Active Introduction to Discrete Mathematics and Algorithms

Total Page:16

File Type:pdf, Size:1020Kb

Active Introduction to Discrete Mathematics and Algorithms An Active Introduction to Discrete Mathematics and Algorithms Charles A. Cusack [email protected] David A. Santos Version 2.6.3 March 30, 2018 ii Copyright c 2016 Charles A. Cusack. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free Documentation License”. Copyright c 2007 David Anthony Santos. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation Li- cense, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free Documentation License”. History An Active Introduction to Discrete Mathematics and Algorithms, 2016, Charles A. Cusack. • Minor revisions. Algorithm Analysis chapter had a few additions. An Active Introduction to Discrete Mathematics and Algorithms, 2015, Charles A. Cusack. • Minor revisions. Algorithm Analysis chapter had major revisions. An Active Introduction to Discrete Mathematics and Algorithms, 2014, Charles A. Cusack. • This is a significant revision of the 2013 version (thus the slight change in title). An Introduction to Discrete Mathematics and Algorithms, 2013, Charles A. Cusack. This • document draws some content from each of the following. – Discrete Mathematics Notes, 2008, David A. Santos. – More Discrete Mathematics, 2007, David A. Santos. – Number Theory for Mathematical Contests, 2007, David A. Santos. – Linear Algebra Notes, 2008, David A. Santos. – Precalculus, An Honours Course, 2008, David Santos. These documents are all available from http://www.opensourcemath.org/books/santos/, but the site appears not to be consistently available. About the cover The image on the cover is an example of mathematical art using Lego bricks. It shows 9 different Latin squares of order 16. Go to https://www.instagram.com/ferzle/ to see more pictures of Dr. Cusack’s Lego art. iii Contents Preface v 7 Algorithm Analysis 195 7.1 Asymptotic Notation . 195 How to use this book vii 7.1.1 The Notations . 195 7.1.2 Properties of the Notations . 205 1 Motivation 1 7.1.3 Proofs using the definitions . 209 1.1 Some Problems . 2 7.1.4 Proofs using limits . 214 2 Proof Methods 7 7.2 CommonGrowthRates . 225 2.1 Direct Proofs . 7 7.3 Algorithm Analysis . 233 2.2 Implication and Its Friends . 16 7.3.1 Analyzing Algorithms . 234 2.3 Proof by Contradiction . 20 7.3.2 Common Time Complexities . 242 2.4 Proof by Contraposition . 29 7.3.3 Basic Sorting Algorithms . 246 2.5 OtherProofTechniques . 31 7.3.4 Basic Data Structures (Review) 250 2.6 If and Only If Proofs . 33 7.3.5 More Examples . 252 2.7 Common Errors in Proofs . 35 7.3.6 Binary Search . 261 2.8 More Practice . 38 7.4 Problems . 264 2.9 Problems . 42 8 Recursion, Recurrences, and Mathe- 3 Programming Fundamentals and Algo- matical Induction 271 rithms 45 8.1 Mathematical Induction . 271 3.1 Algorithms . 45 8.1.1 The Basics . 272 3.2 The mod operator and Integer Division 49 8.1.2 Equalities/Inequalities . 277 3.3 If-then-else Statements . 56 8.1.3 Variations . 280 3.4 The for loop . 58 8.1.4 Strong Induction . 284 3.5 Arrays.................. 61 8.1.5 Induction Errors . 286 3.6 The while loop . 65 8.1.6 Summary/Tips . 288 3.7 Problems . 68 8.2 Recursion . 291 8.3 Solving Recurrence Relations . 299 4 Logic 71 8.3.1 Substitution Method . 301 4.1 Propositional Logic . 71 8.3.2 Iteration Method . 305 4.1.1 Compound Propositions . 72 8.3.3 Master Theorem . 313 4.1.2 Truth Tables . 80 8.3.4 Linear Recurrence Relations . 315 4.1.3 Precedence Rules . 82 8.4 Analyzing Recursive Algorithms . 319 4.2 Propositional Equivalence . 84 8.4.1 Analyzing Quicksort . 323 4.3 Predicates and Quantifiers . 96 4.4 NormalForms. 105 8.5 Problems . 327 4.5 Bitwise Operations . 108 9 Counting 331 4.6 Problems . 111 9.1 The Multiplication and Sum Rules . 331 5 Sets, Functions, and Relations 117 9.2 Pigeonhole Principle . 336 5.1 Sets ................... 117 9.3 Permutations and Combinations . 342 5.2 Set Operations . 123 9.3.1 Permutations without Repeti- 5.3 Functions . 134 tions . 342 5.4 Partitions and Equivalence Relations . 145 9.3.2 Permutations with Repetitions 345 5.5 Problems . 159 9.3.3 Combinations without Repeti- tions . 349 6 Sequences and Summations 163 9.3.4 Combinations with Repetitions 355 6.1 Sequences ................ 163 9.4 Binomial Theorem . 359 6.2 SumsandProducts. 176 9.5 Inclusion-Exclusion . 362 6.3 Problems . 192 9.6 Problems . 368 iv 10 Graph Theory 373 10.8 Planarity . 