod. Phys. 31 (1959), Oct, S. 920 [510] Kodama, K. et al. (DONUT Collaboration): Observation of tau neutrino interactions. In: Phys. Lett. B504 (2001), S. 218. doi: 10.1016/S0370-2693(01)00307-0 [511] Kodama, K. et al.: Identification of neutrino interactions using the DONUT spectrometer. In: Nucl. Inst. and Meth. A 516 (2004), S. 21. doi: 10.1016/j.nima.2003.07.035 [512] Kohler, M. et al.: Beam test measurements with 3D-DDTC silicon strip detec- tors on n-type substrate. In: IEEE Trans. Nucl. Sci. 57 (2010), S. 2987. doi: 10.1109/TNS.2010.2058863 [513] Koike, J.; Parkin, D.M.; Mitchell, T.E.: Displacement threshold energy for type IIa diamond. In: Appl. Phys. Lett. 60 (1992), S. 1450. doi: 10.1063/1.107267 [514] Kolanoski, H. (for the IceCube Collaboration): IceCube – Astrophysics and Astroparticle Physics at the South Pole. In: Proc. 32nd International Cosmic Ray Conference, Beijing Bd. 12, 2011, S. 79. doi: 10.7529/ICRC2011/V12/H06. arXiv:1111.5188 [515] Kölbig, K.S.; Schorr, B.: A Program Package for the Landau Distribution. In: Comput. Phys. Commun. 31 (1984), S. 97. doi: 10.1016/0010-4655(84)90085-7, 10.1016/j.cpc.2008.03.002. – (Erratum: Comput. Phys. Commun. 178 (2008), S. 972) [516] Komin, N.: Detection of gamma rays from the supernova remnant RX J0852.0-4622 with H.E.S.S., Humboldt Universität zu Berlin, Doktorarbeit, 2005. http://edoc.hu-berlin.d e/dissertationen/komin-nukri-2005-10-25/PDF/komin.pdf [517] Kopitzki, K.; Herzog,P.: Einführung in die Festkörperphysik. Stuttgart–Leipzig–Wies- baden : Teubner, 2002 [518] Kopp, G.; Lean, J.L.: A new, lower value of total solar irradiance: Evidence and climate significance. In: Geophysical Research Letters 38 (2011), S. L01706. doi: 10.1029/2010GL045777. – L01706 Literaturverzeichnis 889

[519] Kopp, S. E.: Accelerator-based neutrino beams. In: Phys. Rept. 439 (2007), S. 101. doi: 10.1016/j.physrep.2006.11.004 [520] Korff, S.A.: Electron and nuclear counters. New York : Van Nostrand, 1946 [521] Kraft, G.: Tumortherapie mit Schwerionen-Bestrahlung. http://www.weltderphysik.de/ gebiet/leben/tumortherapie/. Version: 2009 [522] Kraus, J.D.: Electromagnetics. 3. edition. McGraw-Hill, 1984. – ISBN 0070354235 [523] Krautscheid, T. et al.: Gridpix: Production and application of integrated pixel readouts. In: Proc. 12th Pisa Meeting on Advanced Detectors, Nucl. Inst. and Meth. A 718, 2013, S. 391. doi: 10.1016/j.nima.2012.10.055 [524] Krieger, H.: Strahlungsmessung und Dosimetrie. Springer Fachmedien Wiesbaden GmbH, 2013. – ISBN 9783658003869 [525] Krizan,P.;Korpar, S.; Iijima, T.: Study of a nonhomogeneous aerogel radiator in a proximity focusing RICH detector. In: Nucl. Inst. and Meth. A 565 (2006), S. 457. doi: 10.1016/j.nima.2006.05.233 [526] Krüger, H.; Fink, J.; Kraft, E.; Wermes, N.; Fischer, P. et al.: CIX – A Detector for Spectral Enhanced X-ray Imaging by Simultaneous Counting and Integrating. In: Proc. SPIE Int. Soc. Opt. Eng. 6913 (2008), S. 0P. doi: 10.1117/12.771706 [527] Kuhar, M.; Kuger, F. (Netzwerk Teilchenphysik): Anleitung zum Selbstbau einer Ne- belkammer. http://www.teilchenwelt.de/material/materialien-fuer-lehrkraefte/s elbstbau-einer-nebelkammer/, 2012

[528] Lachnit,W.:Studien zur Auslese von CsI-, BGO und BaF2-Szintillationskristallen, Uni- versität Bonn, Diplomarbeit, 1993. BONN-IR-94-40 [529] Laker, K.R; Sansen, W.M.C.: Design of Analog Integrated Circuits and Systems. 5th edition. New Jersey : McGraw-Hill, 1994. – ISBN 0071134581 [530] Landau, L.D.: On the energy loss of fast particles by ionization. In: J. Phys. (USSR) 8 (1944), S. 201 [531] Landau, L.D.; Lifschitz, J.M.: Quantenelektrodynamik. 7. Auflage. Verlag Harri Deutsch, 1991 (Lehrbuch der theoretischen Physik (Band 4)) [532] Lang, R.F.; Seidel, W.: Search for Dark Matter with CRESST. In: New J.Phys. 11 (2009), S. 105017. doi: 10.1088/1367-2630/11/10/105017 [533] Langner, J.: Event-Driven Motion Compensation in Positron Emission Tomography: De- velopment of a Clinically Applicable Method, TU Dresden, Diss., 2008. http://nbn-resol ving.de/urn:nbn:de:bsz:14-qucosa-23509 [534] Lari, T. et al.: Characterization and modeling of non-uniform charge collection in CVD diamond pixel detectors. In: Nucl. Inst. and Meth. A 537 (2005), S. 581 [535] Lazo, M.S.; Woodall, D.M.; McDaniel, P.J.: Silicon and silicon dioxide neutron da- mage functions. In: Proc. Fast Burt. React. Workshop, 1986 Bd. 1, SANDIA National Laboratories, 1987, S. 85 [536] Lechner, P. et al.: Silicon Drift Detectors for high count rate X-ray spectroscopy at room temperature. In: Nucl. Inst. and Meth. A 548 (2001), S. 281. doi: 10.1016/0168- 9002(96)00210-0 [537] Lecoq, P. et al.: Inorganic Scintillators for Detector Systems: Physical Principles and Crystal Engineering. Springer, 2006 doi: 10.1007/3-540-27768-4 [538] Lee, Y.H.; Corbett, J.W.: EPR Studies of Defects in Electron-Irradiated Silicon – Triplet-State of Vacancy-Oxygen Complexes. In: Phys. Rev. B 13 (1976), S. 2653. doi: 10.1103/PhysRevB.13.2653 [539] Lemarenko, M. et al.: Test results of the data handling processor for the DEPFET pixel vertex detector. In: JINST 8 (2013), S. C01032. doi: 10.1088/1748-0221/8/01/C01032 [540] Lenzen, G.; Schyns, E.; Thadome, J.; Werner, J.: The Use of fluorocarbon radiators in the DELPHI RICH detectors. In: Nucl. Inst. and Meth. A 343 (1994), S. 268. doi: 10.1016/0168-9002(94)90562-2 890 Literaturverzeichnis

[541] Leo, R.W.: Techniques for Nuclear and Particle Physics Experiments. 2nd edition. Berlin– Heidelberg–New York : Springer, 1994 [542] Leprince-Ringuet, L.: Cosmic Rays. Prentice-Hall, New York, 1950 [543] Leroy, C.; Rancoita, P.-G.: Radiation Interaction in Matter and Detection. Singapore : World Scientific, 2004 [544] Leroy, C.; Rancoita, P.-G.: Silicon Solid State Devices and Radiation Detection. Singa- pore : World Scientific, 2012 [545] Leroy Davis: Interface buses. http://www.interfacebus.com. Version: 2014 [546] LHCb Collaboration: LHCb-Public Home Page. http://lhcb-public.web.cern.ch/lh cb-public/Welcome_270811.html [547] Li, S.S.: Semiconductor Physical Electronics. 2nd edition. Springer, 2006 [548] Lin, J. F.; Li, S.S.; Linares, L.C; Teng, K.W.: Theoretical analysis of Hall factor and Hall mobility in p-type silicon. In: Solid State Electronics 24 (1981), S. 827. doi: 10.1016/0038- 1101(81)90098-8 [549] Lindstrom, G.: Radiation damage in silicon detectors. In: Nucl. Inst. and Meth. A 512 (2003), S. 30. doi: 10.1016/S0168-9002(03)01874-6 [550] Lindstrom, G. et al. (RD48 (ROSE) Collaboration): Radiation hard silicon detectors – Developments by the RD48 (ROSE) Collaboration. In: Nucl. Inst. and Meth. A 466 (2001), S. 308. doi: 10.1016/S0168-9002(01)00560-5 [551] Lindstrom, G.; Moll, M.; Fretwurst, E.: Radiation hardness of silicon detectors: A challenge from high-energy physics. In: Nucl. Inst. and Meth. A 426 (1999), S. 1. doi: 10.1016/S0168-9002(98)01462-4 [552] Lint, V.A.J. van et al.: Mechanisms of Radiation Effects in Electronic Materials. Wiley and Sons, 1980 [553] Lipari,P.;Stanev, T.: Propagation of multi-TeV muons. In: Phys.Rev. D44 (1991), S. 3543. doi: 10.1103/PhysRevD.44.3543 [554] Lippmann, C.: Detector Physics of Resistive Plate Chambers, Universität Frankfurt, Dis- sertation, 2003. http://cds.cern.ch/record/1303626/ [555] Lippmann, C.: Particle identification. In: Nucl. Inst. and Meth. A 666 (2012), S. 148. doi: 10.1016/j.nima.2011.03.009 [556] Lippmann, C.; Riegler, W.: Space charge effects in resistive plate chambers. In: Nucl. Inst. and Meth. A 517 (2004), S. 54. doi: 10.1016/j.nima.2003.08.174 [557] Löcker, M. et al.: Single Photon Counting X-ray Imaging with Si and CdTe Single Chip Pixel Detectors and Multichip Pixel Modules. In: IEEE Trans. Nucl. Sci. 51 (2004), S. 1717. doi: 10.1109/TNS.2004.832610 [558] Loef, E.V.D. van; Dorenbos,P.;Eijk, C.W.E. van; Krämer, K.; Güdel, H.U.: High- 3+ energy-resolution scintillator: Ce activated LaCl3. In: Appl. Phys. Lett. 77 (2000), S. 1467. doi: 10.1063/1.1308053 [559] Lohrmann, E.; Söding,P.:Von schnellen Teilchen und hellem Licht – 50 Jahre Deutsches Elektronen-Synchrotron DESY. Wiley-VCH, Weinheim, 2009. – ISBN 9783527409907 [560] Lohse, T.; Witzeling, W.: The Time Projection Chamber. In: [707] S. 81. – doi: 10.1142/9789814360333_0002 [561] Longo, E.; Sestili, I.: Monte Carlo Calculation of Photon Initiated Electromagnetic Showers in Lead Glass. In: Nucl. Inst. and Meth. 128 (1975), S. 283. doi: 10.1016/0029- 554X(75)90679-5 [562] Lubelsmeyer, K. et al.: Upgrade of the Alpha Magnetic Spectrometer (AMS-02) for long term operation on the International Space Station (ISS). In: Nucl. Inst. and Meth. A 654 (2011), S. 639. doi: 10.1016/j.nima.2011.06.051 [563] Lund-Jensen, B.: Single-photon detectors for Cherenkov ring imaging, Uppsala University, PhD thesis, 1988. http://cds.cern.ch/record/193058/ Literaturverzeichnis 891

[564] Lupberger, M. et al.: InGrid: Pixelated Micromegas detectors for a pixel-TPC. In: Proc. 3rd International Conference on Technology and Instrumentation in Particle Physics (TIPP 2014), PoS TIPP2014, 2014, S. 225. http://pos.sissa.it/archive/conferences/213/ 225/TIPP2014_225.pdf [565] Lutz, G.: Correlated Noise in Silicon Strip Detector Readout. In: Nucl. Inst. and Meth. A 309 (1991), S. 545. doi: 10.1016/0168-9002(91)90260-W [566] Lutz, G.: Semiconductor Radiation Detectors. Berlin, Heidelberg : Springer, 1999 [567] Lutz, G. et al.: DEPFET-detectors: New developments. In: Nucl. Inst. and Meth. A 572 (2007), S. 311. doi: 10.1016/j.nima.2006.10.339 [568] Lynch, G.R.; Dahl, O.I.: Approximations to multiple Coulomb scattering. In: Nucl. Inst. and Meth. B58 (1991), S. 6 [569] Madelung,O.: Festkörpertheorie III. Berlin, Heidelberg, New York : Springer-Verlag, 2013 [570] Magic Collaboration. (Magic Collaboration): The MAGIC Telescopes. http://magi c.mppmu.mpg.de [571] Maire, M.: Electromagnetic interactions of particles with matter. In: Aubert, B. (Hrsg.) et al.: IX Int. Conf. on Calorimetry in High Energy Physics, Annecy, 2000., 2001, S. 3. http://calor.pg.infn.it/calor2000/Contributions/Tutorials/michel_maire.pdf [572] Majewski, S.; Zorn, C.: Fast scintillators for high radiation levels. In: Sauli, F. (Hrsg.): Advanced series on directions in high energy physics, 9, World Scientific, Singapore, 1992, S. 157 [573] Malter, L.: Thin Film Field Emission. In: Phys. Rev. 50 (1936), S. 48. doi: 10.1103/Phys- Rev.50.48 [574] Manghisioni, M.; Ratti, L.; Re, V.; Speziali, V.: Submicron CMOS Technologies for Low-Noise Analog Front-End Circuits. In: IEEE Trans. Nucl. Sci. 49(4) (2002), S. 1783 [575] Mangiarotti, A.; Gobbi, A.: On the physical origin of tails in the time response of spark counters. In: Nucl. Inst. and Meth. A 482 (2002), S. 192. doi: 10.1016/S0168-9002(01)01623- 0 [576] Mankel, R.: Pattern recognition and event reconstruction in particle physics experiments. In: Rept. Prog. Phys. 67 (2004), S. 553. doi: 10.1088/0034-4885/67/4/R03 [577] Mankel,R.;Spiridonov, A.: The Concurrent track evolution algorithm: Extension for track finding in the inhomogeneous magnetic field of the HERA-B spectrometer. In: Nucl. Inst. and Meth. A 426 (1999), S. 268. doi: 10.1016/S0168-9002(99)00013-3 [578] Mantaro Impedance Calculator. http://www.mantaro.com/resources/impedance_calcula tor.htm#microstrip_impedance [579] Mapelli, A. (ATLAS ALFA Collaboration): ALFA: Absolute Luminosity For AT- LAS: Development of a scintillating fibre tracker to determine the absolute LHC luminosity at ATLAS. In: Nucl. Phys. Proc. Suppl. 197 (2009), S. 387. doi: 10.1016/j.nuclphysbps.2009.10.110 [580] Marinas, C. (DEPFET Collaboration): The Belle II DEPFET vertex detector: Cur- rent status and future plans. In: JINST 7 (2012), S. C02029. doi: 10.1088/1748- 0221/7/02/C02029 [581] Markov, M.A.: Instrumentation and Beam Diagnostics in the ISR. In: Proc. 1960 Annual International Conference on High-Energy Physics, University of Rochester, 1960, S. 578 [582] Marmier,P.;Sheldon, E.: Physics of Nuclei and Particles. New York : Academic Press, 1969 [583] Mathes, M. et al.: Test beam Characterizations of 3D Silicon Pixel detectors. In: IEEE Trans. Nucl. Sci. 55 (2008), S. 3731. doi: 10.1109/TNS.2008.2005630 [584] Mathews, J.H.; Howell, R.W.: Complex analysis for mathematics and engineering. Sud- bury : Jones and Bartlett Learning, 2006 892 Literaturverzeichnis

