Super-Heterodyne Signal Analyzers Description and Applications

Total Page:16

File Type:pdf, Size:1020Kb

Super-Heterodyne Signal Analyzers Description and Applications Super-Heterodyne Signal Analyzers Description and Applications ©National Instruments. All rights reserved. LabVIEW, National Instruments, NI, ni.com, the National Instruments corporate logo, and the Eagle logo are trademarks of National Instruments. See ni.com/trademarks for other NI trademarks. Other product and company names are trademarks or trade names of their respective companies. For patents covering National Instruments products, refer to the appropriate location: Help>>patents in your software, the patents.txt file on your CD, or ni.com/patents. Contents 1. Signal Analysis Background ................................................................................................................. 6 Introduction .............................................................................................................................................. 6 Time and Frequency Domain Representations of Signals .............................................................. 6 Why View Signals in the Frequency Domain? ................................................................................... 9 Using the Oscilloscope for Frequency Domain Analysis ............................................................... 11 Spectrum Analysis versus Vector Signal Analysis .......................................................................... 12 Super-Heterodyne versus Direct Conversion Architectures .......................................................... 13 2. Super-Heterodyne Principle ............................................................................................................... 14 Brief History of the Super-Heterodyne Receiver ............................................................................. 14 Frequency Shift Property .................................................................................................................... 14 Frequency Shift Property Applied to the Super-heterodyne Receiver ......................................... 15 Moving to a Non-ideal Receiver ..................................................................................................... 17 Mixing Process ..................................................................................................................................... 17 Image Responses ................................................................................................................................ 19 IF Subharmonics .................................................................................................................................. 20 General M,N Spurs .............................................................................................................................. 21 LO Feedthrough ................................................................................................................................... 23 LO Emissions ........................................................................................................................................ 24 Residual Responses ............................................................................................................................ 24 Cautionary Note on Nomenclature .................................................................................................... 25 3. Super-Heterodyne Signal Analyzer Structures ............................................................................... 26 Single Conversion Stage Structure ................................................................................................... 26 Multiple Conversion Lowband Structure ........................................................................................... 27 Multiple Conversion Highband Structure .......................................................................................... 28 Multiple Conversion Block Converter Structure ............................................................................... 30 Final IF Frequency Selection .............................................................................................................. 31 Variable Bandwidth Final IF Filters .................................................................................................... 32 4. RF Chain Signal Processing .............................................................................................................. 34 Amplitude Representation in Signal Analyzers ................................................................................ 34 RF/IF Path Amplitude Control Elements ........................................................................................... 35 2 Reference Level and Gain Setting Equations .................................................................................. 36 Mixer Level Effect on Frontend Noise ............................................................................................... 37 ADC Dynamic Range ........................................................................................................................... 38 Preamplifier ........................................................................................................................................... 39 Phase Noise .......................................................................................................................................... 41 5. IF Chain Signal Processing ................................................................................................................ 44 Analog IF Signal Processing .............................................................................................................. 44 Resolution Bandwidth Filter ............................................................................................................ 44 Logarithmic Amplifier ....................................................................................................................... 46 Envelope Detector ............................................................................................................................ 47 Video Bandwidth Filter ..................................................................................................................... 47 Sweep Speed Considerations ............................................................................................................ 48 Viewing Modulation .............................................................................................................................. 48 Detector Modes .................................................................................................................................... 50 Challenges with the All Analog IF ...................................................................................................... 50 IF Signal Processing with the Digital IF ............................................................................................ 51 Signal Processing Chain: Digital Hardware ..................................................................................... 51 Signal Processing Chain: Software ................................................................................................... 52 Spectral Leakage in the FFT Process ............................................................................................... 53 Resolution Bandwidth Using Windowing Functions ........................................................................ 56 Windowing Function Figures of Merit ................................................................................................ 57 Bin Width ........................................................................................................................................... 57 Equivalent Noise Bandwidth ........................................................................................................... 59 Scalloping Loss ................................................................................................................................. 60 Sidelobe Attenuation ........................................................................................................................ 61 Windowing Function Comparison ...................................................................................................... 61 Trace Averaging ................................................................................................................................... 62 Vector Averaging .............................................................................................................................. 62 RMS Averaging ................................................................................................................................. 62 Peak-Hold Averaging ....................................................................................................................... 63 Averaging Mode Comparisons ....................................................................................................... 63 Video Bandwidth Filter Emulation ...................................................................................................... 63 3 Unit Conversion .................................................................................................................................... 65 Log Mode Trace Averaging ................................................................................................................ 65 6. Dynamic Range ...................................................................................................................................