393 10.1 TypesofGraphs . 373 10.9 Problems . 395 10.2 Graph Terminology . 377 10.3 SomeSpecialGraphs . 382 11 Selected Solutions 397 10.4 Handshaking Lemma . 385 10.5 GraphRepresentation . 387 GNU Free Documentation License 445 10.6 Problem Solving with Graphs . 388 10.7 Traversability . 391 Index 449 Preface This book is an attempt to present some of the most important discrete mathematics concepts to computer science students in the context of algorithms. I wrote it for use as a textbook for half of a course on discrete mathematics and algorithms. Some of the material is drawn from several open-source books by David Santos. Other material is from handouts I have written and used over the years. I have extensively edited the material from both sources, both for clarity and to emphasize the connections between the material and algorithms where possible. I have also added a significant amount of new material. The format of the material is also significantly different than it was in the original sources. I should mention that I never met David Santos, who apparently died in 2011. I stumbled upon his books in the summer of 2013 when I was searching for a discrete mathematics book to use in a new course. When I discovered that I could adapt his material for my own use, I decided to do so. Since clearly he has no knowledge of this book, he bears no responsibility for any of the edited content. Any errors or omissions are therefore mine. This is still a work in progress, so I appreciate any feedback you have. Please send any typos, formatting errors, other errors, suggestions, etc., to [email protected]. I would like to thank the following people for submitting feedback/errata (listed in no par- ticular order): Dan Zingaro, Mike Jipping, Steve Ratering, Victoria Gonda, Nathan Vance, Cole Watson, Kalli Crandell, John Dood, Coty Franklin, Kyle Magnuson, Katie Brudos, Jonathan Senning, Matthew DeJongh, Julian Payne, Josiah Brouwer, and probably several others I forgot to mention. Charles A. Cusack July, 2014 v vi How to use this book As the title of the book indicates, this is not a book that is just to be read. It was written so that the reader interacts with the material. If you attempt to just read what is written and take no part in the exercises that are embedded throughout, you will likely get very little out of it. Learning needs to be active, not passive. The more active you are as you ‘read’ the book, the more you will get out of it. That will translate to better learning. And it will also translate to a higher grade. So whether you are motivated by learning (which is my hope) or merely by getting a certain grade, your path will be the same–use this book as described below. The content is presented in the following manner. First, concepts and definitions are given– generally one at a time. Then one or more examples that illustrate the concept/definition will be given. After that you will find one or more exercises of various kinds. This is where this book differs from most. Instead of piling on more examples that you merely read and think you understand, you will be asked to solve some for yourself so that you can be more confident that you really do understand. Some of the exercises are just called Exercises. They are very similar to the examples, except that you have to provide the solution. There are also Fill in the details which provide part of the solution, but ask you to provide some of the details. The point of these is to help you think about some of the finer details that you might otherwise miss. There are also Questions of various kinds that get you thinking about the concepts. Finally, there are Evaluate exercises. These ask you to look at solutions written by others and determine whether or not they are correct. More precisely, your goal is to try to find as many errors in the solutions as you can. Usually there will be one or more errors in each solution, but occasionally a correct solution will be given, so pay careful attention to every detail. The point of these exercises is to help you see mistakes before you make them. Many of these exercises are based on solutions from previous students, so they often represent the common mistakes students make. Hopefully if you see someone else make these mistakes, you will be less likely to make them yourself. The point of the exercises is to get you thinking about and interacting with the material.