[585] Maxim Integrated: ADC Tutorials. http://www.maximintegrated.com/en/design/tec hdocs/tutorials [586] May, P.W.: CVD Diamond – a New Technology for the Future? http://www.chm.bris.a c.uk/pt/diamond/end.htm [587] McPeak, J.: Radiation Detection Devices: various means to quantify various types of radiation emitted. http://magnusslayde.wordpress.com/article/radiation-detection -devices-33qgvqgci3cqt-7/. Version: 2010 [588] Meek, J.M.; Craggs, J.D.: Electrical breakdown of gases. Clarendon Press, 1954 (Inter- national series of monographs on physics). http://www.archive.org/details/electrica lbreakd031039mbp [589] Meidinger, N. et al.: pnCCD for photon detection from near-infrared to X-rays. In: Nucl. Inst. and Meth. A 565 (2006), S. 251 [590] Migdal, A.B.: Bremsstrahlung and pair production in condensed media at high-energies. In: Phys. Rev. 103 (1956), S. 1811. doi: 10.1103/PhysRev.103.1811 [591] Mikuz, M. et al. (CERN RD-42): Diamond Sensors in HEP. In: Proc. 36th International Conference on High Energy Physics (ICHEP2012), PoS ICHEP2012, 2013, S. 524. http: //pos.sissa.it/cgi-bin/reader/conf.cgi?confid=174 [592] Milotti, E.: 1/f noise: a pedagogical review. In: arXiv:physics/0204033 (2002) [593] Miyoshi, T. et al.: Recent Progress of Pixel Detector R&D based on SOI Technology. In: Proc. 2nd International Conference on Technology and Instrumentation in Particle Physics 2011, Phys. Procedia 37, 2012, S. 1039. doi: 10.1016/j.phpro.2012.02.450 [594] Moliere, G.: Theorie der Streuung schneller geladener Teilchen I. Einzelstreuung am abgeschirmten Coulomb-Feld. In: Z. Naturforsch. A2 (1947), S. 133. http://zfn.mpdl.mpg .de/data/Reihe_A/2/ZNA-1947-2a-0133.pdf [595] Moliere, G.: Theorie der Streuung schneller geladener Teilchen II. Mehrfach- und Viel- fachstreuung. In: Z. Naturforsch. A3 (1948), S. 78. http://zfn.mpdl.mpg.de/data/Reihe _A/3/ZNA-1948-3a-0078.pdf [596] Moll, M.; Fretwurst, E.; Lindstrom, G. (RD48(ROSE) Collaboration): Investigation on the improved radiation hardness of silicon detectors with high oxygen concentration. In: Nucl. Inst. and Meth. A 439 (2000), S. 282. doi: 10.1016/S0168-9002(99)00842-6 [597] Montgomery, C.G.; Montgomery, D.D.: Geiger-Mueller counters. In: Journal of the Franklin Institute 231 (1941), S. 447. doi: 10.1016/S0016-0032(41)90498-2 [598] Morishima, K.; Hamada, K.; Komatani,R.;Nakano, T.; Kodama, K.: Development of an automated nuclear emulsion analyzing system. In: Radiation Measurements 50 (2013), S. 237. doi: 10.1016/j.radmeas.2012.06.016. – ICNTS 2011 [599] Morse, P.M.; Feshbach, H.: Methods of Theoretical Physics, Part I and II. New York, NY, USA : McGraw-Hill, 1953 [600] Motz, J.W.; Olsen, H.A.; Koch, H.W.: Pair production by photons. In: Rev. Mod. Phys. 41 (1969), S. 581. doi: 10.1103/RevModPhys.41.581 [601] NA35 Collaboration: NA35: sulphur-gold collision. http://cds.cern.ch/record/39453. Version: Jul. 1991 [602] Nakamura, H.; Kitamura, H.; Hazama, R.: Radiation measurements with heat-proof polyethylene terephthalate bottles. In: Proc.Roy.Soc.A466 (2010), Nr. 2122, S. 2847. doi: 10.1098/rspa.2010.0118 [603] Nakamura, K.: Hyper-Kamiokande: A next generation water Cherenkov detector. In: Int. J. Mod. Phys. A18 (2003), S. 4053. doi: 10.1142/S0217751X03017361 [604] Nakamura, K. et al. (Particle Data Group): Review of particle physics. In: J. Phys. G37 (2010), S. 075021. doi: 10.1088/0954-3899/37/7A/075021 [605] National Institute of Standards and Technology (NIST): Engineering Metrology Toolbox. http://emtoolbox.nist.gov/ Literaturverzeichnis 893

[606] Neeser,W.: Test und Inbetriebnahme von DEPJFET-Detektoren, Universität Bonn, Di- plomarbeit, 1996. BONN-IR-96-31 [607] Nemethy,P.;Oddone, P.J.; Toge, N.; Ishibashi, A.: Gated Time Projection Chamber. In: Nucl. Inst. and Meth. 212 (1983), S. 273. doi: 10.1016/0167-5087(83)90702-0 [608] Nesladek, M. et al.: Charge transport in high mobility single crystal diamond. In: 18th European Conference on Diamond, Diamond- Like Materials, Carbon Nanotubes, Nitrides and Silicon Carbide Bd. 17, 2008, S. 1235 [609] Neuert, H.: Kernphysikalische Messverfahren. Verlag G. Braun, Karlsruhe, 1966 [610] Neyret, D. et al.: New pixelized Micromegas detector for the COMPASS experiment. In: JINST 4 (2009), S. P12004. doi: 10.1088/1748-0221/7/03/C03006 [611] Ni, K.: Development of a Liquid Xenon Time Projection Chamber for the XENON Dark Matter Search, Columbia University, PhD thesis, 2006. http://xenon.astro.columbia.edu /thesis/Kaixuan.Ni_Thesis.pdf [612] Niebuhr, C.: Aging in the Central Jet Chamber of the H1 experiment. In: Nucl. Inst. and Meth. A 515 (2003), S. 43. doi: 10.1016/j.nima.2003.08.128 [613] NIM Committee: Standard NIM instrumentation system / DOE/ER. DOE/ER-0457T. 1990. doi: 10.2172/7120327 [614] Nishida, S. et al.: Studies of a proximity focusing aerogel RICH for the Belle upgrade. In: IEEE Nuclear Science Symposium 3 (2004), S. 1951. doi: 10.1109/NSSMIC.2004.1462628 [615] NMDB: Neutron Monitor Database. http://www.nmdb.eu [616] Novotny, R.: Performance of the BaF-2 calorimeter TAPS. In: Nucl. Phys. Proc. Suppl. 61B (1998), S. 137. doi: 10.1016/S0920-5632(97)00552-5 [617] Nygren, D.R.; Marx, J.N.: The Time Projection Chamber. In: Phys. Today 31N10 (1978), S. 46. doi: 10.1063/1.2994775 [618] Nyquist, H.: Thermal agitation of electricity in conductors. In: Phys. Rev. 32 (1928), S. 110. doi: 10.1103/PhysRev.32.110 [619] Oed, A.: Position Sensitive Detector with Microstrip Anode for electron Multiplication with Gases. In: Nucl. Inst. and Meth. A 263 (1988), S. 351 [620] Okubo, S.; Tanaka, H.K.M.: Imaging the density profile of a volcano interior with cosmic- ray muon radiography combined with classical gravimetry. In: Measurement Science and Technology 23 (2012), S. 042001. doi: 10.1088/0957-0233/23/4/042001 [621] Olive, K.A. et al. (Particle Data Group): Review of Particle Physics (RPP). In: Chin.Phys. C38 (2014), S. 090001. doi: 10.1088/1674-1137/38/9/090001. – RPP wird alle 2 Jahre neu herausgegeben. Den Online-Zugang zu den aktuellen und frühereren Versionen findet man unter http://pdg.lbl.gov/ [622] Oppenheim, A.V.; Willsky, A.S.: Signals and Systems. 2nd edition. India : Prentice Hall, 1996. – ISBN 0138147574 [623] Oreglia, M. et al.: A Study of the Reaction: ψ’ → γγJ/ψ. In: Phys. Rev. D25 (1982), S. 2259. doi: 10.1103/PhysRevD.25.2259 [624] Oxford Physics: BEBC. http://www.physics.ox.ac.uk/dwb/BEBC.pdf. Version: 2014 [625] Oyama, K. et al.: The transition radiation detector for ALICE at the LHC. In: Nucl. Inst. and Meth. A 623 (2010), S. 362. doi: 10.1016/j.nima.2010.02.249 [626] Palladino, V.; Sadoulet, B.: Application of the Classical Theory of Electrons in Gases to Multiwire Proportional and Drift Chambers. LBL-3013. 1974. http://www.osti.gov/b ridge/servlets/purl/4270437-MpNuaH/4270437.pdf [627] Palladino, V.; Sadoulet, B.: Application of Classical Theory of Electrons in Gases to Drift Proportional Chambers. In: Nucl. Inst. and Meth. 128 (1975), S. 323. doi: 10.1016/0029-554X(75)90682-5 [628] Palmonari, F.M. (CMS Collaboration): CMS tracker performance. In: Nucl. Inst. and Meth. A 699 (2013), S. 144. doi: 10.1016/j.nima.2012.06.010 894 Literaturverzeichnis

[629] Pan, L.S.; Kania, D.R.: Diamond: electronic properties and applications. Boston, MA : Kluwer Academic Publ., 1995 [630] Pancheshnyi, S. et al. (The LXCat team): LXcat Database. http://www.lxcat.net. Version: abgerufen 2014 [631] Papini, P. et al.: In-flight performances of the PAMELA satellite experiment. In: Nucl. Inst. and Meth. A 588 (2008), S. 259. doi: 10.1016/j.nima.2008.01.052 [632] Parkes, C. et al. (LHCb Collaboration): First LHC beam induced tracks recon- structed in the LHCb VELO. In: Nucl. Inst. and Meth. A 604 (2009), S. 1. doi: 10.1016/j.nima.2009.01.215 [633] Parkhomchuck, V.V.; Pestov, Y.N.; Petrovykh, N.V.: A spark counter with large area. In: Nucl. Inst. and Meth. 93 (1971), S. 269 [634] Particle Data Group: Atomic and Nuclear Properties of Materials. http://pdg.lbl.g ov/2014/AtomicNuclearProperties. – Die aktuelle Version findet man als Link auf http: //pdg.lbl.gov/ [635] Particle Data Group: Review of Particle Physics (RPP). http://pdg.lbl.gov [636] PCIMG: Open Modular Computing Specifications. http://www.picmg.org/. Version: 2014 [637] Pelgrom, Marcel J.: Analog-to-Digital Conversion. Berlin-Heidelberg-New York : Springer, 2013. – ISBN 9781461413714 [638] Peric, I.: A novel monolithic pixelated particle detector implemented in high-voltage CMOS technology. In: Nucl. Inst. and Meth. A 582 (2007), S. 876 [639] Peric, I. et al.: The FEI3 readout chip for the ATLAS pixel detector. In: Nucl. Inst. and Meth. A 565 (2006), S. 178. doi: 10.1016/j.nima.2006.05.032 [640] Perkins, D.H.: Introduction to High Energy Physics. Cambridge University Press, 2000. – ISBN 9780521621960 [641] Perl, M.: The Discovery of the Tau-Lepton. In: [439] S. 79. – doi: dx.doi.org/10.1017/CBO9780511471094.007 [642] Perl, M.L. et al.: Evidence for Anomalous Lepton Production in e+e− Annihilation. In: Phys. Rev. Lett. 35 (1975), S. 1489. doi: 10.1103/PhysRevLett.35.1489 [643] Pernegger, H. et al.: Charge-carrier properties in synthetic single-crystal diamond mea- sured with the transient-current technique. In: J. Appl. Phys. 97 (2005), S. 073704 [644] Peso, J. del; Ros, E.: On the Energy Resolution of Electromagnetic Sampling Calorimeters. In: Nucl. Inst. and Meth. A 276 (1989), S. 456. doi: 10.1016/0168-9002(89)90571-8 [645] Pestotnik, R. et al.: Aerogel RICH for forward PID at Belle II. In: Nucl. Inst. and Meth. A 732 (2013), S. 371. doi: 10.1016/j.nima.2013.06.080 [646] Pestov, Y.N.: Status and future developments of spark counters with a localized discharge. In: Nucl. Inst. and Meth. 196 (1982), S. 45. doi: 10.1016/0029-554X(82)90614-0 [647] Pestov, Y.N.: The Status of Spark Counters With a Localized Discharge. In: Nucl. Inst. and Meth. A 265 (1988), S. 150. doi: 10.1016/0168-9002(88)91066-2 [648] Philipp, K.: Zur Existenz der weitreichenden α-Strahlen des Radium C. In: Naturwissen- schaften 14 (1926), S. 1203. doi: 10.1007/BF01451770 [649] Philippot, J.C.: Automatic Processing of Diode Spectrometry Results. In: IEEE Trans. Nucl. Sci. NS-17/3 (1970), S. 446. doi: 10.1109/TNS.1970.4325723 [650] Pierre Auger Collaboration : Pierre Auger Observatory. http://auger.org [651] Pintilie, I.; Buda, M.; Fretwurst, E.; Lindstrom, G.; Stahl, J.: Stable radiation- induced donor generation and its influence on the radiation tolerance of silicon diodes. In: Nucl. Inst. and Meth. A 556 (2006), S. 197. doi: 10.1016/j.nima.2005.10.013 [652] Pintilie, I.; Fretwurst, E.; Lindstrom, G.: Cluster related hole traps with enhanced- field-emission: the source for long term annealing in hadron irradiated Si diodes. In: Appl. Phys. Lett. 92 (2008), S. 024101. doi: 10.1063/1.2832646 Literaturverzeichnis 895