Recommended publications
  • Toward a Large Bandwidth Photonic Correlator for Infrared Heterodyne Interferometry a first Laboratory Proof of Concept
    A&A 639, A53 (2020) Astronomy https://doi.org/10.1051/0004-6361/201937368 & c G. Bourdarot et al. 2020 Astrophysics Toward a large bandwidth photonic correlator for infrared heterodyne interferometry A first laboratory proof of concept G. Bourdarot1,2, H. Guillet de Chatellus2, and J-P. Berger1 1 Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France e-mail: [email protected] 2 Univ. Grenoble Alpes, CNRS, LIPHY, 38000 Grenoble, France Received 19 December 2019 / Accepted 17 May 2020 ABSTRACT Context. Infrared heterodyne interferometry has been proposed as a practical alternative for recombining a large number of telescopes over kilometric baselines in the mid-infrared. However, the current limited correlation capacities impose strong restrictions on the sen- sitivity of this appealing technique. Aims. In this paper, we propose to address the problem of transport and correlation of wide-bandwidth signals over kilometric dis- tances by introducing photonic processing in infrared heterodyne interferometry. Methods. We describe the architecture of a photonic double-sideband correlator for two telescopes, along with the experimental demonstration of this concept on a proof-of-principle test bed. Results. We demonstrate the a posteriori correlation of two infrared signals previously generated on a two-telescope simulator in a double-sideband photonic correlator. A degradation of the signal-to-noise ratio of 13%, equivalent to a noise factor NF = 1:15, is obtained through the correlator, and the temporal coherence properties of our input signals are retrieved from these measurements. Conclusions. Our results demonstrate that photonic processing can be used to correlate heterodyne signals with a potentially large increase of detection bandwidth.
    [Show full text]
  • Army Radio Communication in the Great War Keith R Thrower, OBE
    Army radio communication in the Great War Keith R Thrower, OBE Introduction Prior to the outbreak of WW1 in August 1914 many of the techniques to be used in later years for radio communications had already been invented, although most were still at an early stage of practical application. Radio transmitters at that time were predominantly using spark discharge from a high voltage induction coil, which created a series of damped oscillations in an associated tuned circuit at the rate of the spark discharge. The transmitted signal was noisy and rich in harmonics and spread widely over the radio spectrum. The ideal transmission was a continuous wave (CW) and there were three methods for producing this: 1. From an HF alternator, the practical design of which was made by the US General Electric engineer Ernst Alexanderson, initially based on a specification by Reginald Fessenden. These alternators were primarily intended for high-power, long-wave transmission and not suitable for use on the battlefield. 2. Arc generator, the practical form of which was invented by Valdemar Poulsen in 1902. Again the transmitters were high power and not suitable for battlefield use. 3. Valve oscillator, which was invented by the German engineer, Alexander Meissner, and patented in April 1913. Several important circuits using valves had been produced by 1914. These include: (a) the heterodyne, an oscillator circuit used to mix with an incoming continuous wave signal and beat it down to an audible note; (b) the detector, to extract the audio signal from the high frequency carrier; (c) the amplifier, both for the incoming high frequency signal and the detected audio or the beat signal from the heterodyne receiver; (d) regenerative feedback from the output of the detector or RF amplifier to its input, which had the effect of sharpening the tuning and increasing the amplification.