Recommended publications
  • Simulating Quantum Field Theory with a Quantum Computer
    Simulating quantum field theory with a quantum computer John Preskill Lattice 2018 28 July 2018 This talk has two parts (1) Near-term prospects for quantum computing. (2) Opportunities in quantum simulation of quantum field theory. Exascale digital computers will advance our knowledge of QCD, but some challenges will remain, especially concerning real-time evolution and properties of nuclear matter and quark-gluon plasma at nonzero temperature and chemical potential. Digital computers may never be able to address these (and other) problems; quantum computers will solve them eventually, though I’m not sure when. The physics payoff may still be far away, but today’s research can hasten the arrival of a new era in which quantum simulation fuels progress in fundamental physics. Frontiers of Physics short distance long distance complexity Higgs boson Large scale structure “More is different” Neutrino masses Cosmic microwave Many-body entanglement background Supersymmetry Phases of quantum Dark matter matter Quantum gravity Dark energy Quantum computing String theory Gravitational waves Quantum spacetime particle collision molecular chemistry entangled electrons A quantum computer can simulate efficiently any physical process that occurs in Nature. (Maybe. We don’t actually know for sure.) superconductor black hole early universe Two fundamental ideas (1) Quantum complexity Why we think quantum computing is powerful. (2) Quantum error correction Why we think quantum computing is scalable. A complete description of a typical quantum state of just 300 qubits requires more bits than the number of atoms in the visible universe. Why we think quantum computing is powerful We know examples of problems that can be solved efficiently by a quantum computer, where we believe the problems are hard for classical computers.
    [Show full text]
  • Geometric Algorithms
    Geometric Algorithms primitive operations convex hull closest pair voronoi diagram References: Algorithms in C (2nd edition), Chapters 24-25 http://www.cs.princeton.edu/introalgsds/71primitives http://www.cs.princeton.edu/introalgsds/72hull 1 Geometric Algorithms Applications. • Data mining. • VLSI design. • Computer vision. • Mathematical models. • Astronomical simulation. • Geographic information systems. airflow around an aircraft wing • Computer graphics (movies, games, virtual reality). • Models of physical world (maps, architecture, medical imaging). Reference: http://www.ics.uci.edu/~eppstein/geom.html History. • Ancient mathematical foundations. • Most geometric algorithms less than 25 years old. 2 primitive operations convex hull closest pair voronoi diagram 3 Geometric Primitives Point: two numbers (x, y). any line not through origin Line: two numbers a and b [ax + by = 1] Line segment: two points. Polygon: sequence of points. Primitive operations. • Is a point inside a polygon? • Compare slopes of two lines. • Distance between two points. • Do two line segments intersect? Given three points p , p , p , is p -p -p a counterclockwise turn? • 1 2 3 1 2 3 Other geometric shapes. • Triangle, rectangle, circle, sphere, cone, … • 3D and higher dimensions sometimes more complicated. 4 Intuition Warning: intuition may be misleading. • Humans have spatial intuition in 2D and 3D. • Computers do not. • Neither has good intuition in higher dimensions! Is a given polygon simple? no crossings 1 6 5 8 7 2 7 8 6 4 2 1 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 2 18 4 18 4 19 4 19 4 20 3 20 3 20 1 10 3 7 2 8 8 3 4 6 5 15 1 11 3 14 2 16 we think of this algorithm sees this 5 Polygon Inside, Outside Jordan curve theorem.
