Journal of the College of Optometrists in Vision Development ISSN 2374-6416 • Volume 1, Issue 1

Total Page:16

File Type:pdf, Size:1020Kb

Journal of the College of Optometrists in Vision Development ISSN 2374-6416 • Volume 1, Issue 1 Journal of the College of Optometrists in Vision Development ISSN 2374-6416 • Volume 1, Issue 1 TABLE OF CONTENTS Editorial Ida Chung, OD, MSHE, FAAO, FCOVD Welcome to Vision Development and Rehabilitation . 4 Leonard J. Press, OD, FAAO, FCOVD Editorial: A New Beginning . 5 Dominick M. Maino, OD, MEd, FAAO, FCOVD-A Guest Editorial: Agenda Driven Research . 7 Perspective Bruce Bridgeman, PhD, Susan R. Barry, PhD Survey of Patients with Stereopsis Acquired as Adults . 13 Feature Naveen K. Yadav, BS (Optom), MS, PhD, Kenneth J. Ciuffreda, OD, PhD, Kevin T. Willeford, OD, MS, Preethi Thiagarajan, BS (Optom), MS, PhD, and Diana P. Ludlam, BS, COVT VEP and Human Attention: Translation from Laboratory to Clinic . 14 Articles Naveen K. Yadav, BS (Optom), MS, PhD, and Kenneth J. Ciuffreda OD, PhD Assessing Hemianopia Objectively in Stroke Patients Using the VEP Technique: A Pilot Study . 30 Thomas Kollodge, BS, Sarah Hinkley, OD, FCOVD Retinoblastoma; a Scientific and Clinical Review . 39 Paul Lederer, OD, Dmitri Poltavski, PhD, David Biberdorf, OD Confusion inside Panum’s Area and Symptomatic Convergence Insufficiency . 46 44th Annual Meeting Oral Papers and Posters..............61 1 Journal of the College of Optometrists in Vision Development ISSN 2374-6416 • Volume 1, Issue 1 Vision Development & Rehabilitation College of Optometrists in Editorial Staff Vision Development Board of Directors Editor-in-Chief President Leonard J. Press, OD, FAAO, FCOVD Ida Chung, OD, MHSE, FAAO, FCOVD Managing Editor President-Elect Katie Kirschner, MS Kara Heying, OD, FCOVD Advertising Manager Vice President Jackie Cencer, CMP Christine Allison, OD, FCOVD Graphic Design & Production Secretary-Treasurer Averill & Associates Creative Lab, Inc. Barry Tannen, OD, FCOVD Mary B. Averill, President Immediate Past President David Damari, OD, FCOVD SUBMISSION OF MANUSCRIPTS Directors The entire manuscript submission and review process is conducted Marie Bodack, OD, FCOVD through Editorial Manager. All manuscripts are submitted at Jennifer Dattolo, OD, FCOVD www.editorialmanager.com/vdr. A copy of Guidelines for Authors is available on the home page of the VDR Editorial Pat Pirotte, OD, FCOVD Manager site or on the COVD website http://www.covd. org/?page=VDR. Editorial Manager will require you, as an Author Daniel Press, OD, FCOVD and/or Reviewer, to create an account the first time you access the site. If you have questions with the site or the process please Executive Director contact Managing Editor, Katie Kirschner at [email protected]. Pamela R. Happ, MSM, CAE If access to Editorial Manager is not available please e-mail the Editor with your request for the Guidelines and submit your Vision Development & Rehabilitation (VDR) is published manuscripts to [email protected]. quarterly by the College of Optometrists in Vision Development. All rights reserved. No part of this publication may be reproduced or utilized in any form without permission in writing from the Editor. ISSN 2374-6416. All expressions of opinions Beta Sigma Kappa Application Guidelines .......12 and statements of supposed fact published in signed articles Thanks to Our Sponsors for do not necessarily reflect the views or policies of the College the COVD 45th Annual Meeting ..............38 of Optometrists in Vision Development (COVD), which does not endorse any specific educational program or products advertised Are You Connected?........................ 45 in VDR. Letters to the Editor may be edited for content Thanks to the Exhibitors for Their Support of and space availability. Acceptance of advertising or optical industry news for publication in VDR does not imply approval our COVD 45th Annual Meeting .............. 