Information Security and Cryptography Texts and Monographs Series Editors Ueli Maurer Ronald L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Companion to User's Guide to Cryptography and Standards
A Companion to User’s Guide to Cryptography and Standards Alexander W. Dent Chris J. Mitchell 17th December 2004 (v1.1) ii Contents 1 Introduction 1 1.1 Scope and purpose . 2 1.2 Structure of book . 2 1.3 Terminology . 2 1.4 Modular Arithmetic . 2 1.5 Notes . 2 2 Standards and the standardisation process 3 2.1 Why bother with standards? . 4 2.2 International standardisation organisations . 4 2.3 National standardisation organisations . 4 2.4 Industrial standardisation organisations . 4 2.5 Cryptographic evaluation bodies . 4 2.6 Notes . 4 3 Security mechanisms and security services 5 3.1 Introduction . 6 3.2 Security standards . 6 3.3 A model for security . 6 3.4 Security services . 6 3.5 Security mechanisms . 6 3.6 Relating services to mechanisms . 6 3.7 Services and protocols layers . 6 3.8 Security management . 6 3.9 Security frameworks . 6 iii iv CONTENTS 3.10 Notes . 6 4 Encryption 9 4.1 Definitions and Basic Properties . 10 4.2 Block Ciphers . 10 4.3 Stream Ciphers . 10 4.4 Asymmetric Ciphers . 11 4.5 Notes . 11 5 Modes of operation for block ciphers 17 5.1 Definitions and basic properties . 18 5.2 Standards for modes of operation . 18 5.3 Padding methods . 18 5.4 Electronic Codebook (ECB) mode . 18 5.5 Cipher Block Chaining (CBC) mode . 18 5.6 Counter (CTR) mode . 18 5.7 Output Feedback (OFB) mode . 18 5.8 Cipher Feedback (CFB) mode . 18 5.9 Choosing a mode of operation . 18 5.10 Other modes . -
Key Exchange in Ipsec Revisited Formal Analysis of Ikev1 and Ikev2
Research Collection Report Key Exchange in IPsec revisited Formal Analysis of IKEv1 and IKEv2 Author(s): Cremers, Cas Publication Date: 2011 Permanent Link: https://doi.org/10.3929/ethz-a-006804260 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Key Exchange in IPsec revisited: Formal Analysis of IKEv1 and IKEv2 (Preprint?) Cas Cremers Institute of Information Security ETH Zurich, Switzerland [email protected] Abstract. The IPsec standard aims to provide application-transparent end-to-end security for the Internet Protocol. The security properties of IPsec critically depend on the underlying key exchange protocols, known as IKE (Internet Key Exchange). We provide the most extensive formal analysis so far of the current IKE versions, IKEv1 and IKEv2. We combine recently introduced formal anal- ysis methods for security protocols with massive parallelization, allowing the scope of our analysis to go far beyond previous formal analysis. While we do not find any significant weaknesses on the secrecy of the session keys established by IKE, we find several previously unreported weaknesses on the authentication properties of IKE. Keywords: Security protocols, IPsec, IKE, IKEv1, IKEv2, Formal anal- ysis, protocol interaction, multi-protocol attacks 1 Introduction IPsec [19] is an IETF protocol suite that provides Internet Protocol (IP) security. In particular, IPsec provides confidentiality, data integrity, access control, and data source authentication [17]. In contrast to, e. g., SSL/TLS [12], IPsec provides end-to-end security in an application-transparent way, i. -
Speke Cycle Route
www.LetsTravelWise.org 1253 330 0151 Telephone: need. might you else 090305/IS/TM/08O9/P anything and times, the through you talk will bike. by easily more Speke around get and person local a – 33 22 200 0871 travel to way wiser a is cycling how shows leaflet This future. our and us on Traveline call want, for move wise a is out them trying Merseyside, in options of lots have We Updated you train or bus which out find To Getting around Speke on your bike your on Speke around Getting September journey. each making of way Manchester. best the about think to need all we cities big other in seen pollution and and Widnes Warrington, in stations 2011. congestion the avoid to want we If slower. getting is travel car meaning Cycle Speke Cycle for outwards and Centre City the in MA. rapidly, rising is Merseyside in car by made being trips of number the Central Liverpool and Street Lime but journeys, their of many or all for TravelWise already are people Most Liverpool towards stations rail Cross Hunts and Parkway South Liverpool from both operate trains Line City and Northern Frequent Centre. City car. a without journeys make the to Parkway South Liverpool from minutes 15 to 10 about takes only It to everyone for easier it make to aim we Merseytravel, and Authorities Local Merseyside the by Funded sharing. car and transport public cycling, trains. Merseyside walking, more – travel sustainable more encourage to aims TravelWise all on free go Bikes problem. a be can parking where Centre City Liverpool into travelling when or workplace, your or school to get to easier it makes www.transpenninetrail.org.uk Web: This way. -
DRAFT Special Publication 800-56A, Recommendation for Pair-Wise Key
