Planning and Design of Desalination Plants Effluent Systems
Total Page:16
File Type:pdf, Size:1020Kb
UNIVERSITY OF CALIFORNIA Los Angeles Planning and Design of Desalination Plants Effluent Systems A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Civil Engineering by Sami Maalouf 2014 © Copyright by Sami Maalouf 2014 ABSTRACT OF THE DISSERTATION Planning and Design of Desalination Plants Effluent Systems By Sami Maalouf Doctor of Philosophy in Civil Engineering University of California, Los Angeles, 2014 Professor William W-G. Yeh, Chair Increasing demand for water in urban areas and agricultural zones in arid and semi-arid coastal regions has urged planners and regulators to look for alternative renewable water sources. Seawater reverse osmosis desalination (SWRO) plants have become an essential supply source for the production of freshwater in such regions. However, the disposal of hypersaline wastes from these plants in many of these regions has not been fully and properly addressed. This study aims to develop and present a strategy for the analysis and design of an optimal disposal system of wastes generated by SWRO desalination plants. After current disposal options were evaluated, the use of multiport marine outfalls is recommended as an effective disposal system. Marine outfalls are a reliable means for ii conveying wastes from process plants, to include wastewater treatment and power plants, into the coastal waters. Their proper use, however, in conjunction with SWRO desalination plants is still in its beginning stage. A simulation-optimization approach is proposed to design a system for safe disposal of brine wastes. This disposal system is comprised of a marine outfall that is equipped with a multiport diffuser structure. A hydrodynamic model (CORMIX) is used to assess the initial dilution of hypersaline effluent discharged into coastal waters. A regression model is developed to relate the input and output parameters of the simulation model. This regression model replaces the simulation model. A mixed-integer linear programming (MILP) optimization model is then formulated to determine the design of the multiport marine outfall. The design parameters are the length, diameter and number of ports of the disposal system. Given the uncertainty of some parameter, such as current speed, wind speed and ambient temperature, a chance-constrained programming model is used to properly incorporate these stochastic parameters into the model. This simulation- optimization framework provides planners with effective tools that preserve a healthy coastal environment, meet environmental permitting requirements and restrictions, while achieving cost savings and adequate hydrodynamic performance. A case study demonstrates the applicability of the proposed methodology. iii The dissertation of Sami Maalouf is approved. Steven A. Margulis Michael K. Stenstrom Diego Rosso Sami W. Asmar William W-G. Yeh, Committee Chair University of California, Los Angeles 2014 iv It rains, drop by drop and the melted snow leaves the mountaintop the mountains embrace the wandering fog …but later springs bleed water with no color and then water leaves the streams to embrace the tributaries and join the river. In poetry, water leaves the river to embrace the tributaries and later hide inside the springs but then, onto surfaces, the springs bleed water in different colors. –Anonymous v TABLE OF CONTENTS LIST OF FIGURES .................................................................................................... viii LIST OF TABLES ......................................................................................................... x ACKNOWLEDGMENTS ............................................................................................. xi VITA ........................................................................................................................... xiv 1. INTRODUCTION .................................................................................................... 1 2. DESALINATION – OVERVIEW AND BACKGROUND ....................................... 7 2.1. Historical Highlights ........................................................................................ 10 2.2. Brief description of some desalination technologies and processes .................... 13 2.2.1. Reverse Osmosis .................................................................................... 14 2.2.2. Electrodialysis ........................................................................................ 15 2.2.3. Electrodeionization ................................................................................ 16 2.2.4. Multi-Effect Distillation ........................................................................ 17 2.2.5. Multi-Stage Flash ................................................................................... 17 2.3. Benefits and impacts of SWRO desalination plants ........................................... 18 2.3.1. Brine volumes and concentration ............................................................ 18 2.3.2. Seawater and SWRO brine densities ....................................................... 19 2.4. Brine disposal, mixing zones, and simulation models ........................................ 21 2.4.1. Brine disposal ........................................................................................ 22 2.4.2. Mixing zones ......................................................................................... 24 2.4.3. Simulation models ................................................................................. 27 2.4.3.1. Empirical Models ......................................................................... 29 2.4.3.2. Analytical Models ........................................................................ 29 2.4.3.3. Integral Models ............................................................................ 30 2.4.3.4. Numerical Models ......................................................................... 30 2.5. Simulation-optimization tools ........................................................................... 31 3. MODEL DEVELOPMENT ..................................................................................... 33 3.1. Governing equations ......................................................................................... 34 3.1.1. General assumptions .............................................................................. 34 3.1.2. Mass continuity ...................................................................................... 35 3.1.3. Momentum conservation ....................................................................... 35 3.1.4. Transport (advection-dispersion) equation .............................................. 35 3.1.5. Negatively buoyant jet fluxes ................................................................ 36 3.1.6. Initial and boundary conditions .............................................................. 37 3.2. Mixing zone model structure ............................................................................ 38 3.2.1. Effluent hydrodynamics and preliminary multiport diffuser design Considerations ....................................................................................... 40 3.2.2. Dilution ................................................................................................. 43 3.3. Optimization model ......................................................................................... 44 3.3.1. Current speed ........................................................................................ 48 3.3.2. Ambient temperature ............................................................................. 55 vi 3.3.3. Wind speed ............................................................................................ 60 3.4. Simulation–optimization framework ................................................................ 66 3.5. Case study ....................................................................................................... 69 3.5.1. Geographical data .................................................................................. 71 3.5.2. Input parameters .................................................................................... 72 4. RESULTS AND DISCUSSION .............................................................................. 76 5. SUMMARY AND CONCLUSIONS ...................................................................... 84 6. FURTHER RESEARCH ......................................................................................... 86 7. REFERENCES ....................................................................................................... 88 vii LIST OF FIGURES 1.1. Freshwater availability in m3 per capita per year, from data by the Food and Agriculture Organization and the United Nations Environment Programme ......................................................................................................... 1 1.2. Schematic of a typical seawater reverse osmosis (SWRO) desalination plant .................................................................................................................... 3 1.3. Shoreline degradation due to coastal population and developments, from data by the World Resources Institute and the United Nations Environment Programme .................................................................................... 4 2.1. A copy of the original hand-written notes describing a desalination method by Thomas Jefferson, 1791................................................................................