60 or endorsement of any product or service by either VDR or COVD PSAs Available in High Definition .........91 COVD. Editorial Office: Journal correspondence regarding manuscripts, letters, and reports should be addressed to: Editor- 46th Annual Meeting .......................93 in-Chief, Leonard Press, OD, FCOVD, and send to editor@covd. Event Calendar ............................94 org. Please contact the editor for a copy of the VDR Guidelines for Authors or download at http://www.covd.org/?page=VDR. Production: Averill & Associates Creative Lab, Inc., 17654 Walnut Thank You to our Advertisers: Trail, Chagrin Falls, OH 44023. Any article, editorial, column or other item submitted to the VDR by an author for review Bernell Expansion Consultants NuSquared and eventual publication indicates the authors’ approval for publication and assignment of copyright to VDR. VDR is indexed in the Directory of Open Access Journals. 2 Vision Development & Rehabilitation Volume 1, Issue 1 • April 2015 Journal of the College of Optometrists in Vision Development ISSN 2374-6416 • Volume 1, Issue 1 Journal Review Board Curtis Baxstrom, OD, FCOVD, FNORA Mark Mintz, MD Chris Chase, PhD, FAAO G. Lynn Mitchell, MAS, FAAO Kenneth Ciuffreda, OD, PhD, FCOVD-A Maureen Powers, PhD, FCOVD-A Michael Gallaway, OD, FAAO, FCOVD Beth Rolland, OTR, CDRS Sarah Hinkley, OD, FAAO, FCOVD Jack Richman, OD, FAAO, FCOVD Neera Kapoor, OD, MS, FAAO, FCOVD-A Mitchell Scheiman, OD, FAAO, FCOVD Diana Ludlam, COVT Samantha Slotnick, OD, FAAO, FCOVD W.C. Maples, OD, MS, FAAO, FACBO, FCOVD Barry Tannen, OD, FAAO, FCOVD Editor’s Advisory Board Paul Freeman, OD, FAAO, FCOVD Former Editor of Optometry Dominick Maino, OD, MEd, FAAO, FCOVD-A Former Editor of Optometry and Vision Development Irwin Suchoff, OD, DOS Former Editor of Journal of Behavioral Optometry Marc Taub, OD, FAAO, FCOVD Current Editor of Optometry and Visual Performance 3 Vision Development & Rehabilitation Volume 1, Issue 1 • April 2015 Editorial: Welcome to Vision Development and Rehabilitation Ida Chung, OD, MHSE, FAAO, FCOVD The College of Optometrists in Vision Development is extremely pleased to present to our readers Vision Development and Rehabilitation (VDR), for this journal advances the mission of COVD — improving lives by advancing excellence in optometric vision therapy through education and board certification. VDR also exemplifies the vision of COVD — To facilitate ongoing progress in developmental vision care, advocate for “ Dr . Press is a close friend and colleague wider adoption of optometric vision therapy, whom I have known since I was a student and increase recognition of its integral role in at the Pennsylvania College of Optometry enhancing learning, rehabilitation, productivity, and he was the Chief of the Binocular and overall quality of life. As such, VDR Vision Clinic . I knew he was the perfect embodies the advancement of developmental person to become the Founding Editor of vision care, vision therapy and vision rehabili- “Vision Development and Rehabilitation,” tation to improve patient’s quality of life but I had some trepidation in asking him through a better understanding of vision and to take on such a large commitment . multi-sensory rehabilitation. After due thought and consideration, he The COVD board wishes to recognize the answered in the affirmative and I knew many people whose unwavering enthusiasm, that our journal was off to a great start ”. persistence, and support made this first issue of VDR a reality. These individuals include — Barry Tannen, OD, FCOVD our friend and colleague Dr. Leonard J. Press and his editorial review board, and the COVD international office. “ I am so excited to have a new journal Thank you for reading the first issue of highlighting this area of Optometry . I look Vision Development and Rehabilitation, with forward to it as an academic because the promise of many more issues to come. it will give me more options of places to publish . As a reader, I am excited to read about more interesting cases from which I can learn new management strategies to help my patients . I can’t wait to read this first issue!” — Christine Allison, OD, FCOVD 4 Vision Development & Rehabilitation Volume 1, Issue 1 • April 2015 Editorial: A New Beginning Leonard J. Press, OD, FAAO, FCOVD, Editor-in-Chief It is my distinct pleasure to introduce our new journal, Vision