    [Show full text]
  • Performance Improvement of Papr Reduction for Ofdm Signal in Lte System
    International Journal of Wireless & Mobile Networks (IJWMN) Vol. 5, No. 4, August 2013 PERFORMANCE IMPROVEMENT OF PAPR REDUCTION FOR OFDM SIGNAL IN LTE SYSTEM Md. Munjure Mowla1 and S.M. Mahmud Hasan2 1Department of Electrical & Electronic Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh [email protected] 2 Department of Electronics & Telecommunication Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh [email protected] ABSTRACT Orthogonal frequency division multiplexing (OFDM) is an emerging research field of wireless communication. It is one of the most proficient multi-carrier transmission techniques widely used today as broadband wired & wireless applications having several attributes such as provides greater immunity to multipath fading & impulse noise, eliminating inter symbol interference (ISI), inter carrier interference (ICI) & the need for equalizers. OFDM signals have a general problem of high peak to average power ratio (PAPR) which is defined as the ratio of the peak power to the average power of the OFDM signal. The drawback of high PAPR is that the dynamic range of the power amplifier (PA) and digital-to-analog converter (DAC). In this paper, an improved scheme of amplitude clipping & filtering method is proposed and implemented which shows the significant improvement in case of PAPR reduction while increasing slight BER compare to an existing method. Also, the comparative studies of different parameters will be covered. KEYWORDS Bit Error rate (BER), Complementary Cumulative Distribution Function (CCDF), Long Term Evolution (LTE), Orthogonal Frequency Division Multiplexing (OFDM) and Peak to Average Power Ratio (PAPR). 1. INTRODUCTION Long term evolution (LTE) is the one of the latest steps toward the 4th generation (4G) of radio technologies designed to increase the capacity and speed of mobile telephone networks.
    [Show full text]
  • Agilent ESA-E Series Spectrum Analyzer Performance Guide Using the 89601A Vector Signal Analysis Software
    Agilent ESA-E Series Spectrum Analyzer Performance Guide Using the 89601A Vector Signal Analysis Software Application Note Table of Contents 89601A vector signal analysis software Introduction . .2 The 89601A vector signal analysis Simplify the characterization of your Product Overview . .2 software provides flexible tools for signal with the zero-span spectrum ESA-E/89601A Features . .3 making RF and modulation quality analysis tools in the 89601A analysis Performance Summary . .4 measurements on digital communica- software. Match your measurement Time and Waveform . .5 tions signals. span to your signal bandwidth, thus Measurement, Display, and Control . .7 maximizing analysis signal–to-noise Software Interface . .9 Analyze a wide variety of standard ratio (SNR), with the wide selection Vector Modulation Analysis and non-standard signal formats with of spans available in the 89601A (Option 89601A-AYA) . .10 the 89601A software. Twenty-three software. FFT-based resolution 3G Modulation Analysis standard signal presets cover GSM, bandwidths down to less than 1 Hz (Option 89601A-B7N) . .14 GSM (EDGE), cdmaOne, cdma2000, provide all the resolution needed for Dynamic Links to EEsof ADS W-CDMA, and more. For emerging frequency domain investigations. A (Option 89601A-105) . .20 standards, the 89601A software power spectral density (PSD) func- Appendix A: series offers 24 digital demodulators tion is useful for estimating the level Required hardware and software . .22 with variable center frequency, of the noise floor when calculating Appendix B: symbol rate, filter type, and filter SNR. And, a spectrogram display is PC to ESA-E spectrum analyzer alpha/BT. A user-adjustable adaptive provided for monitoring the wide- interface configuration .