    [Show full text]
  • Research Statement
    D. A. Williams II June 2021 Research Statement I am an algebraist with expertise in the areas of representation theory of Lie superalgebras, associative superalgebras, and algebraic objects related to mathematical physics. As a post- doctoral fellow, I have extended my research to include topics in enumerative and algebraic combinatorics. My research is collaborative, and I welcome collaboration in familiar areas and in newer undertakings. The referenced open problems here, their subproblems, and other ideas in mind are suitable for undergraduate projects and theses, doctoral proposals, or scholarly contributions to academic journals. In what follows, I provide a technical description of the motivation and history of my work in Lie superalgebras and super representation theory. This is then followed by a description of the work I am currently supervising and mentoring, in combinatorics, as I serve as the Postdoctoral Research Advisor for the Mathematical Sciences Research Institute's Undergraduate Program 2021. 1 Super Representation Theory 1.1 History 1.1.1 Superalgebras In 1941, Whitehead dened a product on the graded homotopy groups of a pointed topological space, the rst non-trivial example of a Lie superalgebra. Whitehead's work in algebraic topol- ogy [Whi41] was known to mathematicians who dened new graded geo-algebraic structures, such as -graded algebras, or superalgebras to physicists, and their modules. A Lie superalge- Z2 bra would come to be a -graded vector space, even (respectively, odd) elements g = g0 ⊕ g1 Z2 found in (respectively, ), with a parity-respecting bilinear multiplication termed the Lie g0 g1 superbracket inducing1 a symmetric intertwining map of -modules.
    [Show full text]
  • Algorithmic Design and Techniques at Edx: Syllabus
    Algorithmic Design and Techniques at edX: Syllabus February 18, 2018 Contents 1 Welcome!2 2 Who This Class Is For2 3 Meet Your Instructors2 4 Prerequisites3 5 Course Overview4 6 Learning Objectives5 7 Estimated Workload5 8 Grading 5 9 Deadlines6 10 Verified Certificate6 11 Forum 7 1 1 Welcome! Thank you for joining Algorithmic Design and Techniques at edX! In this course, you will learn not only the basic algorithmic techniques, but also how to write efficient, clean, and reliable code. 2 Who This Class Is For Programmers with basic experience looking to understand the practical and conceptual underpinnings of algorithms, with the goal of becoming more effective software engi- neers. Computer science students and researchers as well as interdisciplinary students (studying electrical engineering, mathematics, bioinformatics, etc.) aiming to get more profound understanding of algorithms and hands-on experience implementing them and applying for real-world problems. Applicants who want to prepare for an interview in a high-tech company. 3 Meet Your Instructors Daniel Kane is an associate professor at the University of California, San Diego with a joint appointment between the Department of Com- puter Science and Engineering and the Department of Mathematics. He has diverse interests in mathematics and theoretical computer science, though most of his work fits into the broad categories of number theory, complexity theory, or combinatorics. Alexander S. Kulikov is a senior research fellow at Steklov Mathemat- ical Institute of the Russian Academy of Sciences, Saint Petersburg, Russia and a lecturer at the Department of Computer Science and Engineering at University of California, San Diego, USA.
    [Show full text]
  • Introduction to Computational Social Choice
    1 Introduction to Computational Social Choice Felix Brandta, Vincent Conitzerb, Ulle Endrissc, J´er^omeLangd, and Ariel D. Procacciae 1.1 Computational Social Choice at a Glance Social choice theory is the field of scientific inquiry that studies the aggregation of individual preferences towards a collective choice. For example, social choice theorists|who hail from a range of different disciplines, including mathematics, economics, and political science|are interested in the design and theoretical evalu- ation of voting rules. Questions of social choice have stimulated intellectual thought for centuries. Over time the topic has fascinated many a great mind, from the Mar- quis de Condorcet and Pierre-Simon de Laplace, through Charles Dodgson (better known as Lewis Carroll, the author of Alice in Wonderland), to Nobel Laureates such as Kenneth Arrow, Amartya Sen, and Lloyd Shapley. Computational social choice (COMSOC), by comparison, is a very young field that formed only in the early 2000s. There were, however, a few precursors. For instance, David Gale and Lloyd Shapley's algorithm for finding stable matchings between two groups of people with preferences over each other, dating back to 1962, truly had a computational flavor. And in the late 1980s, a series of papers by John Bartholdi, Craig Tovey, and Michael Trick showed that, on the one hand, computational complexity, as studied in theoretical computer science, can serve as a barrier against strategic manipulation in elections, but on the other hand, it can also prevent the efficient use of some voting rules altogether. Around the same time, a research group around Bernard Monjardet and Olivier Hudry also started to study the computational complexity of preference aggregation procedures.