The attached DRAFT document (provided here for historical purposes) has been superseded by the following publication: Publication Number: NIST Special Publication (SP) 800-56A Revision 2 Title: Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography Publication Date: 05/13/2013 • Final Publication: https://doi.org/10.6028/NIST.SP.800-56Ar2 (which links to http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf). • Information on other NIST Computer Security Division publications and programs can be found at: http://csrc.nist.gov/ The following information was posted with the attached DRAFT document: Aug 20, 2012 SP 800-56 A Rev.1 DRAFT Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography (Draft Revision) NIST announces the release of draft revision of Special Publication 800-56A, Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography. SP 800-56A specifies key-establishment schemes based on the discrete logarithm problem over finite fields and elliptic curves, including several variations of Diffie-Hellman and MQV key establishment schemes. The revision is made on the March 2007 version. The main changes are listed in Appendix D. Please submit comments to 56A2012rev-comments @ nist.gov with "Comments on SP 800-56A (Revision)" in the subject line. The comment period closes on October 31, 2012. NIST Special Publication 800-56A Recommendation for Pair-Wise August 2012 Key-Establishment Schemes Using Discrete Logarithm Cryptography (Draft Revision) Elaine Barker, Lily Chen, Miles Smid and Allen Roginsky C O M P U T E R S E C U R I T Y Abstract This Recommendation specifies key-establishment schemes based on the discrete logarithm problem over finite fields and elliptic curves, including several variations of Diffie-Hellman and MQV key establishment schemes. -
Guidelines on Cryptographic Algorithms Usage and Key Management
EPC342-08 Version 7.0 4 November 2017 [X] Public – [ ] Internal Use – [ ] Confidential – [ ] Strictest Confidence Distribution: Publicly available GUIDELINES ON CRYPTOGRAPHIC ALGORITHMS USAGE AND KEY MANAGEMENT Abstract This document defines guidelines on cryptographic algorithms usage and key management. Document Reference EPC342-08 Issue Version 7.0 Date of Issue 22 November 2017 Reason for Issue Maintenance of document Produced by EPC Authorised by EPC Document History This document was first produced by ECBS as TR 406, with its latest ECBS version published in September 2005. The document has been handed over to the EPC which is responsible for its yearly maintenance. DISCLAIMER: Whilst the European Payments Council (EPC) has used its best endeavours to make sure that all the information, data, documentation (including references) and other material in the present document are accurate and complete, it does not accept liability for any errors or omissions. EPC will not be liable for any claims or losses of any nature arising directly or indirectly from use of the information, data, documentation or other material in the present document. Conseil Européen des Paiements AISBL– Cours Saint-Michel 30A – B 1040 Brussels Tel: +32 2 733 35 33 – Fax: +32 2 736 49 88 Enterprise N° 0873.268.927 – www.epc-cep.eu – [email protected] © 2016 Copyright European Payments Council (EPC) AISBL: Reproduction for non-commercial purposes is authorised, with acknowledgement of the source Table of Content MANAGEMENT SUMMARY ............................................................. 5 1 INTRODUCTION .................................................................... 7 1.1 Scope of the document ...................................................... 7 1.2 Document structure .......................................................... 7 1.3 Recommendations ............................................................ 8 1.4 Implementation best practices ......................................... -
To Interaction Captures the Technology Shift from Mainframes to Worksta
InternetRolf Oppliger Security: Firewalls HE PARADIGM SHIFT FROM ALGORITHMS to interaction captures the technology and shift from mainframes to worksta- tionsT and networks, from number-crunching to embedded systems and graphical user interfaces, Bey and from procedure-oriented to object-based and distributed programming. The radical notion that interactive systems are more powerful problem- solving engines than algorithms is the basis for a new paradigm for computing technology built around the unifying concept of interaction. The emerging use of the TCP/IP communications perhaps, best be described as a collegial environ- protocol suite for internetworking has led to a global ment, where the users and hosts were mutually system of interconnected hosts and networks that is trusting and interested in a free and open exchange commonly referred to as the Internet. During the of information. In this environment, the people on last decade, the Internet has experienced a tri- the Internet were the people who actually built the umphant advance. Projections based on its current Internet. As time went on, the Internet became more rate of growth suggest there will be over one million useful and reliable, and these people were joined by computer networks and well over one billion users others. With fewer goals in common and more peo- by the end of the century. Therefore, the Internet is ple, the Internet steadily twisted away from its orig- seen as the first incarnation of a national information inal intent. infrastructure (NII) as promoted by the U.S. govern- Today, the Internet environment is much less col- ment. legial and trustworthy. -