Development and Rehabilitation (VDR), the official journal of the College of Optometrists in Vision Development. Before addressing the contents of the journal, I’d like to share a little bit of history with you. The quarterly journal known as the Journal of Optometric Vision cognitive rehabilitation, behavioral vision Development was introduced in 1975. Its first care, visual impairment, applied cognitive editor was Dr. Robert Wold, who seeded many and visual neuroscience, behavioral medicine, beginnings in our organization, followed one occu pa tional and physical therapy, learning year later by Dr. Martin Kane and subsequently and education. Reviews, case reports, and by Drs. James Bosse, Sidney Groffman, and perspective pieces will be considered, but Dominick Maino. priority will be accorded to manuscripts Each editor has had an impact on the of original research. Appealing to a trans- evolution of the Journal. These distinctions disciplinary view of vision, the journal’s have been transformative, and served review board is comprised of professionals as a bridge to where we are today. Dr. from the disciplines of Optometry, Vision Kane incorporated ERIC abstracts and an Science, Medicine, Occupational Therapy, and Annual Review of the Literature. Dr. Bosse Biostatistics. commissioned Annual Topical Subject Reviews, This inaugural issue leads with a Guest and I had the privilege of writing a number Editorial on Agenda Driven Research from Dr. of them. Dr. Groffman added thought- Dominick Maino, which is thought provoking provoking editorials and a wide-ranging style. in a constructive way. You’ll see what I mean Dr. Maino engineered the online presence of when you read it, and our intent in publishing the journal and a name change to Optometry it is to catalyze further dialogue in the clinical, and Vision Development . For a period of one didactic and research communities. year in 2013, COVD and OEPF combined their A unique opportunity for crowd sourcing respective journals into Optometry and Vision will occur through the Perspective Piece on Development of which Drs. Maino and Taub Stereoscopic Vision from Drs. Bruce Bridgeman were co-editors.
Recommended publications
  • Sciencedirect.Com Sciencedirect
    cortex 89 (2017) 135e155 Available online at www.sciencedirect.com ScienceDirect Journal homepage: www.elsevier.com/locate/cortex Research report Agnosic vision is like peripheral vision, which is limited by crowding Francesca Strappini a,b,c, Denis G. Pelli d, Enrico Di Pace a and * Marialuisa Martelli a,b, a Department of Psychology, University of Rome La Sapienza, Rome, Italy b Neuropsychology Research Centre, IRCCS Foundation Hospital Santa Lucia, Rome, Italy c Neurobiology Department, Weizmann Institute of Science, Rehovot, Israel d Department of Psychology and Center for Neural Science, New York University, New York, NY, USA article info abstract Article history: Visual agnosia is a neuropsychological impairment of visual object recognition despite Received 23 April 2014 near-normal acuity and visual fields. A century of research has provided only a rudimen- Reviewed 14 July 2014 tary account of the functional damage underlying this deficit. We find that the object- Revised 24 October 2014 recognition ability of agnosic patients viewing an object directly is like that of normally- Accepted 13 January 2017 sighted observers viewing it indirectly, with peripheral vision. Thus, agnosic vision is Action editor Jason Barton like peripheral vision. We obtained 14 visual-object-recognition tests that are commonly Published online 1 February 2017 used for diagnosis of visual agnosia. Our “standard” normal observer took these tests at various eccentricities in his periphery. Analyzing the published data of 32 apperceptive Keywords: agnosia patients and a group of 14 posterior cortical atrophy (PCA) patients on these tests, Visual agnosia we find that each patient's pattern of object recognition deficits is well characterized by one Crowding number, the equivalent eccentricity at which our standard observer's peripheral vision is like Object recognition the central vision of the agnosic patient.