[653] Pintilie, I.; Lindstroem, G.; Junkes, A.; Fretwurst, E.: Radiation-induced point- and cluster-related defects with strong impact on damage properties of silicon detectors. In: Nucl. Inst. and Meth. A 611 (2009), S. 52. doi: 10.1016/j.nima.2009.09.065 [654] Pinto, S.D.: Micropattern gas detector technologies and applications the work of the RD51 collaboration. In: IEEE Nuclear Science Symposium (NSS/MIC), 2010, S. 802. doi: 10.1109/NSSMIC.2010.5873870 [655] Pitzl, D. et al.: The H1 silicon vertex detector. In: Nucl. Inst. and Meth. A 454 (2000), S. 334. doi: 10.1016/S0168-9002(00)00488-5 [656] Plewnia, S. et al.: A sampling calorimeter with warm-liquid ionization chambers. In: Nucl. Inst. and Meth. A 566 (2006), S. 422. doi: 10.1016/j.nima.2006.07.051 [657] Polyanskiy, M.: Refractive Index Info. http://refractiveindex.info [658] Porro, M. et al.: Spectroscopic performance of the DePMOS detector/amplifier device with respect to different filtering techniques and operating conditions. In: IEEE Trans. Nucl. Sci. 53 (2006), S. 401 [659] Powell, C.F.: Nobel Lecture: The cosmic radiation. http://www.nobelprize.org/nobel _prizes/physics/laureates/1950/powell-lecture.html [660] Powell, C.F.: Mesons. In: Rept.Prog.Phys. 13 (1950), S. 350. doi: 10.1088/0034- 4885/13/1/309 [661] Press, W.H.: Flicker Noises in Astronomy and Elsewhere. In: Comments Astrophys. 7 (1978), S. 103 [662] Prosenjit, R.-C.: Handbook of microlithography, micromachining, and microfabrication. London : Institution of Engineering and Technology, 1997. – ISBN 0852969066 [663] Qiu, Xi-Yu et al.: Position reconstruction in fission fragment detection using the low pressure MWPC technique for the JLab experiment E02-017. In: Chinese Physics C 38 (2014), S. 074003. doi: 10.1088/1674-1137/38/7/074003 [664] Quadt, A.: Darstellung von Stereo-Drahtlagen in einer zylindrischen Driftkammer. 2003. – private Mitteilung [665] Radeka, V.: Low-Noise Techniques in Detectors. In: Ann. Rev. Nucl. Part. Sci 38 (1988), S. 217. doi: 10.1146/annurev.ns.38.120188.001245 [666] Radeka, V.: The sign in Ramo’s equation. 2011. – private Mitteilung [667] Radeka, V.; Rehak, P.: Second Coordinate Readout in Drift Chambers by Charge Divi- sion. In: IEEE Trans. Nucl. Sci. 25 (1978), S. 46 [668] Raether, H.: Electron Avalanches and Breakdown in Gases. In: Butterworth Advanced Physics Series, London (1964) [669] Raizer, Y.P.: Gas Discharge Physics. Springer-Verlag, 1991 doi: 10.1007/978-3-642-61247- 3. – ISBN 9783642647604 [670] Ramanantsizehena,P.;Gresser, J.; Schultz, G.: Computations of Drift Velocities for Chambers Working in Magnetic Fields. In: Nucl. Inst. and Meth. 178 (1980), S. 253. doi: 10.1016/0029-554X(80)90886-1 [671] Ramo, S.: Currents Induced by Electron Motion. In: Proceedings of the I.R.E 27 (1939), S. 584. doi: 10.1109/JRPROC.1939.228757 [672] Ramsauer, C.: Über den Wirkungsquerschnitt der Gasmoleküle gegenüber langsamen Elektronen. In: Annalen der Physik 369 (1921), S. 513. doi: 10.1002/andp.19213690603 [673] Ratti, L. et al.: CMOS MAPS with Fully Integrated, Hybrid-pixel-like Analog Front-end Electronics. In: eConf C0604032 (2006), S. 0008 [674] Raymond, M. et al.: The CMS tracker APV25 0.25-mu-m CMOS readout chip. In: 6th Workshop on Electronics for LHC Experiments, Krakow, Poland, 2000, S. 130. doi: 10.5170/CERN-2000-010.130 [675] Rehak, P. et al.: Progress in Semiconductor Drift Detectors. In: Nucl. Inst. and Meth. A 248 (1986), S. 367. doi: 10.1016/0168-9002(86)91021-1 896 Literaturverzeichnis

[676] Reilly, D.; Ensslin, N.; Smith, H.: Passive Non-Destructive Assay of Nuclear Materials. The Commission, 1991. – ISBN 0160327245, 9780160327247 [677] Reines, F.; Cowan, C.: The Reines-Cowan experiments: Detecting the Poltergeist. In: Los Alamos Sci. 25 (1997), S. 4. http://library.lanl.gov/cgi-bin/getfile?00326606.pdf [678] Reines, F.; Cowan, C.L.: Detection of the free neutrino. In: Phys.Rev. 92 (1953), S. 830. doi: 10.1103/PhysRev.92.830 [679] RENO Collaboration: Reactor Experiment for . http://hcpl.knu .ac.kr/neutrino/neutrino.html [680] Rice-Evans, P.: Spark and streamer chambers. In: J. Phys. E: Sci. Instrum. 2 (1969), S. 221. doi: 10.1088/0022-3735/2/3/201 [681] Rice-Evans,P.: Spark, Streamer, proportional and drift chambers. Richelieu Press, 1974. – ISBN 9780903840002 [682] Riege, H.: High-frequency and pulse response of coaxial transmission cables with conductor, dielectric and semiconductor losses. 1970. – Report CERN-70-04 [683] Riegler,W.;Aglieri Rinella, G.: Point charge potential and weighting field of a pi- xel or pad in a plane condenser. In: Nucl. Inst. and Meth. A 767 (2014), S. 267. doi: 10.1016/j.nima.2014.08.044 [684] Riegler,W.;Lippmann, C.: The physics of resistive plate chambers. In: Nucl. Inst. and Meth. A 518 (2004), S. 86. doi: 10.1016/j.nima.2003.10.031 [685] Riegler,W.;Lippmann, C.; Veenhof, R.: Detector physics and simulation of resistive plate chambers. In: Nucl. Inst. and Meth. A 500 (2003), S. 144. doi: 10.1016/S0168- 9002(03)00337-1 [686] Robinson, F.N.H. (Hrsg.): Noise in electrical circuits. Oxford University Press, London, 1962 [687] Rochester, G.D.; Wilson, J.G.: Cloud chamber photographs of the cosmic radiation. Academic Press, Pergamon Press, 1952 [688] Rodnyi, P.A.: Core-valance transitions in wide-gap ionic crystals. In: Sov. Phys. Solid State 34 (1992), S. 1053 [689] Rodnyi, P.A.: Progress in fast scintillators. In: Radiat. Meas. 33 (2001), S. 605. doi: 10.1016/S1350-4487(01)00068-3 [690] Rogalla, M.: Systematic Investigation of Gallium Arsenide Radiation Detectors for High Energy Physics Experiments. Shaker, 1997. – ISBN 9783826539206 [691] ROOT Development Team: class ROOT::Math::Vavilov. http://root.cern.ch/root/h tml/ROOT__Math__Vavilov.html [692] ROOT Development Team: ROOT web page. http://root.cern.ch/drupal/ [693] Rose, M.E.; Korff, S.A.: An Investigation of the Properties of Proportional Counters I. In: Phys. Rev. 59 (1941), S. 850. doi: 10.1103/PhysRev.59.850 [694] Rossi, B.; Greisen, K.: Cosmic-Ray Theory. In: Rev. Mod. Phys. 13 (1941), Oct, S. 240. doi: 10.1103/RevModPhys.13.240 [695] Rossi, B.B.: High Energy Particles. 1st edition. Prentice-Hall, 1952 [696] Rossi, B.B.: Cosmic rays. McGraw-Hill, 1964 https://archive.org/details/CosmicRay s_281 [697] Rossi, L.; Fischer,P.;Rohe, T.; Wermes, N.: Pixel Detectors: From Fundamentals to Applications. Berlin, Heidelberg : Springer, 2006 [698] Ruch, J.G.; Kino, G.S.: Measurement of the Velocity-Field Characteristics of Gallium Arsenide. In: Appl. Phys. Lett. 10 (1967), S. 40 [699] Ruchti, R.C.: The use of scintillating fibers for charged-particle tracking. In: Ann. Rev. Nucl. Part. Sci. 46 (1996), S. 281. doi: 10.1146/annurev.nucl.46.1.281 Literaturverzeichnis 897

[700] Ruland, A.M.: Performance and operation of the BaBar calorimeter. In: J. Phys. Conf. Ser. 160 (2009), S. 012004. doi: 10.1088/1742-6596/160/1/012004 [701] Rutherford, E.: The Scattering of α and β Particles by Matter and the Structure of the Atom. In: Phil. Mag. 21 (1911), S. 669. doi: 10.1080/14786440508637080 [702] Rutherford, E.; Geiger, H.; Harling, J.: An Electrical Method of Counting the Number of α-Particles from Radio-Active Substances. In: Proc.Roy.Soc.A81 (1908), S. 141. doi: 10.1098/rspa.1908.0065 [703] Sanfilippo, S.: Hall probes: physics and application to magnetometry. In: arXiv:1103.1271 (2011) [704] Santonico,R.;Cardarelli, R.: Development of Resistive Plate Counters. In: Nucl. Inst. and Meth. 187 (1981), S. 377. doi: 10.1016/0029-554X(81)90363-3 [705] Sauli, F.: GDD: Gaseous Detector Development, CERN web page. http://gdd.web.cern.c h/GDD/ [706] Sauli, F.: Principles of Operation of Multiwire Proportional and Drift Chambers. In: [323] S. 79. – doi: 10.1142/9789814355988_0002. – Nachdruck von CERN-Report 77-09 [707] Sauli, F. (Hrsg.): Instrumentation in High Energy Physics. World Scientific, 1992 (Advan- ced series on directions in high energy physics). http://www.worldscientific.com/world scibooks/10.1142/1356. – ISBN 9789810214739 [708] Sauli, F.: GEM: A new concept for electron amplification in gas detectors. In: Nucl. Inst. and Meth. A 386 (1997), S. 531. doi: 10.1016/S0168-9002(96)01172-2 [709] Sauli, F.: Fundamental understanding of aging processes: Review of the workshop results. In: Nucl. Inst. and Meth. A 515 (2003), S. 358. doi: 10.1016/j.nima.2003.09.024 [710] Sauli, F.: Gaseous Radiation Detectors – Fundamentals and Applications. 1. Auflage. Cam- bridge : Cambridge University Press, 2014 doi: 10.1017/CBO9781107337701. – Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology. (No. 36) [711] Sauli, F.; Sharma, A.: Micropattern gaseous detectors. In: Ann. Rev. Nucl. Part. Sci. 49 (1999), S. 341. doi: 10.1146/annurev.nucl.49.1.341 [712] Sauter, E.: Grundlagen des Strahlenschutzes. Fachbuchverlag, Leipzig, 1983 [713] Schade,P.;Kaminski, J. (LCTPC Collaboration): A large TPC prototype for a linear colli- der detector. In: Nucl. Inst. and Meth. A 628 (2011), S. 128. doi: 10.1016/j.nima.2010.06.300 [714] Schieck, J. (DEPFET): DEPFET pixels as a vertex detector for the Belle II experiment. In: Nucl. Inst. and Meth. A 732 (2013), S. 160. doi: 10.1016/j.nima.2013.05.054 [715] Schiff, L.I.: Quantum mechanics. 3rd edition. Auckland McGraw-Hill, 1987 http://arch ive.org/details/QuantumMechanics_500. – ISBN 007Y856435 [716] Schmidt, A. (CMS Collaboration): Performance of track and vertex reconstruction and b-tagging studies with CMS in p p collisions at s**(1/2) = 7-TeV. In: PoS KRUGER2010 (2011), S. 032 [717] Schmidt, B.: Drift und Diffusion von Elektronen in Methan und Methan-Edelgas- Mischungen, Universität Heidelberg, Dissertation, 1986. http://d-nb.info/910174938 [718] Schmidt, T.: Aufbau und Funktionsnachweis eines Optischen Moduls mit optisch-analoger Pulsübertragung für den AMANDA-II- und ICECUBE-Detektor, Humboldt-Universität Berlin, Dissertation, 2002. http://edoc.hu-berlin.de/dissertationen/schmidt-torsten -2002-11-15/PDF/Schmidt.pdf [719] Schneider, B.: Computation of the Space Drift Time Relation in Arbitrary Magnetic Fields, Universität Bonn, Diplomarbeit, 1987. http://www-lib.kek.jp/cgi-bin/img_ind ex?200030077. BONN-IR-87-19 [720] Schottky, W.: Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern. In: Ann. Phys. 362 (1918), S. 541. doi: 10.1002/andp.19183622304 [721] Schottky, W.: Zur Berechnung und Beurteilung des Schroteffektes. In: Ann. Phys. 373 (1922), S. 157. doi: 10.1002/andp.19223731007 898 Literaturverzeichnis