    [Show full text]
  • Introduction to Computational Social Choice Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, Ariel D
    Introduction to Computational Social Choice Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, Ariel D. Procaccia To cite this version: Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, Ariel D. Procaccia. Introduction to Computational Social Choice. Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, Ariel D. Procaccia, Handbook of Computational Social Choice, Cambridge University Press, pp.1-29, 2016, 9781107446984. 10.1017/CBO9781107446984. hal-01493516 HAL Id: hal-01493516 https://hal.archives-ouvertes.fr/hal-01493516 Submitted on 21 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Introduction to Computational Social Choice Felix Brandta, Vincent Conitzerb, Ulle Endrissc, J´er^omeLangd, and Ariel D. Procacciae 1.1 Computational Social Choice at a Glance Social choice theory is the field of scientific inquiry that studies the aggregation of individual preferences towards a collective choice. For example, social choice theorists|who hail from a range of different disciplines, including mathematics, economics, and political science|are interested in the design and theoretical evalu- ation of voting rules. Questions of social choice have stimulated intellectual thought for centuries. Over time the topic has fascinated many a great mind, from the Mar- quis de Condorcet and Pierre-Simon de Laplace, through Charles Dodgson (better known as Lewis Carroll, the author of Alice in Wonderland), to Nobel Laureates such as Kenneth Arrow, Amartya Sen, and Lloyd Shapley.
    [Show full text]
  • Randnla: Randomized Numerical Linear Algebra
    review articles DOI:10.1145/2842602 generation mechanisms—as an algo- Randomization offers new benefits rithmic or computational resource for the develop ment of improved algo- for large-scale linear algebra computations. rithms for fundamental matrix prob- lems such as matrix multiplication, BY PETROS DRINEAS AND MICHAEL W. MAHONEY least-squares (LS) approximation, low- rank matrix approxi mation, and Lapla- cian-based linear equ ation solvers. Randomized Numerical Linear Algebra (RandNLA) is an interdisci- RandNLA: plinary research area that exploits randomization as a computational resource to develop improved algo- rithms for large-scale linear algebra Randomized problems.32 From a foundational per- spective, RandNLA has its roots in theoretical computer science (TCS), with deep connections to mathemat- Numerical ics (convex analysis, probability theory, metric embedding theory) and applied mathematics (scientific computing, signal processing, numerical linear Linear algebra). From an applied perspec- tive, RandNLA is a vital new tool for machine learning, statistics, and data analysis. Well-engineered implemen- Algebra tations have already outperformed highly optimized software libraries for ubiquitous problems such as least- squares,4,35 with good scalability in par- allel and distributed environments. 52 Moreover, RandNLA promises a sound algorithmic and statistical foundation for modern large-scale data analysis. MATRICES ARE UBIQUITOUS in computer science, statistics, and applied mathematics. An m × n key insights matrix can encode information about m objects ˽ Randomization isn’t just used to model noise in data; it can be a powerful (each described by n features), or the behavior of a computational resource to develop discretized differential operator on a finite element algorithms with improved running times and stability properties as well as mesh; an n × n positive-definite matrix can encode algorithms that are more interpretable in the correlations between all pairs of n objects, or the downstream data science applications.