    [Show full text]
  • Longitudinal Investigation of Disparity Vergence in Young Adult Convergence Insufficiency Patients
    New Jersey Institute of Technology Digital Commons @ NJIT Theses Electronic Theses and Dissertations Summer 2019 Longitudinal investigation of disparity vergence in young adult convergence insufficiency patients Patrick C. Crincoli New Jersey Institute of Technology Follow this and additional works at: https://digitalcommons.njit.edu/theses Part of the Biomedical Engineering and Bioengineering Commons Recommended Citation Crincoli, Patrick C., "Longitudinal investigation of disparity vergence in young adult convergence insufficiency patients" (2019). Theses. 1683. https://digitalcommons.njit.edu/theses/1683 This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact [email protected]. Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution
    [Show full text]
  • The Figure Is in the Brain of the Beholder: Neural Correlates of Individual Percepts in The
    The Figure is in the Brain of the Beholder: Neural Correlates of Individual Percepts in the Bistable Face-Vase Image A Thesis Presented to The Division of Philosophy, Religion, Psychology, and Linguistics Reed College In Partial Fulfillment of the Requirements for the Degree Bachelor of Arts Phoebe Bauer May 2015 Approved for the Division (Psychology) Michael Pitts Acknowledgments I think some people experience a degree of unease when being taken care of, so they only let certain people do it, or they feel guilty when it happens. I don’t really have that. I love being taken care of. Here is a list of people who need to be explicitly thanked because they have done it so frequently and are so good at it: Chris: thank you for being my support system across so many contexts, for spinning with me, for constantly reminding me what I’m capable of both in and out of the lab. Thank you for validating and often mirroring my emotions, and for never leaving a conflict unresolved. Rennie: thank you for being totally different from me and yet somehow understanding the depths of my opinions and thought experiments. Thank you for being able to talk about magic. Thank you for being my biggest ego boost and accepting when I internalize it. Ben: thank you for taking the most important classes with me so that I could get even more out of them by sharing. Thank you for keeping track of priorities (quality dining: yes, emotional explanations: yes, fretting about appearances: nu-uh). #AshHatchtag & Stella & Master Tran: thank you for being a ceaseless source of cheer and laughter and color and love this year.
    [Show full text]
  • Visual Problems After Brain Injury
    Visual problems after brain injury As a charity, we rely on donations from people like you to continue providing free information to people affected by brain injury. Donate today: www.headway.org.uk/donate Introduction Vision is the skill that allows us to see the world around us. When we look at the world, a complex series of processes takes place between the eyes and the brain. The eyes take in the information, while the brain (which is connected to the eyes by a nerve called the optic nerve) is responsible for processing and interpreting it. Through this system we are able to see things such as colours, shapes, movement, objects and people. When the brain is injured, the ability to interpret visual information can be affected in different ways. This factsheet has been written to explain how brain injury can affect vision and how to seek professional support with these issues. Tips for coping with visual problems are also offered. Words in bold are defined in a glossary at the end of the factsheet. What is vision? There are lots of different aspects of vision. Some of the things the brain needs to do to decode information that it receives from the eyes are: • process the shape and colour of objects • process and merge information received from both eyes • recall information from memory to recognise objects or places • process the movement of objects • process the location and position of an object in space • process information across the visual field (including peripheral vision) Generally, different parts of the brain are responsible for processing these different aspects of vision.