[722] Schottky, W.: Small-Shot Effect and Flicker Effect. In: Phys. Rev. 28 (1926), S. 74. doi: 10.1103/PhysRev.28.1331 [723] Schreiner, A.: Aging Studies of Drift Chambers of the HERA-B Outer Tracker Using CF4-based Gases, Humboldt-Universität zu Berlin, Dissertation, 2001. http://edoc.hu-b erlin.de/docviews/abstract.php?id=10412 [724] Schultz, G.; Gresser, J.: A Study of Transport Coefficients of Electrons in Some Gases Used in Proportional and Drift Chambers. In: Nucl. Inst. and Meth. 151 (1978), S. 413. doi: 10.1016/0029-554X(78)90151-9 [725] Schumacher, J.O.; Wettling,W.:Device physics of silicon solar cells. Imperial College Press, London, 2001 [726] Schuster, P.M. The scientific life of Victor Franz (Francis) Hess (June 24, 1883 – Decem- ber 17, 1964). In: Astropart. Phys. 53 (2014), S. 33. doi: 10.1016/j.astropartphys.2013.05.005 [727] Schwanke, U.: Aufbau und Durchführung von Testexperimenten mit Wabendriftkammern für das HERA-B Experiment, Humboldt-Universität zu Berlin, Diplomarbeit, 1996. http: //edoc.hu-berlin.de/docviews/abstract.php?id=3019 [728] Schwiening, J.: BaBar DIRC. 2013. – private Mitteilung [729] Schyns, E.: Status of large area CsI photocathode developments. In: Nucl. Inst. and Meth. A 494 (2002), S. 441. doi: 10.1016/S0168-9002(02)01520-6 [730] Sclar, N.: Neutral Impurity Scattering in Semiconductors. In: Phys. Rev. 104 (1956), S. 1559. doi: 10.1103/PhysRev.104.1559 [731] Seeger, K.: Semiconductor Physics. Springer, 2004 [732] Segal, J.D. et al.: Second generation monolithic full-depletion radiation sensor with inte- grated CMOS circuitry. In: IEEE Nucl. Sci. Symp. Conf. Rec. 2010 (2010), S. 1896. doi: 10.1109/NSSMIC.2010.5874104 [733] Seguinot, J.; Ypsilantis, T.: Evolution of the RICH Technique. In: Nucl. Inst. and Meth. A 433 (1999), S. 1. doi: 10.1016/S0168-9002(99)00543-4 [734] Seitz, F.: On the Theory of the Bubble Chamber. In: Physics of Fluids 1 (1958), S. 2. doi: 10.1063/1.1724333 [735] Seltzer, S.M.; Berger, M.J.: Bremsstrahlung spectra from electron interactions. In: Nucl. Inst. and Meth. B12 (1985), S. 95 [736] Seo, E.S.: Direct measurements of cosmic rays using balloon borne experiments. In: Astropart. Phys. 39-40 (2012), S. 76. doi: 10.1016/j.astropartphys.2012.04.002 [737] Serrano, J. et al.: The White Rabbit Project. In: of the 12th International Conference on Accelerator & Large Experimental Physics Control Systems (ICALEPCS2009), Kobe, Japan, 2009, 2009, S. 93. http://accelconf.web.cern.ch/AccelConf/ICALEPCS2009/pape rs/tuc004.pdf [738] Shapiro, M.M.: Nuclear Emulsions. In: [264] S. 342. – doi: 10.1007/978-3-642-45903-0_8 [739] Sharma, A.: Properties of some gas mixtures used in tracking detectors. SLAC-J-ICFA- 16-3. 1998. http://www.slac.stanford.edu/pubs/icfa/summer98/paper3/paper3.pdf [740] Shockley, A.: Currents to conductors induced by a moving point charge. In: J. Appl. Phys. 9 (1938), S. 635 [741] Shockley, W.: The Theory of p-n Junctions and p-n Junction Transistors. In: Bell Syst. Tech. J. 28 (1949), S. 435 [742] Shockley,W.: Electrons and Holes in Semiconductors: With Applications to Transistor Electronics. Van Nostrand Reinhold, 1950 (The Bell Telephone Laboratories series). https: //archive.org/details/ElectronsAndHolesInSemiconductors [743] Shockley,W.;Read, T.W.: Statistics of the recombinstion of holes and electrons. In: Phys. Rev. 87 (1952), S. 835 [744] Singh, J.: Physics of Semiconductors and their Heterostructures. McGraw-Hill, New York, 1993 Literaturverzeichnis 899

[745] Sirri, G.: Fast automated scanning of OPERA emulsion films. In: Nucl. Phys. Proc. Suppl. 172 (2007), S. 324. doi: 10.1016/j.nuclphysbps.2007.08.144 [746] Smirnov, D. (D0 Collaboration): Status of the D0 fiber tracker and preshower detectors. In: Nucl. Inst. and Meth. A 598 (2009), S. 94. doi: 10.1016/j.nima.2008.08.085 [747] Smith,P.;Inoue, M.; Frey, J.: Electron Velocity in Si and GaAs at Very High Electric Fields. In: Appl. Phys. Lett. 37 (1980), S. 797 [748] Sonnenschein, L. (CMS Collaboration): Drift velocity monitoring of the CMS muon drift chambers. In: PoS HCP2009 (2009), S. 101. http://pos.sissa.it/archive/conferences/ 102/101/HCP2009_101.pdf [749] Spieler, H.: Semiconductor Detector Systems. Oxford University Press, 2005 doi: 10.1093/acprof:oso/9780198527848.001.0001 [750] Sproul, A.B.; Green, M.A.: Intrinsic carrier concentration and minority-carrier mobility of silicon from 77 to 300 K. In: J. Appl. Phys. 73 (1993), S. 1214. doi: 10.1063/1.353288 [751] Sproul, A.B.; Green, M.A.; Zhao, J.: Improved value for the silicon intrinsic carrier concentration at 300 K. In: Appl. Phys. Lett. 57 (1990), S. 255. doi: 10.1063/1.103707 [752] Srour, J.R.; Palko, J.W.: Displacement Damage Effects in Irradiated Semiconductor Devices. In: IEEE Trans. Nucl. Sci. 60 (2013), S. 1740 [753] Stanev, T.; Vankov, C.; Streitmatter, R.E.; Ellsworth, R.W.; Bowen, T.: Develop- ment Of Ultrahigh-Energy Electromagnetic Cascades In Water And Lead Including The Landau-Pomeranchuk-Migdal Effect. In: Phys. Rev. D25 (1982), S. 1291. doi: 10.1103/Phys- RevD.25.1291 [754] Sternheimer, R.M.; Berger, M.J.; Seltzer, S.M.: Density effect for the ionization loss of charged particles in various substances. In: Atomic Data and Nuclear Data Tables 30 (1984), Nr. 2, S. 261. doi: 10.1016/0092-640X(84)90002-0 [755] Stokes, T. (Hamamatsu Inc.): Ävalanche Photodiodes Theory and Applicati- ons". http://www.photonicsonline.com/doc/avalanche-photodiodes-theory-and-app lications-0001. Version: 2005 [756] Stone, S.L. et al.: Characteristics of Electromagnetic Shower Sampling Counters. In: Nucl. Inst. and Meth. 151 (1978), S. 387. doi: 10.1016/0029-554X(78)90148-9 [757] Struder, L.: Recent Developments in Semiconductor Detectors and On Chip Electronics. In: Nucl. Inst. and Meth. A 283 (1989), S. 387. doi: 10.1016/0168-9002(89)91390-9 [758] Strüder, L. et al.: Fully Depleted, backside illuminated, spectroscopic active pixel sensors from the infrared to X-rays. In: Proc. SPIE, X-Ray Optics, Instruments, and Missions III Bd. 4012, 2000, S. 200. doi: 10.1117/12.391556 [759] Struder, L. et al.: The European Photon Imaging Camera on XMM-Newton: The pn-CCD camera. In: Astron.Astrophys. 365 (2001), S. L18 [760] Strüder, L.; Soltau, H.: High Resolution Silicon Detectors for Photons and Particles. In: Radiation Protection Dosimetry 61 (1995), S. 39. http://rpd.oxfordjournals.org/conte nt/61/1-3/39.abstract [761] Super-Kamiokande: official web site. http://www-sk.icrr.u-tokyo.ac.jp/sk [762] Suyama, M. et al.: A hybrid photodetector (HPD) with a III-V photocathode. In: IEEE Trans. Nucl. Sci. 45 (1998), S. 572 [763] Swiss Wafers AG: Mono-Silizium Wafers. http://www.swisswafers.ch/d/products/mon osiliconwa.html [764] SYNOPSYS: TCAD: Technology Computer Aided Design. http://www.synopsys.com/too ls/tcad/, Abruf: 2014 [765] Sze, S.M.: Semiconductor Devices, Physics and Technology. Wiley, Aufl. 2 (1985). – ISBN 0471874248 [766] Sze, S.M.; Lee, M.K.: Semiconductor Devices, Physics and Technology. Wiley, Aufl. 3 (2012). – ISBN 9780470537947 900 Literaturverzeichnis

[767] Sze, S.M.; Ng, K.K.: Physics of Semiconductor Devices (3rd ed.). Wiley, 2007 doi: 10.1002/0470068329 [768] Taft, B.A.; Hickey, B.M.; Wunsch, C.; Jr., D.J. B.: Equatorial undercurrent and deeper flows in the central Pacific. In: Deep Sea Research 21 (1974), S. 403 [769] Tani, T.: Characterization of nuclear emulsions in overview of photographic emulsions. In: Proc. 24th International Conference on Nuclear Tracks in Solids, Radiation Measurements 44, 2009, S. 733. doi: 10.1016/j.radmeas.2009.10.051 [770] Taylor, R.E.: Nobel Lecture: Deep Inelastic Scattering: The Early Years. http://www.nob elprize.org/nobel_prizes/physics/laureates/1990/taylor-lecture.html [771] Techniklexikon: Zonenschmelzverfahren. http://www.techniklexikon.net/d/zonensc hmelzverfahren/zonenschmelzverfahren.htm [772] Ter-Mikaelian, M.L.: Emission of fast particles in a heterogeneous medium. In: Nucl. Phys. 24 (1961), S. 43 Thom s s [773] , J.: Vorbereitung eines Experimentes zur Messung der B0B0-Mischung bei HERA-B, Universität Hamburg, Diplomarbeit, 1996. http://www-hera-b.desy.de/general/thesis /diploma/diploma_julia_thom.ps.gz [774] Thomson, E.J. et al.: Online track processor for the CDF upgrade. In: Nuclear Science, IEEE Transactions on 49 (2002), S. 1063. doi: 10.1109/TNS.2002.1039615 [775] Thomson, M.A.: Particle Flow Calorimetry and the PandoraPFA Algorithm. In: Nucl. Inst. and Meth. A 611 (2009), S. 25. doi: 10.1016/j.nima.2009.09.009 [776] Thornber, K.K.: Relation of drift velocity to lowfield mobility and highfield saturation velocity. In: J. Appl. Phys. 51 (1980), S. 2127 [777] Tosi, D.: Measurement of acoustic attenuation in South Pole ice with a retrievable trans- mitter, Humboldt Universität zu Berlin, Doktorarbeit, 2010. http://edoc.hu-berlin.de/ docviews/abstract.php?id=37227 [778] Townsend, J.S.: Electrons in Gases. London, New York : Hutchinson, 1948 [779] Townsend, J.S.; Tizard, H.: The Motion of Electrons in Gases. In: Proc.Roy.Soc.A88 (1913), S. 336. doi: 10.1098/rspa.1913.0034 [780] Toyama, T. et al. (CTA Consortium): Novel Photo Multiplier Tubes for the Cherenkov Telescope Array Project. In: arXiv:1307.5463 (2013) [781] Treis, J. et al.: DEPMOSFET Active Pixel Sensor Prototypes for the XEUS Wide Field Imager. In: IEEE Trans. Nucl. Sci. 52 (2005), S. 1083. doi: 10.1109/TNS.2005.852673 [782] Tsagli, S. et al. (NESTOR Collaboration): Recent measurements on the Hamamatsu 13-in., R8055,PhotoMultiplier tubes. In: Nucl. Inst. and Meth. A 567 (2006), S. 511. doi: 10.1016/j.nima.2006.05.176 [783] Tsai, Y.-S.: Pair Production and Bremsstrahlung of Charged Leptons. In: Rev.Mod.Phys. 46 (1974), S. 815. doi: 10.1103/RevModPhys.46.815, 10.1103/RevModPhys.49.421 [784] Tsung, J.-W. et al.: Signal and noise of Diamond Pixel Detectors at High Radiation Fluences. In: JINST 7 (2012), S. P09009. doi: 10.1088/1748-0221/7/09/P09009 [785] Turchetta, R.: Spatial resolution of silicon microstrip detectors. In: Nucl. Inst. and Meth. A 335 (1993), S. 44. doi: 10.1016/0168-9002(93)90255-G [786] Turchetta, R. et al.: A monolithic active pixel sensor for charged particle tracking and imaging using standard VLSI CMOS technology. In: Nucl. Inst. and Meth. A 458 (2001), S. 677. doi: 10.1016/S0168-9002(00)00893-7 [787] Ulrici, J. et al.: Imaging performance of a DEPFET pixel Bioscope system in Tritium autoradiography. In: Nucl. Inst. and Meth. A 547 (2005), S. 424 [788] Unal, G. (NA48 Collaboration): Performances of the NA48 liquid krypton calorimeter. In: Frascati Phys. Ser. vol. 21 Bd. 21, 2001, S. 361. arXiv:hep-ex/0012011 [789] Van Overstraeten,R.;De Man, H.: Measurement of the ionization rates in diffu- sed silicon p-n junctions. In: Solid State Electron. 13 (1970), S. 583. doi: 10.1016/0038- Literaturverzeichnis 901

