Helminths of Squirrels (Sciuridae) from Mongolia

Total Page:16

File Type:pdf, Size:1020Kb

Helminths of Squirrels (Sciuridae) from Mongolia University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 2011 Helminths of Squirrels (Sciuridae) from Mongolia David S. Tinnin University of Nebraska - Lincoln, [email protected] Sumiya Ganzorig Hokkaido University, [email protected] Scott Lyell Gardner University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Tinnin, David S.; Ganzorig, Sumiya; and Gardner, Scott Lyell, "Helminths of Squirrels (Sciuridae) from Mongolia" (2011). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 721. https://digitalcommons.unl.edu/parasitologyfacpubs/721 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Occasional Papers Museum of Texas Tech University Number 303 5 October 2011 HELMINT H S OF SQUIRRELS (SCIURIDAE ) FROM MONGOLIA DAVI D S. TINNIN , SUMIYA GANZORI G , AN D SCO tt L. GAR D NER ABSTRACT Two species of ground squirrels, Urocitellus undulatus and Spermophilus alashanicus, were collected and examined for parasites from two localities in Mongolia in 1999. A total of 24 individuals of U. undulatus were examined resulting in a total of six taxa of helminths found, including: Ascaris tarbagan, Physaloptera massino, Streptopharagus kutassi, Anoplocephaloides transversaria, Hymenolepis suslica, and Moniliformis sp. This represents four new species records and an additional host record for the country. Two individuals of S. alashanicus were examined and found to be uninfected. Key words.—acanthocephala, cestode, helminth, Mongolia, nematode, Spermophilus, squirrel, Urocitellus INTRODUCTION The geographic distribution of the long-tailed which some authors consider to be synonymous with ground squirrel, Urocitellus undulatus (Pallas 1778) C. marmotae; Mesocestoides sp.; and Moniliformis extends through a wide band of central Asia including moniliformis (Bremser 1811) (see Danzan 1978; Gan- suitable habitats in Kazakhstan across southern and zorig et al. 1988; Ganzorig et al. 1998; Ganzorig et eastern Siberia through Mongolia and into northern al. 2007). Tokobaev (1976) reports the finding of two China (Tinnin et al. 2002). Although patchy in occur- helminths, Trichuris citellorum (Kirshenblat 1939) and rence through this region, these squirrels are found in Ctenotaenia citelli, from Kazakhstan. great abundance in some areas with numerical densi- ties sometimes exceeding 18 individuals/hectare (ha) In contrast, there have been nine publications (Tinnin 2002) with some observers reporting very high that examined the parasite fauna of the long-tailed densities of “…hundreds all over the plains” (Allen ground squirrel in eastern Siberia, reporting 35 spe- 1940). cies of helminths. Six of these are surveys from the region of Lake Baikal (Machulskii 1958; Nadtochi et al. Published information on endoparasites of U. 1966; Eltyshev and Maklokova 1971; Eltyshev 1975; undulatus has also historically been patchy in time Shalaeva et al. 1987; Zhaltsanova and Shalaeva 1990). and space. In Mongolia, four species of helminths The three additional papers were each a single species have been reported from this host: Ctenotaenia mar- description from the regions of Tuva (Sulimov 1961a, motae (Frölich 1802); C. citelli (Kirshenblat 1939), 1961b) and Yakutsia (Ryzhikov 1956). 2 OCCASIONAL PA P ERS , MUSEUM OF TEXAS TEC H UNIVERSITY The Alashan ground squirrel, Spermophilus From 9 July through 2 August 1999, small mam- alashanicus Büchner 1888, in comparison has a rather mals were collected from 13 sites as part of a survey restricted range across the Ala Shan Mountains of of small mammal and parasite diversity in Mongolia northwestern China and the Gobi Altai Mountains of (Tinnin et al. 2002; Tinnin et al. 2008). The results southern Mongolia. However, the literature seems to of the examination for helminths of 24 individuals indicate that they have never previously been examined of Urocitellus undulatus and two individuals of S. for parasites. alashanicus are presented in this study. MATERIALS AND MET H ODS Squirrels were collected from two localities in for later examination for microfilariae or hemopro- Mongolia in July 1999. The first site, Ulaan Tsutgaalan tozoa, and fecal samples were collected for study of (46º47'13"N, 101º57'47"E; 1,850 m elevation), is lo- coccidia following the method of Vance and Duszynski cated in the Khangai Mountains of Övörkhangay Aimag (1985) and Gardner (1996). The complete GI tract (Province) in west central Mongolia. The surrounding was removed, and