    [Show full text]
  • Mechanism, Mentalism, and Metamathematics Synthese Library
    MECHANISM, MENTALISM, AND METAMATHEMATICS SYNTHESE LIBRARY STUDIES IN EPISTEMOLOGY, LOGIC, METHODOLOGY, AND PHILOSOPHY OF SCIENCE Managing Editor: JAAKKO HINTIKKA, Florida State University Editors: ROBER T S. COHEN, Boston University DONALD DAVIDSON, University o/Chicago GABRIEL NUCHELMANS, University 0/ Leyden WESLEY C. SALMON, University 0/ Arizona VOLUME 137 JUDSON CHAMBERS WEBB Boston University. Dept. 0/ Philosophy. Boston. Mass .• U.S.A. MECHANISM, MENT ALISM, AND MET AMA THEMA TICS An Essay on Finitism i Springer-Science+Business Media, B.V. Library of Congress Cataloging in Publication Data Webb, Judson Chambers, 1936- CII:J Mechanism, mentalism, and metamathematics. (Synthese library; v. 137) Bibliography: p. Includes indexes. 1. Metamathematics. I. Title. QA9.8.w4 510: 1 79-27819 ISBN 978-90-481-8357-9 ISBN 978-94-015-7653-6 (eBook) DOl 10.1007/978-94-015-7653-6 All Rights Reserved Copyright © 1980 by Springer Science+Business Media Dordrecht Originally published by D. Reidel Publishing Company, Dordrecht, Holland in 1980. Softcover reprint of the hardcover 1st edition 1980 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any informational storage and retrieval system, without written permission from the copyright owner TABLE OF CONTENTS PREFACE vii INTRODUCTION ix CHAPTER I / MECHANISM: SOME HISTORICAL NOTES I. Machines and Demons 2. Machines and Men 17 3. Machines, Arithmetic, and Logic 22 CHAPTER II / MIND, NUMBER, AND THE INFINITE 33 I. The Obligations of Infinity 33 2. Mind and Philosophy of Number 40 3. Dedekind's Theory of Arithmetic 46 4.
    [Show full text]
  • A Mathematical Analysis of Student-Generated Sorting Algorithms Audrey Nasar
    The Mathematics Enthusiast Volume 16 Article 15 Number 1 Numbers 1, 2, & 3 2-2019 A Mathematical Analysis of Student-Generated Sorting Algorithms Audrey Nasar Let us know how access to this document benefits ouy . Follow this and additional works at: https://scholarworks.umt.edu/tme Recommended Citation Nasar, Audrey (2019) "A Mathematical Analysis of Student-Generated Sorting Algorithms," The Mathematics Enthusiast: Vol. 16 : No. 1 , Article 15. Available at: https://scholarworks.umt.edu/tme/vol16/iss1/15 This Article is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in The Mathematics Enthusiast by an authorized editor of ScholarWorks at University of Montana. For more information, please contact [email protected]. TME, vol. 16, nos.1, 2&3, p. 315 A Mathematical Analysis of student-generated sorting algorithms Audrey A. Nasar1 Borough of Manhattan Community College at the City University of New York Abstract: Sorting is a process we encounter very often in everyday life. Additionally it is a fundamental operation in computer science. Having been one of the first intensely studied problems in computer science, many different sorting algorithms have been developed and analyzed. Although algorithms are often taught as part of the computer science curriculum in the context of a programming language, the study of algorithms and algorithmic thinking, including the design, construction and analysis of algorithms, has pedagogical value in mathematics education. This paper will provide an introduction to computational complexity and efficiency, without the use of a programming language. It will also describe how these concepts can be incorporated into the existing high school or undergraduate mathematics curriculum through a mathematical analysis of student- generated sorting algorithms.