1101(70)90139-5 [790] Vavilov, P.V.: Ionization losses of high-energy heavy particles. In: Sov. Phys. JETP 5 (1957), S. 749 [791] Vavra, J: Physics and chemistry of aging: Early developments. In: Nucl. Inst. and Meth. A 515 (2003), S. 1. doi: 10.1016/j.nima.2003.08.124 [792] Veenhof,R.: Garfield – simulation of gaseous detectors. http://garfield.web.cern.ch/ garfield/ [793] Veenhof, R.: GARFIELD, recent developments. In: Nucl. Inst. and Meth. A 419 (1998), S. 726. doi: 10.1016/S0168-9002(98)00851-1 [794] VERITAS Collaboration: VERITAS. http://veritas.sao.arizona.edu [795] Voigt, B.: Sensitivity of the IceCube detector for ultra-high energy electron-neutrino events, Humboldt Universität zu Berlin, Doktorarbeit, 2008. http://edoc.hu-berlin.de/docvie ws/abstract.php?id=29421 [796] Voss, R.F.; Clarke, J.: '1/f noise' in music and speech. In: Nature 258 (1975), S. 317. doi: 10.1038/258317a0 [797] Wagner, A.: Messverteilungen zur Testdriftkammer FSP des OPAL-Experiments. 1991. – private Mitteilung [798] Wald, F.V.; Bell, R.O.: Halogen-doped Cadmium Telluride for Detection of Gamma- Rays. In: Nature-Physical Science 237 (1972), S. 13 [799] Walenta, A.H.; Fischer, J.; Okuno, H.; Wang, C.L.: Measurement Of The Ionization Loss In The Region Of Relativistic Rise For Noble And Molecular Gases. In: Nucl. Inst. and Meth. 161 (1979), S. 45. doi: 10.1016/0029-554X(79)90360-4 [800] Walenta, A.H.; Heintze, J.; Schuerlein, B.: The multiwire drift chamber, a new type of proportional wire chamber. In: Nucl. Inst. and Meth. 92 (1971), S. 373 [801] Ward, M.L.; Greenwood, P.E.: 1/f noise: a pedagogical review. Scholarpedia 2(12):1537, 2007 [802] Watanabe, S. et al.: High energy resolution hard X-ray and gamma-ray imagers using CdTe diode devices. In: IEEE Trans. Nucl. Sci. 56 (2009), S. 777. doi: 10.1109/TNS.2008.2008806 [803] Wayne, M.R.: Visible light photon counters and the D0 scintillating fiber tracker. In: Nucl. Inst. and Meth. 387 (1997), S. 278 [804] Weber, S. G.; Andronic, A.: ALICE event display of a Pb-Pb collision at 2.76A TeV. https://cds.cern.ch/record/2032743. Version: Juli 2015 [805] Weiland, T. et al.: The Finite Integration Technique and the MAFIATM software package. http://www.temf.tu-darmstadt.de/forschung_5/fitmafia/fit.de.jsp [806] Weisstein, E.: Wolfram MathWorld. http://mathworld.wolfram.com/ [807] Wermes, N.: Trends in pixel detectors: Tracking and imaging. In: IEEE Trans. Nucl. Sci. 51 (2004), S. 1006. doi: 10.1109/TNS.2004.829438 [808] Westcott, C.H.: A Study of Expected Loss Rates in the Counting of Particles from Pulsed Sources. In: Proc.Roy.Soc.A194 (1948), S. 508. doi: 10.1098/rspa.1948.0094 [809] Wigmans, R.: On the energy resolution of Uranium and other hadron calorimeters. In: Nucl. Inst. and Meth. A 259 (1987), S. 389. doi: 10.1016/0168-9002(87)90823-0 [810] Wigmans, R.: High Resolution Hadronic Calorimetry. In: Nucl. Inst. and Meth. A 265 (1988), S. 273. doi: 10.1016/0168-9002(88)91081-9 [811] Wigmans, R.: Advances in hadron calorimetry. In: Ann. Rev. Nucl. Part. Sci 41 (1991), S. 133. doi: 10.1146/annurev.ns.41.120191.001025 [812] Wigmans,R.:Calorimetry. Oxford Science Publications, 2000 [813] Wigmans, R.: The DREAM project – Towards the ultimate in calorimetry. In: Proc. 11th Pisa Meeting on Advanced Detectors, Nucl. Inst. and Meth. A 617, 2010, S. 129. doi: 10.1016/j.nima.2009.09.118 902 Literaturverzeichnis

[814] Wikipedia: Complementary Metal Oxide Semiconductor. http://de.wikipedia.org/wik i/Complementary_metal-oxide-semiconductor [815] Wikipedia: Diamantstruktur. http://de.wikipedia.org/wiki/Diamantstruktur, Abruf: 2014 [816] Wikipedia: Ethernet. http://de.wikipedia.org/wiki/Ethernet, Abruf: 1.8.2014 [817] Wikipedia: Feldeffekttransistor. http://de.wikipedia.org/wiki/Feldeffekttransistor, Abruf: 2014 [818] Wikipedia: Massenwirkungsgesetz. http://de.wikipedia.org/wiki/Massenwirkungsgese tz, Abruf: 2014 [819] Wikipedia: Metall-Oxid-Halbleiter-Feldeffekttransistor. http://de.wikipedia.org/wiki/ Metall-Oxid-Halbleiter-Feldeffekttransistor, Abruf: 2014 [820] Wikipedia: Zinkblende-Struktur. http://de.wikipedia.org/wiki/Zinkblende-Struktur, Abruf: 2014 [821] Wikipedia: Zonenschmelzverfahren. http://de.wikipedia.org/wiki/Zonenschmelzverf ahren [822] Wilkinson, D.H.: A stable Ninety-Nine Channel Pulse Amplitude Analyser for Slow Coun- ting. In: Proc. Cambridge Phil. Soc. 46(3) (1950), S. 508 [823] Wille, K.: The Physics of Particle Accelerators: An Introduction. Oxford University Press, 2000 [824] Willeke, F.J.: Experiences with the HERA Lepton-Proton Collider. In: Proccedings of the 4th Particle Accelerator Conference APAC 2007, RRCAT, Indore, India, 2007, S. 842. http://accelconf.web.cern.ch/AccelConf/a07/PAPERS/FRYMA01.PDF [825] Williams, E.J.; Terroux, F.R.: Investigation of the Passage of „Fast“ β-Particles through Gases. In: Proc.Roy.Soc.A126 (1930), S. 289. doi: 10.1098/rspa.1930.0008 [826] Williams, M.C.S.: Particle identification using time of flight. In: J.Phys. G39 (2012), S. 123001. doi: 10.1088/0954-3899/39/12/123001 [827] Wilson, C.T.R.: Nobel Lecture: On the Cloud Method of Making Visible Ions and the Tracks of Ionizing Particles. Nobelprize.org. Nobel Media AB 2013. Web. 3 Jan 2014. http: //www.nobelprize.org/nobel_prizes/physics/laureates/1927/wilson-lecture.html [828] Wink, R. et al.: The Miniaturized proportional counter HD-2 (Fe) / (Si) for the GALLEX solar neutrino experiment. In: Nucl. Inst. and Meth. A 329 (1993), S. 541. doi: 10.1016/0168- 9002(93)91289-Y [829] Winn, D.R.; Worstell, W.A.: Compensating Hadron Calorimeters with Cherenkov Light. In: IEEE Trans. Nucl. Sci. 36 (1989), S. 334. doi: 10.1109/23.34459 [830] Wiza, J.L.: Microchannel plate detectors. In: Nucl. Inst. and Meth. 162 (1979), S. 587. doi: 10.1016/0029-554X(79)90734-1 [831] Wu, J. et al.: The performance of the TOFr tray in STAR. In: Nucl. Inst. and Meth. A 538 (2005), S. 243. doi: 10.1016/j.nima.2004.08.105 [832] Wunstorf,R.: Systematische Untersuchungen zur Strahlenresistenz von Silizium- Detektoren für die Verwendung in Hohenergiephysikexperimenten, Universität Hamburg, Doktorarbeit, 1992. http://www-library.desy.de/preparch/desy/int_rep/fh1k-92-01.p df. DESY FHIK-92-01 [833] Xu, Yichao et al.: A New Beam Profile Diagnostic System based on the Industrial Ethernet. In: Proc. of the 1st International Particle Accelerator Conference, Kyoto (IPAC10), 2010, S. MOPE033. http://accelconf.web.cern.ch/AccelConf/IPAC10/papers/mope033.pdf [834] Yajima, K. et al.: Measurements of Cosmic-Ray Neutron Energy Spectra from Thermal to 15 MeV with Bonner Ball Neutron Detector in Aircraft. In: J. of Nuclear Science and Technology 47 (2010), S. 31. doi: 10.1080/18811248.2010.9711934 [835] Yamamoto, A.; Makida, Y.: Advances in superconducting magnets for high energy and astroparticle physics. In: Nucl. Inst. and Meth. A 494 (2002), S. 255. doi: 10.1016/S0168- 9002(02)01477-8 Literaturverzeichnis 903

[836] Yamamoto, H.: dE/dx particle identification for collider detectors. In: arXiv:hep-ex/9912024 (1999) [837] Yasuda, H.: New insights into aging phenomena from plasma chemistry. In: Nucl. Inst. and Meth. A 515 (2003), S. 15. doi: 10.1016/j.nima.2003.08.125 [838] Yates, E.C.; Crandall, D.G.: Decay times of commercial organic scintillators. In: IEEE Trans. Nucl. Sci. 13/3 (1966), S. 153. doi: 10.1109/TNS.1966.4324093 [839] Zatsepin, G.T.; Kuzmin, V.A.: Upper limit of the spectrum of cosmic rays. In: JETP Lett. 4 (1966), S. 78 [840] Zeidler, E. (Hrsg.): Springer-Taschenbuch der Mathematik (I.N. Bronstein and K.A. Semendjajew). Springer Fachmedien Wiesbaden, 2013 doi: 10.1007/978-3-8348-2359-5. – ISBN 9783835101234 [841] Zeuner, T. (HERA-B Collaboration): The MSGC-GEM Inner Tracker for HERA-B. In: Nucl. Inst. and Meth. A 446 (2000), S. 324. doi: 10.1016/S0168-9002(00)00042-5 [842] ZEUS Collaboration (Hrsg.: U. Holm): The ZEUS Detector. http://www-zeus.des y.de/bluebook/bluebook.html. Version: 1993. – Status Report (unpublished), DESY [843] Zhao, S.: Characterization of the Electrical Properties of Polycrystalline Diamond Films, Ohio State University, Columbus, Ohio, USA, PhD Thesis, 1994 [844] Zuber, K.: Neutrino Physics. CRC Press, 2011. – ISBN 9781420064711 Abkürzungen

In dieser Liste sind nur mehrfach auftretende Abkürzungen aufgeführt. Es wird nur auf die Seite verwiesen, auf der sie (erstmals) erklärt werden. Namen von Experimenten oder Einrichtungen sind nicht als Abkürzungen, sondern im Index aufgeführt.

ADC analog-to-digital converter; Analog-zu-Digital-Konverter. 245 ANSI American National Standards Institute. 812 APD Avalanche Photo Diode; Photodioden mit Lawinenverstärkung. 423 ASIC Application Specific Integrated Circuit; Elektronikchip für eine spezielle Anwendung. 742 CAM Content Addressable Memory; Assoziativspeicher. 823 CC geladener Strom. 696 CCD Charge-Coupled Device. 342 CNGS CERN Neutrinos to Gran Sasso. 175 CSA Charge sensitive amplifier; ladungsempfindlicher Vorverstärker. 724 CT Computertomografie mit Röngenstrahlung. 23 DAQ data acquisition; Datenerfassung. 807 DEPFET Depleted Field Effect Transistor; spezieller Pixeldetektor. 349 DIRC Detection of Internally Reflected Cherenkov Light; Cherenkov-Detektor von BaBar. 469 DLC diamond-like carbon coating; diamantähnliche Widerstandsbeschichtung. 228 DM Dunkle Materie. 710 DME Dimethylether. 226 DOM Digital Optical Module. 709 DSP Digitaler Signalprozessor. 823 e/h electron-hole; Elektron-Loch. 154 EAS Extended Air Shower; ausgedehnter Luftschauer. 672 EC electron capture; Elektroneinfang. 831 ECC emulsion cloud chamber; Emulsionsnebelkammer. 172 EM elektromagnetisch. 602 ENC Equivalent Noise Charge; äquivalente Rauschladung. 802 ESONE European Standards On Nuclear Electronics. 812 FADC Flash-Analog-zu-Digital-Konverter. 246 FIFO First-In-First-Out; Schieberegister. 823 FPGA Field Programmable Gate Array; frei programmierbarer Logikschaltkreis. 823 GCD Gate Controlled Diode; Halbleiterstruktur zur Messung von Oxidladungen. 313 GEM Gas Electron Multiplier. 229 HAPD Hybride Avalanche-Photodiode. 426 HPD Hybride Photodiode. 426 HV Hochspannungsversorgung; high voltage. 148 906 Abkürzungen

IACT Imaging Atmospheric Cherenkov Telescopes. 690 IC Inverser Compton-Effekt. 84 IEEE Institute of Electrical and Electronics Engineers. 812 ISA Internationale Standardatmosphäre. 673 JES Jet-Energieskala. 650 LAN local area network. 814 LAr Flüssig-Argon. 608 LDF Lateral Distribution Function; Funktion zur Beschreibung der lateralen Schauerverteilung. 681 LKr Flüssig-Krypton. 608 LPM Landau-Pomeranchuk-Migdal-Effekt. 585 LSB Least Significant Bit; niedrigstwertiges Bit. 755 LUT Look-Up Table. 823 MA main amplifier; Hauptverstärker. 223 MAPS Monolithic Active Pixel Sensor; spezieller Pixeldetektor. 354 MICROMEGAS MICRO-MEsh GAseous Structure. 231 MIP minimal ionizing particle; minimal-ionisierendes Teilchen. 36 MPGD micro pattern gas detector. 225 MRPC Multigap Resistive Plate Chamber; Drahtkammer mit resistiver Anode und Vielfachebenen. 544 MVA Multivariate Analyse; statistisches Analyseverfahren. 575 MWPC Multi-Wire Proportional Chamber; Vieldrahtproportionalkammer. 214 NC neutraler Strom. 696 NIM Nuclear Instrumentation Module; Standard für modulare Elektronik zur Signal- und Triggeraufbereitung. 812 NKG Nishimura-Kamata-Greisen; NKG-Formel: beschreibt die laterale Vertei- lung der elektromagnetischen Komponente eines Luftschauers. 680 NTP Normalbedingungen für Druck und Temperatur. 116 PA pre-amplifier; Vorverstärker. 223 PCI Peripheral Component Interconnect; Bus-Standard. 814 PDG Particle Data Group; Herausgeber des 'Review of Particle Properties'. 16 PET Positronen-Emissions-Tomografie. 23 PFA particle flow analysis; Teilchenflussanalyse. 648 PLD Programmable Logic Device. 810 PMT Photo Multiplier Tube; Photovervielfacher. 414 RBW Relative Biologische Wirksamkeit. 829 RPC resistive plate chambers. 209 S/N Signal-zu-Rausch-Verhältnis. 318 SDR space drift time relation; Orts-Driftzeit-Beziehung. 246 SEV Sekundärelektronenvervielfacher, Teil des Photovervielfachers. 415 SiPM Siliziumphotomultiplier. 426 SNR Signal-to-noise-ratio; Signal-zu-Rausch-Verhältnis. 722 SNU Solar Neutrino Unit; 10−36 Einfänge pro Targetatom und Sekunde. 697 SPAD Single Photon Avalanche Diode; auf Einzelphotonen empfindliche APD. 425 Abkürzungen 907