    [Show full text]
  • UC Merced Proceedings of the Annual Meeting of the Cognitive Science Society
    UC Merced Proceedings of the Annual Meeting of the Cognitive Science Society Title Voluntary versus Involuntary Perceptual Switching: Mechanistic Differences in Viewing an Ambiguous Figure Permalink https://escholarship.org/uc/item/333348w4 Journal Proceedings of the Annual Meeting of the Cognitive Science Society, 27(27) ISSN 1069-7977 Authors Rambusch, Jana Ziemke, Tom Publication Date 2005 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Voluntary versus Involuntary Perceptual Switching: Mechanistic Differences in Viewing an Ambiguous Figure Michelle Umali ([email protected]) Center for Neurobiology & Behavior, Columbia University 1051 Riverside Drive, New York, NY, 10032, USA Marc Pomplun ([email protected]) Department of Computer Science, University of Massachusetts at Boston 100 Morrissey Blvd., Boston, MA 02125, USA Abstract frequency, blink frequency, and pupil size, which have been robustly correlated with cognitive function (see Rayner, Here we demonstrate the mechanistic differences between 1998, for a review). Investigators utilizing this method have voluntary and involuntary switching of the perception of an examined the regions within ambiguous figures that receive ambiguous figure. In our experiment, participants viewed a attention during a specific interpretation, as well as changes 3D ambiguous figure, the Necker cube, and were asked to maintain one of two possible interpretations across four in eye movement parameters that may specify the time of different conditions of varying cognitive load. These switch. conditions differed in the instruction to freely view, make For example, Ellis and Stark (1978) reported that guided saccades, or fixate on a central cross. In the fourth prolonged fixation duration occurs at the time of perceptual condition, subjects were instructed to make guided saccades switching.
    [Show full text]
  • Frontoparietal Activity and Its Structural Connectivity in Binocular Rivalry
    Author's personal copy BRAIN RESEARCH 1305 (2009) 96– 107 available at www.sciencedirect.com www.elsevier.com/locate/brainres Research Report Frontoparietal activity and its structural connectivity in binocular rivalry Juliane C. Wilckea,b,⁎, Robert P. O'Sheac,d, Richard Wattsb,e aDepartment of Psychology, University of Canterbury, Christchurch, New Zealand bDepartment of Physics and Astronomy, University of Canterbury, Christchurch, New Zealand cDepartment of Psychology, University of Otago, Dunedin, New Zealand dPsychology, School of Health and Human Sciences, Southern Cross University, Coffs Harbour, NSW, Australia eVan der Veer Institute for Parkinson's and Brain Research, Christchurch, New Zealand ARTICLE INFO ABSTRACT Article history: To understand the brain areas associated with visual awareness and their anatomical Accepted 20 September 2009 interconnections, we studied binocular rivalry with functional magnetic resonance imaging Available online 25 September 2009 (fMRI) and diffusion tensor imaging (DTI). Binocular rivalry occurs when one image is viewed by one eye and a different image by the other; it is experienced as perceptual alternations Keywords: between the two images. Our first experiment addressed problems with a popular Visual awareness comparison condition, namely permanentsuppression,bycomparingrivalrywith Conscious perception binocular fusion instead. We found an increased fMRI signal in right frontal, parietal, and Binocular rivalry occipital regions during rivalry viewing. The pattern of neural activity differed from findings Binocular fusion of permanent suppression comparisons, except for adjacent activity in the right superior fMRI parietal lobule. This location was near fMRI signal changes related to reported rivalry DTI tractography alternations in our second experiment, indicating that neighbouring areas in the right parietal cortex may be involved in different components of rivalry.