the liver, lungs, and the pleural area is rocky mountain steppe habitat cut through by and peritoneal cavities were examined for helminths. the Orkhon River. The river canyon (ca. 200 m wide Each organ was opened and examined separately for by 50 m deep) is steep sharply cut rock with a mixed helminths. Gastrointestinal tracts of eight individuals Pinus, Populus, and Larix forest along the riverbank. of U. undulatus were preserved in 70% ETOH until ex- At this site, 24 Urocitellus undulatus were collected amined in the Manter Laboratory of Parasitology. From and examined for parasites. The second site, Ulziyt complete field necropsies, parasite specimens were Uul (44º41'09"N, 102º00'57"E; 1,640 m elevation), is preserved in 10% formalin or 70% ETOH for study a small barren rocky hill in the arid Gobi Steppe north by light microscopy. Cestode specimens were stained of Arts Bogd Mountain. The area consists of sparse with carmine, mounted with damar gum and observed vegetation (Allium, Stipa, and Artemesia) and desert with a light microscope. Nematode specimens were pavement. Two individuals of S. alashanicus were preserved in 10% formalin cleared in lactophenol and examined for parasites from this locality. observed with a light microscope. Animals were processed immediately after Mammals used in this study have been deposited capture following standard protocols (Gardner 1996). in the Museum of Southwestern Biology (MSB) as Each animal was killed with chloroform, brushed, and reported by Tinnin et al. (2002). examined for ectoparasites, a blood smear was made RESULTS A total of six taxa of helminths was collected from Site of infection.—Small intestine. 16 of the 24 individuals of U. undulatus examined. Both of the individuals of S. alashanicus examined Prevalence and intensity.—6/24 (25%), 3.8 (1- were uninfected. Parasite, locality, and infection pa- 13). rameters for the U. undulatus specimens are outlined below. Specimens deposited.—HWML 62986, 62988, 62997, 63004, 66692, 66697, 66698, 66699, 66705. NEMATA Additional host from Mongolia.—Marmota si- Ascaris tarbagan Schulz 1931 birica (Radde 1862) from near Baruun-Urt, Sukhbaatar Aimag in eastern Mongolia (Meszaros 1974). Collection locality.—Ulaan Tsutgaalan. TINNIN ET AL .—HELMINT H S OF MONGOLIAN SQUIRRELS 3 Type host and type locality.—Marmota sibirica 1758); Meriones meridianus (Pallas 1773); Marmota from the vicinity of Chita, Russia (Schulz 1931). sibirica; Sciurus niger Linnaeus 1758; Urocitellus undulatus; Ictidomys tridecemlineatus (Mitchill 1821); Other reported hosts.—Ascaris tarbagan is Poliocitellus franklini (Sabine 1822); and Tamias si- common in marmots across central Asia and southern biricus (Laxmann 1769) (Morgan 1943; Chabaud 1956; Siberia. It has been reported from: Marmota menzbieri Yamaguti 1961; Skrjabin and Sobolev 1964; Tokobaev (Kashkarov 1925); M. caudata (Geoffroy 1844); M. 1976; Shalaeva et al. 1987; Zhaltsanova and Shalaeva baibacina Kastchenko 1889; and M. sibirica (Schulz 1990; Coyner et al. 1996). 1931) (Spasski et al. 1950; Machulskii 1958; Yamaguti 1961; Barus et al. 1970; Ismatov 1970; Tokobaev 1976; Geographic range.—This species has been re- Zhaltsanova and Shalaeva 1990). It also has been ported from across central Asia including Kazakhstan reported from M. monax (Linnaeus 1758) in Alaska and Uzbekistan (Skrjabin and Sobolev 1964; Tokobaev (Phillip 1938) and is commonly found in Urocitellus 1976), Russia (Morgan 1943; Yamaguti 1961; Shalaeva undulatus in Russia (Eltyshev and Maklokova 1971; et al. 1987; Zhaltsanova and Shalaeva 1990), and North Eltyshev 1975; Shalaeva et al. 1987; Zhaltsanova and America including Canada and Florida (Morgan 1943; Shalaeva 1990). Yamaguti 1961; Coyner et al. 1996). Geographic range.—This species has been Remarks.—Some authors believe that P. spini- reported from Afghanistan (Barus et al. 1970), Tadjik- cauda MacLeod 1933, the form found in I. tridecem- histan (Ismatov 1970), southern Kazakhstan (Spasski lineatus and P. franklini in North America, is a distinct et al. 1950), several locations in southern Russia in species (Chabaud 1956; Skrjabin and Sobolev 1964), the regions of Lake Baikal and Buryatia (Machulskii while others have recognized it as a synonym of P. 1958; Eltyshev and Maklokova 1971; Eltyshev 1975; massino (see Morgan 1943; Yamaguti 1961). Shalaeva et al. 1987; Zhaltsanova and Shalaeva 1990) into eastern Mongolia (Meszaros 1974). There is also Streptopharagus kutassi (Schulz 1927) Kirshenblat one report of this species from Alaska (Phillip 1938). 1949 (Syn.