SPT Superconducting Phase-transition Thermometer. 713 SUSY Supersymmetrie. 711 TDAQ Trigger- und Datennahme. 826 TDC time-to-digital converter; Zeit-Digitalisierer. 245 TEA Triethylamin; Photonen absorbierender Moleküldampf. 458 TES Transition Edge Sensor. 714 TMAE Tetrakisdimethylaminoethylen; Photonen absorbierender Moleküldampf. 458 TMS Tetramethylsilan. 617 TOF time of flight; Flugzeitmessung. 540 ToT time-over-threshold. 731 TPC Time Projection Chamber. 254 TR Transition Radiation; Übergangsstrahlung. 475 VEM Vertical Equivalent Muon; Kalibrationseinheit für Luftschauersignale. 685 VHE Very High Energy. 690 VLSI Very Large Scale Integration; sehr hoch integrierte elektronische Schaltkrei- se. 743 VPT Vakuum-Phototriode. 611 WIMP Weakly Interacting Massive Particle; Kandidat für Dunkle Materie. 710 Index

Aberration, chromatische, 458, 459 Innendetektor, 556 Abklingzeitzeit eines Pulses, 731 Kalorimetersystem, 657 Abschirmung, 60 Magnete, 562 Absorption, 28–29 Pixeldetektor, 550 Photonen, 74 Toroidmagnete, 391 Absorptionskante, 76 TRT, 493–494, 556 Absorptionskoeffizient, 29, 75, 188 atmosphärische Tiefe, 673 Absorptionslänge, 564 Auflösung Elektronen in Gas, 188 dE/dx, 546 hadronische, 89, 562 Energie, siehe Energieauflösung nukleare, 595 Spurparameter, 400–412 Paarproduktion, 86 Impuls, 401–408 Absorptionstiefe, 413 Richtung, 408–410 AC-Kopplung, 320 Stoßparameter, 410–412 ADC Augendiagramm, 771 Auflösung, 756 Auger, Pierre, 661 Flash-ADC, 761 Auger-Elektronen, 79, 697 Linearität, 757 Auger-Experiment, 688 Pipeline-ADC, 762 Ausheilung Successive Approximation ADC, 760 beneficial annealing, 369 Wilkinson-ADC, 761 reverse annealing, 369 Zwei-Flanken-ADC, 761 Auslese Aerogel, 447, 448, 466 elektronische, 719–721 ALICE-Experiment Auslese-Chip, 324 dE/dx-Messung, 549 Ausleseschema, 721 HMPID, 552 Auslesesystem, 811–813 TOF, 544 ATCA, μTCA, 813 TPC, 549, 550 CAMAC, 811 TRD, 557 VMEbus, 812 Allzweckdetektoren, 16 Austrittsarbeit, 301, 303, 306, 307 Alpha Magnetic Spectrometer (AMS), 671 Avalanche-Photodiode, siehe APD AMANDA, 707 Analog-zu-Digital-Wandlung, 755–763 Anregungsenergie BaBar-Experiment mittlere, 33 CsI-Kalorimeter, 610 Anreicherung, 308 DIRC-Detektor, 469 Anstiegszeit eines Pulses, 731 Bändermodell, 306 ANTARES, 473, 708 BaF2, 513, 515, 526 APD, 423 Baikal-Neutrinoteleskop, 707 Äquivalentdosis, 829 ballistisches Defizit, 153, 737 äquivalente Rauschladung, 802 Ballonexperiment, 171, 664–669 Argon-Ethan, 117 Bandkrümmung, 281 Argon-Methan, 117 Bandlücke, 278, 285, 508 ARGUS-Experiment, 10 Bandverbiegung, 303 Driftkammer, 235, 237 Barn (Einheit, Zeichen: b), 29 ASIC-Chips, 742–754 barometrische Höhenformel, 673 Askariyan-Effekt, 686 Barriere, 303 Assoziativspeicher, 823 Becquerel (Aktivitätseinheit), 829 Astroteilchenphysik, 661 Becquerel, H., 5 Detektoren, 20–22 Beer-Lambert-Gesetz, 29 Observatorien, 21 Beschleuniger, 13–15 Untergrundlaboratorien, 21 Besetzungswahrscheinlichkeit, 282 ATLAS-Experiment Bethe-Bloch-Formel, 30–41 Akkordeon-Kalorimeter, 618 halbklassiche Berechnung, 31 dE/dx-Messung, 550 Mischungen, Verbindungen, 40 910 Index

Bethe-Heitler-Prozesse, siehe Heitler-Prozesse Cherenkov-Detektor, 437–474, 551 Beweglichkeit, 315 Aerogel, 448 Definition, 101 Auflösung (chromatische), 551 Elektronen und Löcher, 123 Cherenkov-Radiator, 443 Ionen in Gas, 109 chromatische Aberration, 458, 459 Bewegung differenzieller, 451 Drift-, 91 DIRC, 469–473, 551 Elektronen in Gas, 111–121 Fokussierungstechniken, 453 Ionen in Gas, 109–111 Freon, 448 Ladungsträger, 91–129 Photondetektor, 453–458 ungeordnete, 91 Proximity-Fokussierung, 452, 453, 456, 458 BGO, 513, 526, 527 Quanteneffizienz, 445, 462 biasing Quarz, 471 Arbeitspunkteinstellung, 322 Radiatormaterialien, 447 Pixeldetektor, 324 RICH, 551 Polysilizium, 322 RICH-Detektor, 446, 451–469 punch-through, 323 Schwelle, 447 Big European Bubble Chamber (BEBC), 169 Schwellen-, 448–451, 551 Biolumineszenz, 708 Spiegelfokussierung, 452 Birks-Formel, 504 Spiegelreflektivität, 445, 462 b-Jet, 575 Transmissionseffizienz, 445 Blackett, P., 9, 165 Transmissionsfunktion, 462 Blanc-Regel, 110 Blasenkammer, 9, 74, 163, 167–170 Cherenkov-Effekt, 10 δ-Elektronen, 170 Cherenkov-Strahlung, 437–474, 538, 560 Bleiglas, 609 Cherenkov-Effekt, 437–439 Bleiwolframat, 516 Cherenkov-Ring, 441 Bode-Diagramm, 727 Cherenkov-Schwelle, 440–441 Bolometer, 713 Emissionsspektrum, 442–446 Boltzmann-Gleichung, 296 Emissionswinkel, 440 Boltzmann-Transportgleichung, 93–104, Frequenzband, 442 111–115, 122 Mach’scher Schallkegel, 439 Borosilikatglas, 415 maximaler Winkel, 440 Bothe, W., 6 Nachweis von, 444–446 Bragg-Peak, 54, 177 Photonenausbeute, 445–446 Brechungsindex, 447, 476 Polarisation, 438, 440 Bremsstrahlung, siehe Energieverlust Schwelle, 448 Bremsstrahlungsspektrum, 60–64 Schwellenenergie, 440 Bremsvermögen, 35 Schwellengeschwindigkeit, 439, 440 bump bonds, 324 Schwellenimpuls, 448 Bus, 813–815 Cherenkov-Teleskope, 690–694 Charakterisierung, 815 Cherenkov-Winkel, 439, 451 eXtensions for Instrumentation, 814 Chip-Elektronik, 320 PCI, 814 CHORUS, 175 CMS-Experiment, 516 CCE, 367 Detektor, 20 CDHS-Experiment, 648, 703 Magnete, 562 CDMS-Experiment, 22, 375, 712 PbWO4-Kalorimeter, 610 CdTe, 274, 377 RPC-Chambers, 209 CeF3, 513 Schnittbild, 19 CERES-Experiment, 455, 464 CNGS, 175 CESR, 16 Collider, 14 charakteristische Energie, 108, 116, 837 Compton-Effekt, 80–84, 525 charge collection efficiency, 367 inverser, 84, 704 Charge-Coupled Devices (CCD), 342–346 Rückstoßenergie, 83 Charmonium-Spektrum, 530 Winkelverteilung, 82 Charpak, G., 9 Compton-Kante, 83 Cherenkov, P. A., 10 CORSIKA, 683 Cherenkov-Beziehung, 439, 551 Coulomb-Korrektur, 61, 62 Index 911

Coulomb-Vielfachstreuung, siehe chromatische, 462, 554 Vielfachstreuung DONUT-Experiment, 173 Cowan, C., 702 DORIS, 16 Crab, 694 Dosimetrie, 22, 181, 202, 829–830 CREAM, 669 Dotierung, 285–288 CRESST-Experiment, 712 Double Chooz, 703 cross talk, 726 Driftgeschwindigkeit, 99–104 Crystal Ball, 528, 609 Elektron in Gas, 115–119 CsI, 526, 527 Sättigung (Gas), 117 Photondetektor, 456 Sättigung (Halbl.), 125 CsI (Tl), 513 Driftkammer, 184, 232–262 CTA, 691 Betriebsparameter, 241–244 CVD-Diamant, 380–382 Diffusion, 250, 837–838 Czochralski-Methode, 276 drei-dim. Spurrekonstruktion, 239 CZT, 377 Driftzeitmessung, 244–246 Gasmischung, 241 Hochspannung, 244 DAC, 763 im Magnetfeld, 253 DAMA-Experiment, 712 Ionisationsstatistik, 251, 839–840 Dämpfung auf Leitungen, 769 Lorentz-Winkel, 254 Dämpfungskorrektur, 771 Monitor, 233 Datenerfassung, 811–815 Orts-Driftzeit-Beziehung, 246–249 Datenpuffer, 818 Ortsauflösung, 250–253 Datenverarbeitung, 12 planare, 235 Davis, R., 697 Prinzip, 233 Daya Bay, 703 Rechts-Links-Ambiguität, 238 DC-Kopplung, 320 Spurkoordinaten, 237–241 dE/dx-Auflösung, 546, 547 Zellgeometrie, 234 dE/dx-Messung, 544–550 zylindrische, 237 dE/dx-Methode, 561 Driftrohr, 234 Delta-Elektron, 41–45, 492, 629 Myon-, 243 Energie-Winkel-Relation, 42–45 TRD, 493 Depletionszone, 290 Driftstrom, 126, 290 Detektorkonfiguration, 17 Drude-Modell, 122 Collider-Experiment, 17 DUMAND-Projekt, 707 Fixed-Target-Experiment, 17 Dunkelpulse, 432 Detektorlänge (Teilchenident.), 560 Dunkelrate, 432, 433 Diamant, CVD-, 380 Dunkle Materie Dichteeffekt (Bethe-Bloch-Gl.), 38 Dichte, 711 Diethorn-Formel, 193 duale Messmethode, 713 differenzieller Cherenkov-Detektor, 451 Nachweis, 710–717 Diffusion, 104–108, 119–121, 317 Durchlassrichtung, 295, 296 Driftkammer, 837–838 Dynode, 414, 415 Halbleiter, 126 longitudinale, 120 transversale, 120 Eckfrequenz, 728 Diffusionskoeffizient, 105–108 EDELWEISS-Experiment, 712 Diffusionsnebelkammer, 166–167 effektive Masse, 122, 280 Diffusionsspannung, 292 Eigenleitung, 280 Diffusionsstrom, 127, 289, 290, 295 Eindringtiefe von Licht, 414 Digital-zu-Analog-Wandlung, 763 Einfangzentrum, 300, 366 Digitaler Signalprozessor (DSP), 823 Eingangskapazität, dynamische, 725 Diode, 288 Einheitensystem, 24 DIRC-Prinzip, 469–473 Einstein-Beziehung, siehe Diskriminator, 721, 740–742 Nernst-Townsend-Einstein-Beziehung constant fraction, 742 elektromagnetische Schauer, 564, 579–588 leading edge, 741 Größe, 582–588 zero crossing, 742 Heitler-Modell, 581 Dispersion, 439, 458, 460 laterales Profil, 584 anomale, 442, 444 longitudinales Profil, 583 912 Index

LPM-Effekt, 585–588 Fano-Faktor, 787–789 Modell, 579–582 Fehlerfortpflanzung, 853 Prozesse, 580 Fermi-Dirac-Verteilung, 282 Rossis Approximation B, 579 Fermi-Energie, 282, 285, 301, 306 Elektrometer, 5 Fermi-Plateau, 39 elektronegativ, 187 Fermi-Satellit, 671 Elektroneinfang, 695, 698, 831 Fick’sche Gesetze, 104 Elektronenaffinität, 301, 303 Filterzeit, 732, 802 Elektronenanlagerung in Gasen, 187–189 optimale, 802 elektronisches Rauschen, 790–805 Fingerzähler, 523 Elementhalbleiter, 274 Fixed-target-Experiment, 523 Elongationsrate, 678 Flachbandkabel, 765 Emulsion, siehe Fotoemulsion Flachbandspannung, 307 Emulsionsnebelkammer (ECC), 172 Flachbandzustand, 308 Emulsionstarget, 173–175 Flächendiode, 319 Energieauflösung Flächenwiderstand, 209 el.-magn. Kalorimeter, 621–633 Float-Zone-Technique, 276 Flugstrecke Hadronkalorimeter, 650–655 B-Meson, 571 Szintillationskristalle, 526 Myon, 469 Energiebänder, 276, 507 τ-Lepton, 534 Energieeintrag Teilchenidentifikation, 539 Photoeffekt, 79 τ-Lepton, 269 energiegewichtete Mittelung, 101 Flugzeitmessung, 538, 540–544 Energiespektrum FLUKA, 598 Compton-Photonen, 83 Fluktuationen kosmische Strahlung, 663 im Messprozess, 784–790 Neutronen, 642 in der Elektronik, 790–805 Photonen in Kristallen, 524 Fluoreszenz, 495, 500, 506 Schauerteilchen (el.-magn.), 626 -Teleskop, 690 Übergangsstrahlung, 479 Licht von Luftschauer, 685 Energieübertrag prompte, 500 Ionisation, 32–34 verzögerte, 495, 500 Neutronenstreuung, 567, 639 flüssige Edelgase, 607 Energieverlust Flüssigszintillator, 500 Bremsstrahlung, 59–69, 476 Fokussierung, 452 eingeschränkter, 39, 52 Follow-up-Programm, 710 Elektronen, Positronen, 39 Formationslänge, 61, 482, 585 Fluktuationsunterdrückung, 52 Formationszone, 482–483 hochenergetische Myonen, 67–69 Fotoemulsion, 6, 163, 170–177, 661 Ionisation, 30–59 Auswertung, 175 mittlerer, 31 Entwicklungsprozess, 171 Skalierungsgesetz (dE/dx), 39 Ilford G.5, 172 statistische Fluktuationen, 45–53 Myon-Radiografie, 176 Entdeckung Sensitiviät, 171 Ω--Baryon, 9 Tumorbestrahlung, 177 Pion, 6 Fotolithografie, 325 Positron, 8 FPGA, 823 τ-Lepton, 538 1/f-Rauschen, 863 epitaktisches Silizium, 342, 354 Funkelrauschen, 863 equivalent noise charge, 802 Funkenkammer, 184, 205–207 Escape-Peak, 80, 525 Ethernet, 814 G-APD, 424 Evaporation, 589–592 GaAs, 274, 375, 376 Expansionsnebelkammer, 164–166 Gain-Bandwidth-Product, 728 Extended Air Shower, 672 Gaisser-Hillas-Formel, 678 extrinsischer Halbleiter, 285 GALLEX-Experimente, 698 Exzessrauschfaktor, 424 Garfield, 218 Exziton, 509 Gargamelle, 169 Index 913