    [Show full text]
  • Lecture 25 Demodulation and the Superheterodyne Receiver EE445-10
    EE447 Lecture 6 Lecture 25 Demodulation and the Superheterodyne Receiver EE445-10 HW7;5-4,5-7,5-13a-d,5-23,5-31 Due next Monday, 29th 1 Figure 4–29 Superheterodyne receiver. m(t) 2 Couch, Digital and Analog Communication Systems, Seventh Edition ©2007 Pearson Education, Inc. All rights reserved. 0-13-142492-0 1 EE447 Lecture 6 Synchronous Demodulation s(t) LPF m(t) 2Cos(2πfct) •Only method for DSB-SC, USB-SC, LSB-SC •AM with carrier •Envelope Detection – Input SNR >~10 dB required •Synchronous Detection – (no threshold effect) •Note the 2 on the LO normalizes the output amplitude 3 Figure 4–24 PLL used for coherent detection of AM. 4 Couch, Digital and Analog Communication Systems, Seventh Edition ©2007 Pearson Education, Inc. All rights reserved. 0-13-142492-0 2 EE447 Lecture 6 Envelope Detector C • Ac • (1+ a • m(t)) Where C is a constant C • Ac • a • m(t)) 5 Envelope Detector Distortion Hi Frequency m(t) Slope overload IF Frequency Present in Output signal 6 3 EE447 Lecture 6 Superheterodyne Receiver EE445-09 7 8 4 EE447 Lecture 6 9 Super-Heterodyne AM Receiver 10 5 EE447 Lecture 6 Super-Heterodyne AM Receiver 11 RF Filter • Provides Image Rejection fimage=fLO+fif • Reduces amplitude of interfering signals far from the carrier frequency • Reduces the amount of LO signal that radiates from the Antenna stop 2/22 12 6 EE447 Lecture 6 Figure 4–30 Spectra of signals and transfer function of an RF amplifier in a superheterodyne receiver. 13 Couch, Digital and Analog Communication Systems, Seventh Edition ©2007 Pearson Education, Inc.
    [Show full text]
  • Sm.1446-0 (04/2000)
    Recommendation ITU-R SM.1446-0 (04/2000) Definition and measurement of intermodulation products in transmitter using frequency, phase, or complex modulation techniques SM Series Spectrum management ii Rec. ITU-R SM.1446-0 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Recommendations (Also available online at http://www.itu.int/publ/R-REC/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management SNG Satellite news gathering TF Time signals and frequency standards emissions V Vocabulary and related subjects Note: This ITU-R Recommendation was approved in English under the procedure detailed in Resolution ITU-R 1.
    [Show full text]
  • Design Considerations for Optical Heterodyne
    DESIGNCONSIDERATIONS FOR OPTICAL HETERODYNERECEIVERS: A RFXIEW John J. Degnan Instrument Electro-optics Branch NASA GoddardSpace Flight Center Greenbelt,Maryland 20771 ABSTRACT By its verynature, an optical heterodyne receiver is both a receiver and anantenna. Certain fundamental antenna properties ofheterodyne receivers are describedwhich set theoretical limits on the receiver sensitivity for the detectionof coherent point sources, scattered light, and thermal radiation. In order to approachthese limiting sensitivities, the geometry of the optical antenna-heterodyne receiver configurationmust be carefully tailored to the intendedapplication. The geometric factors which affect system sensitivity includethe local osciliator (LO) amplitudedistribution, mismatches between the signaland LO phasefronts,central obscurations of the optical antenna, and nonuniformmixer quantum efficiencies. The current state of knowledge in this area, which rests heavilyon modern concepts of partial coherence, is reviewed. Following a discussion of noiseprocesses in the heterodyne receiver and the manner in which sensitivity is increasedthrough time integration of the detectedsignal, we derivean expression for the mean squaresignal current obtained by mixing a coherent local oscillator with a partially coherent, quasi- monochromaticsource. We thendemonstrate the manner in which the IF signal calculationcan be transferred to anyconvenient plane in the optical front end ofthe receiver. Using these techniques, we obtain a relativelysimple equation forthe coherently detected signal from anextended incoherent source and apply it to theheterodyne detection of an extended thermal source and to theback- scatter lidar problem where the antenna patternsof both the transmitter beam andheterodyne receiver mustbe taken into account. Finally, we considerthe detectionof a coherentsource and, in particular, a distantpoint source such as a star or laser transmitter in a longrange heterodyne communications system.