Recommended publications
  • 4 2. LITERATURE REVIEW 2.1 Lymphatic Filariasis Lymphatic
    2. LITERATURE REVIEW 2.1 Lymphatic filariasis Lymphatic filariasis is an inflammatory parasitic infection of lymphatic vessels caused by the filarial roundworms Wuchereria bancrofti, Brugia malayi, and Brugia timori, which results in massive lymphoedema (elephantiasis) of the affected tissues. The adult worms inhabit the lymphatics where they elicit an inflammatory response that causes acute lymphangitis and eventualy lymphatic obstruction leading to severe lymphoedema. 2.1.1 Epidemiology WHO (1995) reported that lymphatic filariasis is widespread throughout the tropical and subtropical areas of Asia, Africa, the Western Pacific and some parts of the America. More than 1.1 thousand million people (20% of the world’s population) now live in areas where they are at risk of infection with lymphatic filarial parasites and a minimum of 120 million people is currently infected (about 107 million with W. bancrofti and 13 million with B. malayi or B. timori). A total of 44 million persons currently suffer from one or more of the overt manifestations of the infection: lymphoedema and elephantiasis of the limbs or genitals, hydrocele, chyluria, pneumonitis, or recurrent infections associated with damaged lymphatic vessels. The remainder of the 120 million infected has “preclinical” hidden damage of their lymphatic and renal systems. 2.1.1.1. Geographical distribution Lymphatic filariasis is known to occur in 73 countries (Figure 1); 38 in the Africa region, 7 in the region of the America, 4 in the Eastern Mediterranean region, 8 in the South-East Asia region and 16 in the Western Pacific region. The condition has been previously reported, and might still 4 5 occur in another 40 countries.
    [Show full text]
  • Gastrointestinal Helminthic Parasites of Habituated Wild Chimpanzees
    Aus dem Institut für Parasitologie und Tropenveterinärmedizin des Fachbereichs Veterinärmedizin der Freien Universität Berlin Gastrointestinal helminthic parasites of habituated wild chimpanzees (Pan troglodytes verus) in the Taï NP, Côte d’Ivoire − including characterization of cultured helminth developmental stages using genetic markers Inaugural-Dissertation zur Erlangung des Grades eines Doktors der Veterinärmedizin an der Freien Universität Berlin vorgelegt von Sonja Metzger Tierärztin aus München Berlin 2014 Journal-Nr.: 3727 Gedruckt mit Genehmigung des Fachbereichs Veterinärmedizin der Freien Universität Berlin Dekan: Univ.-Prof. Dr. Jürgen Zentek Erster Gutachter: Univ.-Prof. Dr. Georg von Samson-Himmelstjerna Zweiter Gutachter: Univ.-Prof. Dr. Heribert Hofer Dritter Gutachter: Univ.-Prof. Dr. Achim Gruber Deskriptoren (nach CAB-Thesaurus): chimpanzees, helminths, host parasite relationships, fecal examination, characterization, developmental stages, ribosomal RNA, mitochondrial DNA Tag der Promotion: 10.06.2015 Contents I INTRODUCTION ---------------------------------------------------- 1- 4 I.1 Background 1- 3 I.2 Study objectives 4 II LITERATURE OVERVIEW --------------------------------------- 5- 37 II.1 Taï National Park 5- 7 II.1.1 Location and climate 5- 6 II.1.2 Vegetation and fauna 6 II.1.3 Human pressure and impact on the park 7 II.2 Chimpanzees 7- 12 II.2.1 Status 7 II.2.2 Group sizes and composition 7- 9 II.2.3 Territories and ranging behavior 9 II.2.4 Diet and hunting behavior 9- 10 II.2.5 Contact with humans 10 II.2.6