    [Show full text]
  • Discrete Mathematics Discrete Probability
    Introduction Probability Theory Discrete Mathematics Discrete Probability Prof. Steven Evans Prof. Steven Evans Discrete Mathematics Introduction Probability Theory 7.1: An Introduction to Discrete Probability Prof. Steven Evans Discrete Mathematics Introduction Probability Theory Finite probability Definition An experiment is a procedure that yields one of a given set os possible outcomes. The sample space of the experiment is the set of possible outcomes. An event is a subset of the sample space. Laplace's definition of the probability p(E) of an event E in a sample space S with finitely many equally possible outcomes is jEj p(E) = : jSj Prof. Steven Evans Discrete Mathematics By the product rule, the number of hands containing a full house is the product of the number of ways to pick two kinds in order, the number of ways to pick three out of four for the first kind, and the number of ways to pick two out of the four for the second kind. We see that the number of hands containing a full house is P(13; 2) · C(4; 3) · C(4; 2) = 13 · 12 · 4 · 6 = 3744: Because there are C(52; 5) = 2; 598; 960 poker hands, the probability of a full house is 3744 ≈ 0:0014: 2598960 Introduction Probability Theory Finite probability Example What is the probability that a poker hand contains a full house, that is, three of one kind and two of another kind? Prof. Steven Evans Discrete Mathematics Introduction Probability Theory Finite probability Example What is the probability that a poker hand contains a full house, that is, three of one kind and two of another kind? By the product rule, the number of hands containing a full house is the product of the number of ways to pick two kinds in order, the number of ways to pick three out of four for the first kind, and the number of ways to pick two out of the four for the second kind.
    [Show full text]
  • Why Theory of Quantum Computing Should Be Based on Finite Mathematics Felix Lev
    Why Theory of Quantum Computing Should be Based on Finite Mathematics Felix Lev To cite this version: Felix Lev. Why Theory of Quantum Computing Should be Based on Finite Mathematics. 2018. hal-01918572 HAL Id: hal-01918572 https://hal.archives-ouvertes.fr/hal-01918572 Preprint submitted on 11 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Why Theory of Quantum Computing Should be Based on Finite Mathematics Felix M. Lev Artwork Conversion Software Inc., 1201 Morningside Drive, Manhattan Beach, CA 90266, USA (Email: [email protected]) Abstract We discuss finite quantum theory (FQT) developed in our previous publica- tions and give a simple explanation that standard quantum theory is a special case of FQT in the formal limit p ! 1 where p is the characteristic of the ring or field used in FQT. Then we argue that FQT is a more natural basis for quantum computing than standard quantum theory. Keywords: finite mathematics, quantum theory, quantum computing 1 Motivation Classical computer science is based on discrete mathematics for obvious reasons. Any computer can operate only with a finite number of bits, a bit represents the minimum amount of information and the notions of one half of the bit, one third of the bit etc.
    [Show full text]
  • A History of Modern Numerical Linear Algebra
    Gene Golub, Stanford University 1 A History of Modern Numerical Linear Algebra Gene H. Golub Stanford University Gene Golub, Stanford University 2 What is Numerical Analysis? (a.k.a Scientific Computing) The definitions are becoming shorter... Webster’s New Collegiate Dictionary (1973): • ”The study of quantitative approximations to the solutions of mathematical problems including consideration of the errors and bounds to the errors involved.” The American Heritage Dictionary (1992): • ”The study of approximate solutions to mathematical problems, taking into account the extent of possible errors.” L. N. Trefethen, Oxford University (1992): • ”The study of algorithms for the problems of continuous mathematics.” Gene Golub, Stanford University 3 Numerical Analysis: How It All Started Numerical analysis motivated the development of the earliest computers. Ballistics • Solution of PDE’s • Data Analysis • Early pioneers included: J. von Neumann, A. M. Turing In the beginning... von Neumann & Goldstine (1947): ”Numerical Inversion of Matrices of High Order” Gene Golub, Stanford University 4 Numerical Linear Algebra Numerical Linear Algebra (NLA) is a small but active area of research: Less than 200 active, committed persons. But the community involves many scientists. Gene Golub, Stanford University 5 Top Ten Algorithms in Science (Jack Dongarra, 2000) 1. Metropolis Algorithm for Monte Carlo 2. Simplex Method for Linear Programming 3. Krylov Subspace Iteration Methods 4. The Decompositional Approach to Matrix Computations 5. The Fortran Optimizing Compiler 6. QR Algorithm for Computing Eigenvalues 7. Quicksort Algorithm for Sorting 8. Fast Fourier Transform 9. Integer Relation Detection 10. Fast Multipole Method Red: Algorithms within the exclusive domain of NLA research. • Blue: Algorithms strongly (though not exclusively) connected to NLA research.
    [Show full text]