    [Show full text]
  • M Pathway and Areas 44 and 45 Are Involved in Stereoscopic Recognition Based on Binocular Disparity
    Japanese Journal of Physiology, 52, 191–198, 2002 M Pathway and Areas 44 and 45 Are Involved in Stereoscopic Recognition Based on Binocular Disparity Tsuneo NEGAWA, Shinji MIZUNO*, Tomoya HAHASHI, Hiromi KUWATA†, Mihoko TOMIDA, Hiroaki HOSHI*, Seiichi ERA, and Kazuo KUWATA Departments of Physiology, * Radiology, and † Nursing Course, Gifu University School of Medicine, Gifu, 500–8705 Japan Abstract: We characterized the visual path- was reported that these regions were inactive ways involved in the stereoscopic recognition of during the monocular stereopsis. To separate the the random dot stereogram based on the binocu- specific responses directly caused by the stereo- lar disparity employing a functional magnetic res- scopic recognition process from the nonspecific onance imaging (fMRI). The V2, V3, V4, V5, in- ones caused by the memory load or the inten- traparietal sulcus (IPS) and the superior temporal tion, we designed a novel frequency labeled sulcus (STS) were significantly activated during tasks (FLT) sequence. The functional MRI using the binocular stereopsis, but the inferotemporal the FLT indicated that the activation of areas 44 gyrus (ITG) was not activated. Thus a human M and 45 is correlated with the stereoscopic recog- pathway may be part of a network involved in the nition based on the binocular disparity but not stereoscopic processing based on the binocular with the intention artifacts, suggesting that areas disparity. It is intriguing that areas 44 (Broca’s 44 and 45 play an essential role in the binocular area) and 45 in the left hemisphere were also ac- disparity. [Japanese Journal of Physiology, 52, tive during the binocular stereopsis.
    [Show full text]
  • Symmetric Networks with Geometric Constraints As Models of Visual Illusions
    S S symmetry Article Symmetric Networks with Geometric Constraints as Models of Visual Illusions Ian Stewart 1,*,† and Martin Golubitsky 2,† 1 Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK 2 Department of Mathematics, Ohio State University, Columbus, OH 43210, USA; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Received: 17 May 2019; Accepted: 13 June 2019; Published: 16 June 2019 Abstract: Multistable illusions occur when the visual system interprets the same image in two different ways. We model illusions using dynamic systems based on Wilson networks, which detect combinations of levels of attributes of the image. In most examples presented here, the network has symmetry, which is vital to the analysis of the dynamics. We assume that the visual system has previously learned that certain combinations are geometrically consistent or inconsistent, and model this knowledge by adding suitable excitatory and inhibitory connections between attribute levels. We first discuss 4-node networks for the Necker cube and the rabbit/duck illusion. The main results analyze a more elaborate model for the Necker cube, a 16-node Wilson network whose nodes represent alternative orientations of specific segments of the image. Symmetric Hopf bifurcation is used to show that a small list of natural local geometric consistency conditions leads to alternation between two global percepts: cubes in two different orientations. The model also predicts brief transitional states in which the percept involves impossible rectangles analogous to the Penrose triangle. A tristable illusion generalizing the Necker cube is modelled in a similar manner.
    [Show full text]
  • The Perception of Transparent Three-Dimensional Objects (Vision͞illusion͞visual Learning͞association)
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 6517–6522, June 1997 Neurobiology The perception of transparent three-dimensional objects (visionyillusionyvisual learningyassociation) DALE PURVES* AND TIMOTHY J. ANDREWS Department of Neurobiology, Box 3209, Duke University Medical Center, Durham, NC 27710 Contributed by Dale Purves, April 9, 1997 ABSTRACT When the proximal and distal elements of orientation, the cube appears to be balanced on its distal– wire-frame cubes are conflated, observers perceive illusory inferior vertex, with the surface on which it actually rests rising structures that no longer behave veridically. These phenom- from the balance point (see Figs. 1 and 2). (Illusory, in this ena suggest that what we normally see depends on visual case, means an interpretation of the stimulus that does not associations generated by experience. The necessity of such accord with the configuration of the object determined by learning may explain why the mammalian visual system is direct measurement.) In short, the observer no longer judges subject to a prolonged period of plasticity in early life, when the object to be a cube, despite the unchanged retinal image, novel circuits are made in enormous numbers. knowledge of its actual structure, and the immediately pre- ceding perception of a cube in top-down view. Information generated by the eyes is ambiguous. Everyday we A first order explanation of these phenomena follows from have to make decisions (about the size and distance of objects, the geometry of the situation. Because of their greater dis- their form, and whether they are moving) based on retinal tance, the angles subtended on the retina by the distal elements images that can have two or more meanings (1–4).