    [Show full text]
  • N9064A & W9064A VXA Signal Analyzer Measurement Application Measurement Guide
    Agilent X-Series Signal Analyzer This manual provides documentation for the following analyzers: PXA Signal Analyzer N9030A MXA Signal Analyzer N9020A EXA Signal Analyzer N9010A CXA Signal Analyzer N9000A N9064A & W9064A VXA Signal Analyzer Measurement Application Measurement Guide Agilent Technologies Notices © Agilent Technologies, Inc. Manual Part Number as defined in DFAR 252.227-7014 2008-2010 (June 1995), or as a “commercial N9064-90002 item” as defined in FAR 2.101(a) or No part of this manual may be as “Restricted computer software” reproduced in any form or by any Supersedes: July 2010 as defined in FAR 52.227-19 (June means (including electronic storage Print Date 1987) or any equivalent agency and retrieval or translation into a regulation or contract clause. Use, foreign language) without prior October 2010 duplication or disclosure of Software agreement and written consent from is subject to Agilent Technologies’ Agilent Technologies, Inc. as Printed in USA standard commercial license terms, governed by United States and Agilent Technologies Inc. and non-DOD Departments and international copyright laws. 1400 Fountaingrove Parkway Agencies of the U.S. Government Trademark Santa Rosa, CA 95403 will receive no greater than Acknowledgements Warranty Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Microsoft® is a U.S. registered The material contained in this Government users will receive no trademark of Microsoft Corporation. document is provided “as is,” and is greater than Limited Rights as subject to being changed, without defined in FAR 52.227-14 (June Windows® and MS Windows® are notice, in future editions.
    [Show full text]
  • Third Order Intercept Point
    Third Order Intercept Point Third order intercept point (IP3) is a term sometimes heard when amateur radio operators are discussing the qualities, or lack thereof, of a receiver. Third order intercept point is just one of several specifications that can be used to judge the quality of a receiver. Some of the other specifications such as signal to noise ratio and selectivity are relatively easy to understand and interpret. It should be pointed out that in many instances complete specifications are not provided in manufacturing literature and must be obtained from independent testing sources or through other means. The term is somewhat involved and many people don’t actually know what it really means. Most who us it do know that the higher the number the better the receiver. Numbers may range from something like –10db to something in the range of +30 to 40 db. In very simple terms IP3 is a way of expressing how well a receiver separates two closely spaced signals. However, there is a second part that creates confusion. This second part will be the basis for our discussion. It is based one the two closely spaced signals just mentioned. Lets be clear that IP3 is a theoretical point that is calculated and is not measured as is specifications such as selectivity. All modern receivers have at least one intermediate frequency (IF) between their antenna input and their audio amplification stages which drive the speaker. Most have at least two and in some models three mixers. When a single signal is received and processed it of course can be easily heard and understood.
    [Show full text]
  • Intermodulation, Phase Noise and Dynamic Range AN156-2 the Radio Receiver Operates in a Non-Benign Environment
    Intermodulation, Phase Noise and Dynamic Range AN156-2 The radio receiver operates in a non-benign environment. It needs to pick out a very weak wanted signal from a background of noise at the same time as it rejects a large number to much stronger unwanted signals. These may be present either fortuitously as in the case of the overcrowded radio spectrum, or because of deliberate action, as in the case of Electronic Warfare. In either case, the use of suitable devices may considerably influence the job of the equipment designer. Dynamic range is a 'catch all' term, applied to limitations of intermodulation or phase noise: it has many definitions depending upon the application. Firstly, however, it is advisable to define those terms which limit the dynamic range of a receiver. INTERMODULATION This is described as the 'result of a non linear transfer upon the actual transfer function of the device and thus vary characteristic’. The mathematics have been exhaustively with device type. For example a truly square law device such treated and Ref.1 is recommended to those interested. as a perfect FET, produces no third order products (2f2 - f1, 2f1 The effects of intermodulation are similar to those produced - f2). Intermodulation products are additional to the harmonics by mixing and harmonic production, in so far as the application 2f1, 2f2, 3f1, 3f2 etc. Fig.1 shows intermodulation products of two signals of frequencies f1 and f2 produce outputs of 2f2 - diagrammatically. f1 2f1 - f2, 2f1, 2f2 etc. The levels of these signals are dependent Amplitude 2 2 2 1 1 1 f1 f2 2f1 2 2f2 -f -f Frequency +f 1 2 -3f -2f -2f -3f 1 f 1 1 2 2 2f 2f 4f 3f 3f 4f Fig.