IEEE P1363.2: Password-Based Cryptography
IEEE P1363.2: Password-based Cryptography David Jablon CTO, Phoenix Technologies NIST PKI TWG - July 30, 2003 What is IEEE P1363.2? • “Standard Specification for Password-Based Public-Key Cryptographic Techniques” • Proposed standard • Companion to IEEE Std 1363-2000 • Product of P1363 Working Group • Open standards process PKI TWG July 2003 IEEE P1363.2: Password-based Cryptography 2 One of several IEEE 1363 standards • Std 1363-2000 • Sign, Encrypt, Key agreem’t, using IF, DL, & EC families • P1363a • Same goals & families as 1363-2000 • P1363.1: Lattice family • Same goals as 1363-2000, Different family • P1363.2: Password-based • Same families • More ambitious goals PKI TWG July 2003 IEEE P1363.2: Password-based Cryptography 3 Scope of P1363.2 • Modern “zero knowledge” password methods • Uses public key techniques • Uses two or more parties • Needs no other infrastructure • Authenticated key establishment • Resists attack on low-grade secrets • passwords, password-derived keys, PINs, ... PKI TWG July 2003 IEEE P1363.2: Password-based Cryptography 4 Rationale (1) • Why low-grade secrets? • People have trouble with high-grade keys • storage -- memorizing • input -- attention to detail • output -- typing • Passwords are ubiquitous • Easy for people to memorize, recognize, and type. • Reduce security/convenience tradeoffs. PKI TWG July 2003 IEEE P1363.2: Password-based Cryptography 5 Rationale (2) • Why use public-key techniques? • Symmetric methods can’t do it. • Why new methods? • Different than symmetric, hash, or other PK crypto. • AES, SHA-1, DH, and RSA can’t do it alone. PKI TWG July 2003 IEEE P1363.2: Password-based Cryptography 6 Chosen Password Quality Summarized from Distribution Morris & Thompson ‘79, Klein ‘90, Spafford ‘92 0 30 or so 60 or so Password Entropy (bits) History of protocols that fail to dictionary attack (or worse) • Clear text password π • Password as a key Eπ (verifiable text) • (e.g. -
On Robust Key Agreement Based on Public Key Authentication Feng Hao Thales E-Security, Cambridge, UK [email protected]
1 On Robust Key Agreement Based on Public Key Authentication Feng Hao Thales E-Security, Cambridge, UK [email protected] Abstract—This paper discusses public-key authenticated key Elliptic Curve Cryptography (ECC) [10]. Using ECC essen- agreement protocols. First, we critically analyze several authen- tially replaces the underlying (multiplicative) cyclic group ticated key agreement protocols and uncover various theoretical with another (additive) cyclic group defined over some elliptic and practical flaws. In particular, we present two new attacks on the HMQV protocol, which is currently being standardized curve. The essence of the protocol remains unchanged. by IEEE P1363. The first attack presents a counterexample to The acute problem with the Diffie-Hellman key agreement invalidate the basic authentication in HMQV. The second attack is that it is unauthenticated [2]. While secure against passive is applicable to almost all past schemes, despite that many of attackers, the protocol is inherently vulnerable to active attacks them have formal security proofs. These attacks highlight the such as the man-in-the-middle attack [6]. This is a serious lim- difficulty to design a crypto protocol correctly and suggest the caution one should always take. itation, which for many years has been motivating researchers We further point out that many of the design errors are caused to find a solution [3]–[5], [7], [9], [11], [13], [20]. by sidestepping an important engineering principle, namely To add authentication, we must start with assuming some “Do not assume that a message you receive has a particular shared secret. In general, there are two approaches. -
The Whole Is Less Than the Sum of Its Parts: Constructing More Efficient Lattice-Based Akes Rafael Del Pino, Vadim Lyubashevsky, David Pointcheval
The Whole is Less Than the Sum of Its Parts: Constructing More Efficient Lattice-Based AKEs Rafael del Pino, Vadim Lyubashevsky, David Pointcheval To cite this version: Rafael del Pino, Vadim Lyubashevsky, David Pointcheval. The Whole is Less Than the Sum of Its Parts: Constructing More Efficient Lattice-Based AKEs. SCN 2016 - 10th International Conference Security and Cryptography for Networks, Aug 2016, Amalfi, Italy. pp.273 - 291, 10.1007/978-3-319- 44618-9_15. hal-01378005 HAL Id: hal-01378005 https://hal.inria.fr/hal-01378005 Submitted on 8 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Whole is Less than the Sum of its Parts: Constructing More Efficient Lattice-Based AKEs? Rafael del Pino1;2;3, Vadim Lyubashevsky4, and David Pointcheval3;2;1 1 INRIA, Paris 2 Ecole´ Normale Sup´erieure,Paris 3 CNRS 4 IBM Research Zurich Abstract. Authenticated Key Exchange (AKE) is the backbone of internet security protocols such as TLS and IKE. A recent announcement by standardization bodies calling for a shift to quantum-resilient crypto has resulted in several AKE proposals from the research community. Be- cause AKE can be generically constructed by combining a digital signature scheme with public key encryption (or a KEM), most of these proposals focused on optimizing the known KEMs and left the authentication part to the generic combination with digital signatures. -