Gas Electron Multiplier, siehe GEM e/π und e/h, 634 gasgefüllte Detektoren, 179–268 intrinsische Auflösung, 645 Alterung, 262–268 Jet-Eenergieskala, 650 Malter-Effekt, 266 Kalibration, 650 Maße für, 263 Kompensation, 640–650 Polymerisate, 264 Leckverluste, 653 Detektortypen, 181–184 MIP-Referenzsignal, 637–640 Gasverstärkung, 6, 189–198 Neutrinoexperiment, 655 Betriebsbereiche, 193–198 Software-Korrektur, 648 Definition, 190 Tail Catcher, 653 Lawinenausbildung, 189 Teilchenfluss, 648 Zylindergeometrie, 191–193 verzögerte Signale, 646 Gate Controlled Diode, 313 Halbleiter, 274, 278 Gauß-Verteilung, 105 direkt, 279 Ge, 274, 375 Elementhalbleiter, 274 Geant4, 598 extrinsisch, 285 Geiger, H., 6 Germanium, 274 Geiger-APD, 424 Grenzflächen, 288–313 Geiger-Müller-Zählrohr, 6, 182, 203 Grundlagen, 273–288 GEM, 229–231 indirekt, 279 Triple-GEM, 230 intrinsisch, 280, 285 Generations-Rekombinations-Zentren, 365 Kapazität, 299 Geo-Synchrotron-Effekt, 685 Leckstrom, 300 Geometriefaktor, 666 Silizium, 274 Germanium, 274 Verbindungshalbleiter, 274 Geschichte der Detektoren, 5–12 Halbleiterdetektoren, 9, 269–382 Ginzburg-Frank-Formel, 477 Halbleitermaterialien, 274 Glaser, D.A., 9, 167 CdTe,CZT, 377 Glashow-Resonanz, 696 Diamant, 380–382 Gleichgewicht GaAs, 375 thermisches, 294 Germanium, 375 gleitendes Fenster, 826 Hall-Faktor, 104, 128 Gluckstern, 401, 406 HAPD, hybride Avalanche-Photodiode, 426 Gran-Sasso-Laboratorium, 175, 704 Helix, siehe Teilchenbahn Gray (Dosiseinheit), 829 HERA, 16 Grenzschichten HERA-B-Experiment Halbleiter-Halbleiter, 289 Driftkammer, 236 Halbleiter-Metall, 289 Kalorimeter, 617 Halbleiter-Oxid-Metall, 289 Hess, V., 5, 661–662 Metall-Halbleiter, 301 H.E.S.S.-Teleskop, 474, 690, 694 Metall-Oxid-Halbleiter (MOS), 305 Highland-Formel, 71 n+n und p+p, 300 Hillas-Parameter, 693 pn-Übergang, 289 Histogrammieren, 825 Groom’s Theorem, 522 Hochspannungskurve, 219 Grundlinie, 731 Hodoskop, 17 Gruppengeschwindigkeit, 280 Homestake Mine, 697 GSO, 513 Hough-Transformation, 400, 825 Gyrationsfrequenz, 385 HPD, hybride Photodiode, 428 GZK-Cutoff, 705 HPD, hybrider Photodetektor, 554 hybride Photodetektoren, 426–429 Hybridisierung, 498 Hadron-Elektron-Separation, 601 hadronischer Schauer, 565, 588–598 Fluktuationen, 593–595 IceCube, 473, 709–710 Größe, 595–597 IceTop, 688 Komponenten, 593–595 ILC, 16 Simulation, 598 Implantation, 324 Hadronkalorimeter, 633–655 Impulsmessung, 538 duale Auslese, 649 Inelastizität, 111 Elektron-, Hadronsignale, 634–640 Influenz 914 Index

Elektrometer, 132 Kalorimetertrigger, 825 Inhaltsübersicht, 25 Kamiokande, 698 Internat. Standardatmosphäre (ISA), 673 KamLand, 703 International Space Station (ISS), 671 Kammergas Ionenimplantation, 326 elektronegative Zusätze, 201 Ionisation Photoabsorption, 199 Anzahlfluktuationen, 45 Polymerisation, 201 Energiefluktuationen, 45 Wahl, 198 in Gasen, 184–185 Kapazität Ionisationsdetektor Halbleiterdiode, 299 Prinzip, 179 Kapazitätsanpassung Ionisationskammer, 181 Rauschen, 805 Ionisationsschäden, 368 kapazitive Ladungsteilung, 321 Ionisationsstatistik KASCADE(-Grande), 686 Driftgas, 839–840 Kaskade Ionisationsverlust, spezifischer, 538 hadronische, 590 Isochrone, 238 intra-nukleare, 590 Isolator, 278 neutrino-induzierte, 707 ISOMAX, 666 KEK, 704 ISR, 16 KEK-B, 16 Kennlinie, 305 Kernemulsion, siehe Fotoemulsion Jet, 270 Kernspaltung, 589, 591, 594, 639, 640, 645 Jet-Energieauflösung, 606 Klein-Nishina-Formel, 82 Jet-Energieskala, 651, 656 KM3NET, 708 Jet-Kammer, 234 Koaxialkabel, 765 Johnson Noise, 860–861 Kohärenzlänge, 61, 585 Kohlenstoffatom, 498 K2K, 704 Koinzidenzmethode, 6, 818 Kabeldämpfung, 769–772 konforme Abbildung, 833 Kalman-Filter, 400, 820, 821 konstanter Term Kalorimeter, 10, 577–659 el.-magn. Kalorimeter, 632 Akkordeon, 618 had. Kalorimeter, 652 Auflösungen, 602–605 Kontakt el.-magn., 608 ohmsch, 303, 305 elektro.mag., 621–633 Schottky, 302, 305 hadronisch, 650–655 Konversionslinie, 830 intrinsisch, 645 Konzentrationsgefälle, 289 Kal.-Systeme, 654 kosmische Strahlung, 661–712 Bleiglas, 611 Kovarianzmatrix, 852 CsI(Tl), 610 Kristallgitter elektromagnetisch, 606–633 Diamant, 276, 380 Flüssig-Krypton, 612 Zinkblende, 276 Granularität, 600 Kristallimpuls, 280 hadronisch, 633–655 kritische Energie, 66–67, 561 homogene, 607–614 Kryo-Detektoren, 713–717 Kalibration, 605 Kalibration (el.-magn.), 620 Ladungsteilung, 222 Konstruktion und Betrieb, 598–605 Ladungsträgerdichte, 284 NaI(Tl), 609 Ladungsträgerkonzentration PbWO4, 610 intrinsische, 285 projektive Geometrie, 599 Ladungsverstärkung, 725 Sampling-, 599, 614–619 Landau-Vavilov-Verteilung, 46–50 Sandwich-, 614–617 Landau-Verteilung, 47 Schaschlik-, 617 Laplace-Transformation, 855–857 Segmentierung, 600 Large Hadron Collider (LHC), 12 Spaghetti-, 618 latentes Bild, 171 Teilchenidentifikation, 564–565 Latenzzeit, 814, 822 Kalorimetersysteme, 655–659 lateral distribution function (LDF), 681 Index 915

Lawine magnetostriktive Auslese, 206 Gas, 182 Magnetspektrometer, 15, 394–395 Photodiode, 424 abbildendes, 15 Lawine-Streamer-Funken, 196 Majoritätsladungsträger, 296, 311 Lebensdauer, 573 Malter-Effekt, 266 b-, 331 Maskenprozessor, 821 τ-Lepton, 269 Massenauflösung Leckstrom, 300, 366 Cherenkov, 551 Leiter, 278 TOF, 542 Leitfähigkeit, 285 Massenbremsvermögen, 35 Leitungsband, 277, 278, 507 Massenwirkungsgesetz, 284 LEP, 16 Matthiessen’sche Regel, 124 LHC, 16 Maxwell-Verteilung, 96, 113 LHCb-Experiment, 553 MCP, Mikrokanalplatte, 420 RICH-Detektor, 553 Metall-Halbleiter-Übergang, 301 Lichtausbeute, 504 metallurgical junction, 423 Lichtleiter, 497, 516, 519–521 Methode der kleinsten Quadrate, 851–852 light pool, 692 Methylal, 120 Linearbeschleuniger, 13 MICROMEGAS, 231 Linearität InGRID-Struktur, 231 ADC, 757 Microstrip Gas Chamber, siehe MSGC eines Auslesesystems, 721 Mikrostreifendetektor, 270, 317, 320, 328 differenzielle Nicht- (DNL), 758 mikrostrukturierter Gasdetektor, siehe MPGD integrale Nicht- (INL), 758 Mikrovertexdetektor, 270, 271 Liouville-Theorem, 519 Minoritätsladungsträger, 297, 300, 311 Longo-Formel, 583, 678 mittlere freie Weglänge, 100 Lorentz-Faktor, 270 Definition, 29 Lorentz-Kraft, 94, 97, 385 Mobilität, siehe Beweglichkeit Lorentz-Variable, 24, 538 Moderation von Neutronen, 567 Lorentz-Winkel, 103, 119, 128, 129 Molière-Streuung, 70 Löschgas, 199 MOS-Übergang, 305 LPM-Effekt, 62 Mott-Wirkungsquerschnitt, 32 LSO, 513 Luftschauer, 592 Moyal-Verteilung, 48 -detektoren, 683–690 MPGD, 225–231 -komponenten, 677 Gasmischung, 226 ausgedehnte, 672 MRPC, 544 Gammaschauer, 682 MSGC, 226–229 hadronische, 674 Entladung, 228 Massenabhängigkeit, 681 Ortsauflösung, 228 Luminosität, 14 Ratenverträglichkeit, 226 Luminositätsmonitor, 15 MT-Querschnitt, 112 LYSO, 513 Mustererkennung, 398–400, 820–826 MWPC, siehe Vieldrahtproportionalkammer Mylar, Übergangsstrahlung, 477 Mach’scher Schallkegel, 439 Myon-Bündel, 682 MAGBOLTZ, 188 Myonen MAGIC-Teleskop, 474, 690 Identifikation, 561–564 magisches Gas, 219 Spektrometer, 562 Magnet Solenoid, 563 Toroid, 563 n+-n-Grenzschicht, 300 Magnetfeld, 387–393 NA48-Experiment, 612 Dipol, 387 Nachpulse (after-pulses), 433 magnetisiertes Eisen, 392 Nachweiseffizienz, 574 Solenoid, 388 NaI(Tl), 513, 784 Toroid, 389 natürliche Einheiten, 24, 270 Vermessung, 392 Nebelkammer, 8, 163–167, 661 magnetische Steifigkeit, 666 -Trigger, 165 magnetisches Horn, 703 Stereoskopie, 166 916 Index

Nernst-Townsend-Einstein-Beziehung, 108, PEP II, 16 110, 127, 128, 294 Perfluorbutan, 463 Netzwerk, 813–815 Perfluorhexan, 446, 463 Charakterisierung, 815 Perfluorpentan, 446, 463 Neutralitätsbedingung, 291 Pestov-Glas, 228 Neutrino Pestov-Zähler, 208 -astronomie, 704 PET, 23 -detektoren, 695–710 PETRA, 16 -oszillationen, 695–704 Phasengeschwindigkeit, 439, 475 -reaktionen, 467 Phasenraum, 519 -rekonstruktion, 705–707 Phasenraumverteilung, 93 Neutrino-Nukleon-Reaktionen, 695 Phononen, 123 Neutrinonachweis akustische, 123, 129 Echtzeit-, 698 optische, 125 hohe Energien, 704 Phosphoreszenz, 495, 500 radiochemischer, 697 Photodetektoren, 413–436 Neutrinophysik, 664 CsI-Kathode, 456 Neutrinos Photodiode, 421 atmosphärische, 701 Photoeffekt, 76–80, 525 Beschleuniger-, 703 Photokathode, 414 Entdeckung, 702 Bialkali-, 414 Reaktor-, 702 Photomultiplier, siehe Photovervielfacher Neutrinoteleskope, 707 Photonenausbeute, 445, 446 Neutronen, 566 Photonnachweis, 414 Evaporationsspektrum, 591 Photovervielfacher, 11, 414–419, 445, 497, 786, Wirkungsquerschnitt, 567 787 Neutronendetektor, 568 Basis, 415 Neutronendiagnostik, 23 hybrider Photovervielfacher, 426 Neutronennachweis, 566–569 Quantenausbeute, 417–419 Neutronenzähler, 568 Quanteneffizienz, 417 Nicht-Lokalitäts-Problem, 531 Spannungsteiler, 415 Nichtlinearität Strahlungsempfindlichkeit, 417 differenzielle, 758 Pick-up, 792 integrale, 758 Pierre Auger Observatory NIM-Pegel, 819 see Auger-Experiment, 688 NKG-Funktion, 680 Pile-up, 731 Normalbedingungen, 906 PIN-Diode, 421 Nyquist-Rauschen, 860–861 Pipeline, 818 Pixelchips, 748–751 Pixeldetektor, 319, 324, 550 Oberflächenladung, 303 ATLAS, 334, 347 Oberflächenschädigung, 368 CMS, 347 Occhialini, G., 165 hybrid, 332–336 Ohm’scher Kontakt, 303 monolithisch, 346–359 OPAL-Detektor, 611 Pixelsensor Jetkammer, 548 ATLAS, 336 Vertexkammer, 572 Plasmafrequenz, 38, 477 OPERA-Experiment, 172–175 Plastikszintillator, 495, 500, 501, 522, 541 Operationsverstärker, 148, 722, 723, 725 PMT, siehe Photovervielfacher Oxidladungen, 307 pn-Diode, 319 pn-Übergang, 289 Paarbildung, 85–87, 525 Poisson-Statistik, 788 Pad-Detektor, 319 Poisson-Verteilung, 774 PAMELA, 670 Pole-Zero-Cancellation, 735–737 Parallelplattendetektor, 142–147, 154, 455 Polyethylen, Übergangsstrahlung, 477 parsec, 704 Polypropylen, Übergangsstrahlung, 477 PbWO4, 513, 516 Positron-Proton-Trennung, 670, 671 π-Elektronen, 498 Powell, C.F., 6, 170 PEP, 16 Poynting-Vektor, 440 Index 917