    [Show full text]
  • Heterodyne Detector for Measuring the Characteristic of Elliptically Polarized Microwaves
    Downloaded from orbit.dtu.dk on: Oct 02, 2021 Heterodyne detector for measuring the characteristic of elliptically polarized microwaves Leipold, Frank; Nielsen, Stefan Kragh; Michelsen, Susanne Published in: Review of Scientific Instruments Link to article, DOI: 10.1063/1.2937651 Publication date: 2008 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Leipold, F., Nielsen, S. K., & Michelsen, S. (2008). Heterodyne detector for measuring the characteristic of elliptically polarized microwaves. Review of Scientific Instruments, 79(6), 065103. https://doi.org/10.1063/1.2937651 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. REVIEW OF SCIENTIFIC INSTRUMENTS 79, 065103 ͑2008͒ Heterodyne detector for measuring the characteristic of elliptically polarized microwaves Frank Leipold, Stefan Nielsen, and Susanne Michelsen Association EURATOM, Risø National Laboratory, Technical University of Denmark, OPL-128, Frederiksborgvej 399, 4000 Roskilde, Denmark ͑Received 28 January 2008; accepted 6 May 2008; published online 4 June 2008͒ In the present paper, a device is introduced, which is capable of determining the three characteristic parameters of elliptically polarized light ͑ellipticity, angle of ellipticity, and direction of rotation͒ for microwave radiation at a frequency of 110 GHz.
    [Show full text]
  • Vector Signal Analyzer FSE-B7 for Spectrum Analyzers FSE Universal Demodulation, Analysis and Documentation of Digital and Analog Mobile Radio Signals
    Vector Signal Analyzer FSE-B7 for Spectrum Analyzers FSE Universal demodulation, analysis and documentation of digital and analog mobile radio signals For all major mobile radio commu- For all common digital and analog Optimum representation of results: nication standards: modulation modes: • In-phase and quadrature signals • GSM/DCS1800/PCS1900 •BPSK • Magnitude, phase • NADC • QPSK, OQPSK • Eye and trellis diagrams • TETRA • π/4 DQPSK • Vector diagram •PDC • 8PSK, 8DPSK • Constellation diagram •PHS •(G)MSK • Table with modulation errors •DECT •(G)FSK • Demodulated bit stream • QCDMA (IS95) •4FSK •16QAM •AM/FM/ϕM Characteristics Q-CDMA PHP ISM WLAN GSM DCS 1800/1900 DAB NADC TFTS DECT SATELLITE RADAR MICROWAVE LINKS FSEA 20 Q FSEB 20 FSEM 20 90° FSEK 20 A DSP D FSEA 30 Memory IF filter 20 to Dig LO FSEB 30 25.6 MHz FSEM 30 I FSEK 30 20 Hz 9 kHz 1 GHz 2 GHz 3.5 GHz 7 GHz 26.5 40 GHz The vector signal analyzer option can be used Operating principle of Vector Signal with all analyzers of the FSE family to cover the Analyzer Option FSE-B7 frequency range up to 40 GHz for future-oriented applications Universal analysis of digital deviation or modulation depth, this Efficient in production mobile radio signals option also allows measurements of fre- quency transients or spurious FM on The high measurement speed of 25 The vector signal analyzer option synthesizers or transmitters. sweeps/s in the analyzer mode and upgrades the high-quality Spectrum typically 3 measurements/s using the Analyzers FSE, adding universal Since option FSE-B7 can analyze ana- vector signal analyzer function is ideal demodulation and analysis capability log and digital modulation signals, it is for applications in production.
    [Show full text]