    [Show full text]
  • Tales from Polytrauma: Managing the Visually Impaired Patient with Multiple Co-Morbidities
    Tales from Polytrauma: Managing the Visually Impaired Patient with Multiple Co-morbidities. Sandra M. Fox OD Sara Barnard TVI, COMS, CLVT Polytrauma Rehabilitation Center of San Antonio South Texas Veterans Health Care System Disclosure Statement Nothing to disclose As We Age, We are More Likely to Become Visually Impaired 7.8 million adults age 65 and older report experiencing significant vision loss1 Largest percentage of visually impaired (6.6%) are also 65 and older2 By age, the largest proportion of VI is among those 80 years and older (1.61 million of 3.22 million [50.0%]), followed by those aged 70 to 79 years 1.(24.2%), 60 to 69 years (16.1%)3 1.https://www.afb.org/research-and-initiatives/statistics/adults 2. https://www.nfb.org/resources/blindness-statistics 3. JAMA Ophthalmol. 2016;134(7):802-809. doi:10.1001/jamaophthalmol.2016.1284 As We Age, We Are More Likely to Experience an ABI In 2014, falls accounted for almost half of all TBI related ED visits and 81% of TBI related ED visits in adults 65 and older Among TBI related ED visits, hospitalizations and deaths in 2014, rates were all highest for adults 75 and older1 66% of those hospitalized for a stroke are older than 652 1.https://www.cdc.gov/traumaticbraininjury/get_the_facts.html 2. https://www.cdc.gov/stroke/index.htm Since visual impairment and ABI are more common among older adults, it is very likely your vision impaired patient may have co- morbidities! Polytrauma Polytrauma occurs when a person experiences injuries to multiple body parts and organ systems one of which is life threatening.
    [Show full text]
  • Brain Networks Underlying Bistable Perception
    This is a repository copy of Brain networks underlying bistable perception. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/88383/ Version: Accepted Version Article: Baker, Daniel Hart orcid.org/0000-0002-0161-443X, Karapanagiotidis, Theodoros orcid.org/0000-0002-0813-1019, Coggan, David et al. (2 more authors) (2015) Brain networks underlying bistable perception. Neuroimage. pp. 229-234. ISSN 1053-8119 https://doi.org/10.1016/j.neuroimage.2015.06.053 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Baker, Karapanagiotidis, Coggan, Wailes-Newson & Smallwood (2015) Neuroimage, 119: 229-234 doi: 10.1016/j.neuroimage.2015.06.053 Brain networks underlying bistable perception Daniel H. Baker, Theodoros Karapanagiotidis, David D. Coggan, Kirstie Wailes-Newson & Jonathan Smallwood Department of Psychology, University of York, YO10 5DD, UK email: [email protected] Abstract Bistable stimuli, such as the Necker Cube, demonstrate that experience can change in the absence of changes in the environment.
    [Show full text]
  • Neuropsychiatry Review Series: Disorders of Visual Perception. Dominic Ffytche, Jan Dirk Blom, Marco Catani
    Neuropsychiatry Review series: Disorders of Visual perception. Dominic Ffytche, Jan Dirk Blom, Marco Catani To cite this version: Dominic Ffytche, Jan Dirk Blom, Marco Catani. Neuropsychiatry Review series: Disorders of Visual perception.. Journal of Neurology, Neurosurgery and Psychiatry, BMJ Publishing Group, 2010, 81 (11), pp.1280. 10.1136/jnnp.2008.171348. hal-00587980 HAL Id: hal-00587980 https://hal.archives-ouvertes.fr/hal-00587980 Submitted on 22 Apr 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Disorders of visual perception Dr Dominic H ffytche1,4* Dr JD Blom2,3 4 Dr M Catani 1 Department of Old Age Psychiatry, Institute of Psychiatry, King’s College London, UK 2 Parnassia Bavo Group, The Hague, the Netherlands 3 Department of Psychiatry, University of Groningen, Groningen, the Netherlands 4 Natbrainlab, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King’s College London, UK *Address for Correspondence Dr D H ffytche Department of Old Age Psychiatry, Institute of Psychiatry PO70, King’s College
    [Show full text]