Information Security and Cryptography
Information Security and Cryptography Series Editors David Basin Kenny Paterson Advisory Board Michael Backes Gilles Barthe Ronald Cramer Ivan Damgård Andrew D. Gordon Joshua D. Guttman Christopher Kruegel Ueli Maurer Tatsuaki Okamoto Adrian Perrig Bart Preneel More information about this series at http://www.springer.com/series/4752 Colin Boyd • Anish Mathuria • Douglas Stebila Protocols for Authentication and Key Establishment Second Edition Colin Boyd Anish Mathuria Department of Information Security Dhirubhai Ambani Institute and Communication Technology of Information and Communication Norwegian University of Science Technology (DA-IICT) and Technology Gandhinagar, Gujarat, India Trondheim, Norway Douglas Stebila Department of Combinatorics and Optimization University of Waterloo Waterloo, ON, Canada Originally published under: Boyd C. and Mathuria A. ISSN 1619-7100 ISSN 2197-845X (electronic) Information Security and Cryptography ISBN 978-3-662-58145-2 ISBN 978-3-662-58146-9 (eBook) https://doi.org/10.1007/978-3-662-58146-9 © Springer-Verlag GmbH Germany, part of Springer Nature 2003, 2020 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. -
Analysing and Patching SPEKE in ISO/IEC
1 Analysing and Patching SPEKE in ISO/IEC Feng Hao, Roberto Metere, Siamak F. Shahandashti and Changyu Dong Abstract—Simple Password Exponential Key Exchange reported. Over the years, SPEKE has been used in several (SPEKE) is a well-known Password Authenticated Key Ex- commercial applications: for example, the secure messaging change (PAKE) protocol that has been used in Blackberry on Blackberry phones [11] and Entrust’s TruePass end-to- phones for secure messaging and Entrust’s TruePass end-to- end web products. It has also been included into international end web products [16]. SPEKE has also been included into standards such as ISO/IEC 11770-4 and IEEE P1363.2. In the international standards such as IEEE P1363.2 [22] and this paper, we analyse the SPEKE protocol as specified in the ISO/IEC 11770-4 [24]. ISO/IEC and IEEE standards. We identify that the protocol is Given the wide usage of SPEKE in practical applications vulnerable to two new attacks: an impersonation attack that and its inclusion in standards, we believe a thorough allows an attacker to impersonate a user without knowing the password by launching two parallel sessions with the victim, analysis of SPEKE is both necessary and important. In and a key-malleability attack that allows a man-in-the-middle this paper, we revisit SPEKE and its variants specified in (MITM) to manipulate the session key without being detected the original paper [25], the IEEE 1363.2 [22] and ISO/IEC by the end users. Both attacks have been acknowledged by 11770-4 [23] standards. -
The Odd Couple: MQV and HMQV
The odd couple: MQV and HMQV Jean-Philippe Aumasson 1 / 49 Summary MQV = EC-DH-based key agreement protocol, I proposed by Menezes, Qu and Vanstone (1995), I improved with Law and Solinas (1998), I widely standardized (ANSI, ISO/IEC, IEEE), and recommended (NIST, NSA suite B). HMQV = variant of MQV, I proposed by Krawczyk (2005), I attacked by Menezes, I validity of attacks unclear. 2 / 49 References A. Menezes, M. Qu, S. Vanstone. Some new key agreement protocols providing implicit authentication. SAC’95. L. Law, A. Menezes, M. Qu, J. Solinas, S. Vanstone. An efficient protocol for authenticated key agreement. Design, Codes, and Cryptography, 2003. H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. CRYPTO’ 05. Full version on ePrint (2005/176). A. Menezes. Another look at HMQV. ePrint (2005/205). Journal of Mathematical Cryptology, 2007. A. Menezes, B. Ustaoglu. On the importance of public-key validation in the MQV and HMQV key agreement protocols. INDOCRYPT’06. 3 / 49 Road map PART I I Key agreement protocols I Elliptic curves I The MQV protocols PART II I The “insecurity” of MQV I HMQV I The “insecurity” of HMQV CONCLUSION 4 / 49 PART I 5 / 49 Key agreement protocols 6 / 49 Taxonomy From the HAC. Key establishment is a protocol whereby a shared secret becomes available to two or more parties, for subsequent cryptographic use. A key transport protocol is a key establishment technique where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s). A key agreement protocol is a key establishement in which a shared secret is derived by two (or more) parties as a function of information contributed by, or associated with, each of these, (ideally) such that no party can predetermine the resulting value.