Pre-Emphasis-Korrektur, 771 Rauschleistungsdichte, 791 Presampler, 602 Rauschterm Primärvertex, 270, 572 el.-magn. Kalorimeter, 631 Proportionalkammer, 181 had. Kalorimeter, 652 Proportionalzählrohr, 202 reduzierte Feldstärke, 116, 189 Proximity-Fokussierung, 453, 456, 463, 466, Reflektivität, 445 552 Reflexionen Pseudorapidität, 25 von Signalen in Leitungen, 768–769 Pulsformer, 721, 732 Reichweite, 53–59 Pulsformung Myon, 69, 706 ballistisches Defizit, 737 Potenzfunktion, 55 bipolar, 734–735 Reines, F., 702 Pole-Zero-Cancellation, 735–737 Rekombination in Gasen, 187 tail cancellation, 737 relative biologische Wirksamkeit (RBW), 829 unipolar, 732–734 Relaxationsnäherung, 96, 97, 114, 123 Pulshöhe, 731 Relaxationszeit, 96, 122 punch through, hadronic, 562 RENO, 703 Resistive Plate Chambers, siehe RPC RHIC, 16 Quantenausbeute, 517 RICH-Detektor, 451–469 Quanteneffizienz, 417, 445, 456 Anforderungen, 461 Auflösung, 458–462 schwere, 571 RICH-Konstante, 460 Quarz, 471 RICH-Prinzip, 451 Quarzglas, 415 Röntgenbildgebung, 377 Quench-Widerstand, 431 Röntgennachweis Quencher-Gas, siehe Löschgas mit Pixeldetektoren, 750 Quenching, 504 RPC, resistive plate chamber, 208–214, 541 Ansprechwahrscheinlichkeit, 213 Radiator, 444 Erholzeit, 210 Radiatorfunktion, 63 Multi-Gap-, 213 Radiatorlänge, 558, 560 Single-Gap-, 209–213 Radiatormedium, 440 Zeitauflösung, 211 Radioabstrahlung, 685 Rückweisungsvermögen, 574 radioaktive Quellen, 621, 830 Rutherford-Streuung, 7, 11, 31, 69 Radio-Cherenkov-Effekt, 686 Radiodatierung, 23 SAGE, 698 Radiomarker, 23 Sample-and-Hold-Technik, 739–740 Raether-Limit, 191 Saphirglas, 415 Raether-Meek-Bedingung, 198 Satellitenexperiment, 664–672 Ramsauer-Effekt, 36 sättigende Gase, 117 Ramsauer-Minimum, 113, 117 Sättigungssperrstrom, 303 Ramsauer-Townsend-Effekt, 113 Schalenkorrektur, 37 Rapidität, 25 Schaueralter, 679 Raumladung, 376 Schauerentwicklung Raumladungsdichte, 290 laterale, 680 Raumladungszone, 290, 292, 303, 331 longitudinale, 677 Rauschen, 790–805 Schauermaximum 1/f-, 792, 794–796, 863 Gamma-Luftschauer, 682 Detektor-System, 798–805 Hadronluftschauer, 678 ENC, 802 Schauerrekonstruktion, 445, 681 Exzess-, 424 stereoskopisch, 693 in MOSFETs, 796–798 Schieberegister, 823 paralleles, 792 Schnittstelle, 811 physikalische Rauschquellen, 859–863 Schottky-Kontakt, 301–303, 376 Schrot-, 792–794, 861–862 Schwarz-Christoffel-Transformation, 835 serielles, 792 Schwellenscan, 752–754 thermisches, 792–793, 860–861 Schwellenverschiebung, 368 weißes, 732, 792, 793 Schwerionen, 455 918 Index

Seitwärtsverarmung, 336 Speicherring, 14 Sekundärelektronenvervielfacher, 415 Sperrrichtung, 295, 296 Sekundärstrahl, 13 Sperrspannung, 295 Sekundärvertex, 73, 269, 270, 571 Spurmodell, 395 τ-Lepton, 271 Spurmodelle, 851–854 σ-Elektronen, 498 Spurparameter self-quenching, 210 Fehler, 853 Shaper, 721, 732 Spurrekonstruktion, 385–412 shaping time, 732 Spurtrigger, 821–825 Shockley-Ramo-Theorem, 133–141 Extremely Fast Tracker (CDF), 823 Anwendungsregeln, 139 Fast Track Trigger (H1), 823 Beweis, 139 Standardfels, 68, 706 Formulierung, 137 Stanford Linear Accelerator Center, siehe Stromrichtung, 139 SLAC shot noise, 861–862 Stanford Linear Collider, siehe SLC Sievert (Dosiseinheit), 830 STAR-Experiment Signal-zu-Rausch-Verhältnis, 318, 722, 756 TOF, 544 Signalausbreitung Steifigkeit, 386 Augendiagramm, 771 stochastischer Term Dämpfung, 769 el.-magn. Kalorimeter, 622–631 Pre-Emphasis-Korrektur, 771 had. Kalorimeter, 651 Reflexionen, 768 Stokes-Verschiebung, 497 Signalgeschwindigkeit, 769 Störstellen, 123 Transportgleichung, 766 Stoßintegral, 94, 111 Wellenwiderstand, 768 Stoßparameter, 572 Signalentstehung, 131–162 -methode, 572 homogenes Feld, 142–147 -signifikanz, 410, 575 Raumladungsfeld, 153–162 Stoßzeit, 101, 111, 123 segmentierte Elektroden, 158–162 Strahlendosimeter, 181 Zwei-Elektroden-System, 141–153 Strahlenhärte zylindersymm. Feld, 147–153 Kalorimeter, 605 Signalfluktuationen, 788–790 Strahlenschäden, 366 Signaltransport durch Leitungen, 765–772 Strahlenschädigung, 331 Silizium Halbleiter, 359–373 Element, 274 p-spray-Techniken, 371 epitaktisch, 342 p-stop-Implantationen, 371 Siliziumdetektoren Sauerstoffanreicherung, 371 doppelseitig strukturiert, 328–332 Strahlentherapie, 181 einseitig strukturiert, 318–327 Strahlentoleranz, 370 Siliziumdriftkammer, 336–341 Strahlungsempfindlichkeit, 417 Siliziumphotomultiplier, 454 Strahlungslänge, 64–66, 564, 581 SiPM, Siliziumphotomultiplier, 429–434 Definition, 64 analoger SiPM, 429 Strahlungswichtungsfaktor, 829 digitaler SiPM, 433 Streamer, 198 SLAC, 13, 469 Löschen, 210 slant depth, 680 Streamer-Kammer, 207 SLC, 14, 16 Streamer-Rohr, 203 sliding window, 826 Streifenchips, 745–747 small pixel effect, 159 Streifendetektor, 320 Solarkonstante, 696 Streuerschicht, 72 Solenoid-Magnet, 563 Streuwinkelparameter, 71 Sonnenneutrinos, 695–701 Streuwinkelverteilung, 71 Gesamtfluss, 700 Stromrichtung, 139–141 Soudan Mine, 704 technische, invertierte, 140 SPACAL, 618, 645 Sudbury Neutrino Observatory (SNO), 700 Spallation, 590 (SPS), 14 Neutronen, 591 Super-Kamiokande, 467, 698, 704 SPEAR, 16, 543 supraleitende Spulen, 389 SPECT, 23 Synchrotron, 13 Index 919

Szintillation, 495 Time-of-Flight-Methode, 540–544 Szintillationsdetektoren, 495–536 Time-over-Threshold-Methode, 731 Aufbau, 496 Timing-RPC, 213 Szintillationskristalle, 607 τ-Lepton, 269 BaF2, 513, 515, 526 TMAE, 455, 456, 458, 463, 465 BGO, 513, 526, 527 TOF, time of flight, 540 CeF3, 513 TOF-Detektoren, 543 CsI, 526 Tomografie, 22, 175 CsI (Tl), 513 Toroid-Magnet, 563 Energieauflösung, 526 ToT-Methode, 731 GSO, 513 Totzeit, 196 LaBr3, 516 Bestimmung, 779–783 LSO, 513 eines Detektors, 772–783 LYSO, 513 feste, 775 NaI (Tl), 513 gepulste Ereignisquelle, 777 PbWO4, 513, 516 Korrektur, 779 Szintillator, 10, 495–536 variable, 775 anorganische Kristalle, 507–516 Totzeitintervall Anthrazen, 500 festes, 775 Naphthalen, 500 variables, 776 organische Szintillatoren, 498–507 Townsend, Einheit (Td), 116 Plastikszintillator, 500 Townsend, J., 6 Signalform, 505 Townsend-Koeffizient, 189 Stilben, 500 TPC, 254–262, 549 szintillierende Fasern, 530–536 dE/dx-Auflösung, 261 Diffusion, 121 TAC, 764 Flüssig-Xenon, 716 tail cancellation, 737 gating grid, 258 Tail Catcher, 601, 653 Ionenrückdrift, 258 TASSO-Experiment Ortsauflösung, 259 Cherenkov-Detektor, 449 Parameter, 256 Driftkammer, 180, 235 Prinzip, 255 TDC, 763 Signalauslese, 257 TEA, 458 transversale Diffusion, 257 Teilchenbahn Tracer, 23 Helix, 385–387 Trajektorie, siehe Teilchenbahn Parametrisierung, 393–394 transiente Ereignisse, 710 homogenes Magnetfeld, 385 Transimpedanz, 724 Parametrisierung, 393–394 Transition Radiation, 475–494 Vorwärtsspektrometer, 397 Transkonduktanz, 724 Zylindersymmetrie, 397 Transmissionseffizienz, 445 Teilchenidentifikation, 537–575 Transmissionsfaser, 530 char. Detektorlänge, 558 Transportgleichung, siehe durch Cherenkov-Strahlung, 551–554 Boltzmann-Transportgleichung durch dE/dx-Messung, 544–550 für elektrische Signale, 766 durch Flugzeitmessung, 540–544 Trennkraft, 558 durch Übergangsstrahlung, 554–558 Cherenkov, 552 durch Zerfallslängenmessung, 571–575 dE/dx, 548, 549 Methoden, 538–539 RICH, 553 Teilchenkinematik, 24–25 TOF, 543 Telegraphengleichung, 766 Übergangsstrahlung, 556 TeV-Gammastrahlung, 690–694 Trigger- und Datennahmesysteme, 807–828 , 16 Trigger-RPC, 213 thermisches Limit, 108 Triggerstufe, 810, 816 thermisches Rauschen, 860–861 Triggersystem, 815–826 Thomson-Streuung, 82 Anforderungen, 816 Tiefendosisprofil, 59 Architektur, 816 Time Projection Chamber, siehe TPC Parallelisierung, 817 Time Walk, 741 Totzeit, 816 920 Index

Triggertürme, 820, 826 Potenzial, 217 Triggerzähler, 522 Stereolage, 222 TRISTAN, 16 Zeitauflösung, 223 Truncated Mean, 52, 546 Vielfachstreuung, 69–74, 272 Tumortherapie, 177 Vorverstärker, 721 mit Ionen, 58 TUNKA-Experiment, 687 wave length shifter, 501 Twisted-Pair-Kabel, 766 Wave-Form-Sampling, 740 Typinversion, 334, 364, 366 Wechselwirkungen, 27–89 Hadronen, 88–89 Übergangsstrahlung, 475–494, 539, 561 Photonen, 74–87 Abstrahlungscharakteristik, 478–479 Wechselwirkungslänge, 89 Energiespektrum, 479 Wellenlängenschieber, 501, 522 Folienstapel, 481, 486 Wellenleiter, 765 Formationslänge, 482 Wellenwiderstand, 767, 768 Formationszone, 482–486 White Rabbit, 814 Gesamtintensität, 481 Wichtungsfeld, 133–137 Ginzburg-Frank-Formel, 477 Polarisationsladung, 136 Photonenausbeute, 481 Raumladung, 136 Plasmaenergie, 477 Wichtungspotenzial, siehe Wichtungsfeld Polarisation, 477 konforme Abbildung, 833–835 Winkelverteilung, 478 segmentierte Elektroden, 833–835 Übersprechen (cross talk), 726 Widerstandsbeschichtung, 204, 228 Unterschwinger, 731, 735 Widerstandsthermometer, 713 Uran-Szintillator-Kalorimeter, 656 Wilson, C.T.R., 9, 164 WIMP, 710–717 Winkelverteilung Vakuumphototriode, 419 Bremsstrahlung, 64 Valenzband, 277–279, 282, 507 Compton-Effekt, 82 Valenzelektronen, 278 Delta-Elektronen, 44 Van-der-Meer-Scan, 15 kosmische Myonen, 677 Vavilov-Verteilung, 49 Photoeffekt, 79 VEPP-4M, 16 Streu-, 70 Verarmung, 309 Übergangsstrahlung, 491 Verarmungsspannung, 299, 331 Wirkungsquerschnitt Verarmungszone, 290, 293, 295, 298, 299 Atom, 29 Verbindungshalbleiter, 274, 276 Compton-Effekt, 82 VERITAS-Teleskop, 474, 690 Definition, 28–29 Verstärker Elektronen in Gas, 112 Frequenzverhalten, 727 Elektronenanlagerung, 188 ladungsempfindlich, 724–731 Ionisation, 191 spannungsempfindlich, 723 Kern, 29 stromempfindlich, 723 Neutrino-Nukleon, 696 Transimpedanzverstärker, 724 Neutronen, 566 Transkonduktanzverstärker, 724 Paarbildung, 85–87 Verstärkung Photoeffekt, 76 Signalverstärkung, 722–731 WIMP-Streuung, 711 Vertexdetektor, 571 vertical equivalent muon (VEM), 685 Vieldrahtproportionalkammer, 9, 214–225 XENON, 716 Aufbau, 215 XPS, 80 Cluster-Schwerpunkt, 221 Elektrostatik, 216 Zählrohr, 181 Kapazität, 218 elektrisches Feld, 182 Kathodenauslese, 222 Kapazität, 183 Nachweiswahrscheinlichkeit, 219 Zeit-zu-Amplitude-Konverter, 764 Niederdruck-, 225 Zeit-zu-Digital-Wandlung, 763 Ortsauflösung, 220–223 Zeitversatz (time walk), 741 Photonnachweis, 225 Zerfallslänge, 571, 575 Index 921

Zerfallslängensignifikanz, 575 Zinksulfidschirm, 5 ZEUS-Kalorimeter, 656 Zustandsdichte, 281, 282 Zinkblende, 276 Zinksulfid, 276 Zyklotronfrequenz, 94, 128, 385