    [Show full text]
  • Mammal Species Native to the USA and Canada for Which the MIL Has an Image (296) 31 July 2021
    Mammal species native to the USA and Canada for which the MIL has an image (296) 31 July 2021 ARTIODACTYLA (includes CETACEA) (38) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei - Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Eschrichtius robustus - Gray Whale 7. Megaptera novaeangliae - Humpback Whale BOVIDAE - cattle, sheep, goats, and antelopes 1. Bos bison - American Bison 2. Oreamnos americanus - Mountain Goat 3. Ovibos moschatus - Muskox 4. Ovis canadensis - Bighorn Sheep 5. Ovis dalli - Thinhorn Sheep CERVIDAE - deer 1. Alces alces - Moose 2. Cervus canadensis - Wapiti (Elk) 3. Odocoileus hemionus - Mule Deer 4. Odocoileus virginianus - White-tailed Deer 5. Rangifer tarandus -Caribou DELPHINIDAE - ocean dolphins 1. Delphinus delphis - Common Dolphin 2. Globicephala macrorhynchus - Short-finned Pilot Whale 3. Grampus griseus - Risso's Dolphin 4. Lagenorhynchus albirostris - White-beaked Dolphin 5. Lissodelphis borealis - Northern Right-whale Dolphin 6. Orcinus orca - Killer Whale 7. Peponocephala electra - Melon-headed Whale 8. Pseudorca crassidens - False Killer Whale 9. Sagmatias obliquidens - Pacific White-sided Dolphin 10. Stenella coeruleoalba - Striped Dolphin 11. Stenella frontalis – Atlantic Spotted Dolphin 12. Steno bredanensis - Rough-toothed Dolphin 13. Tursiops truncatus - Common Bottlenose Dolphin MONODONTIDAE - narwhals, belugas 1. Delphinapterus leucas - Beluga 2. Monodon monoceros - Narwhal PHOCOENIDAE - porpoises 1. Phocoena phocoena - Harbor Porpoise 2. Phocoenoides dalli - Dall’s Porpoise PHYSETERIDAE - sperm whales Physeter macrocephalus – Sperm Whale TAYASSUIDAE - peccaries Dicotyles tajacu - Collared Peccary CARNIVORA (48) CANIDAE - dogs 1. Canis latrans - Coyote 2.
    [Show full text]
  • A Parasitological Evaluation of Edible Insects and Their Role in the Transmission of Parasitic Diseases to Humans and Animals
    RESEARCH ARTICLE A parasitological evaluation of edible insects and their role in the transmission of parasitic diseases to humans and animals 1 2 Remigiusz GaøęckiID *, Rajmund Soko ø 1 Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland, 2 Department of Parasitology and Invasive Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract From 1 January 2018 came into force Regulation (EU) 2015/2238 of the European Parlia- ment and of the Council of 25 November 2015, introducing the concept of ªnovel foodsº, including insects and their parts. One of the most commonly used species of insects are: OPEN ACCESS mealworms (Tenebrio molitor), house crickets (Acheta domesticus), cockroaches (Blatto- Citation: Gaøęcki R, SokoÂø R (2019) A dea) and migratory locusts (Locusta migrans). In this context, the unfathomable issue is the parasitological evaluation of edible insects and their role in the transmission of parasitic diseases to role of edible insects in transmitting parasitic diseases that can cause significant losses in humans and animals. PLoS ONE 14(7): e0219303. their breeding and may pose a threat to humans and animals. The aim of this study was to https://doi.org/10.1371/journal.pone.0219303 identify and evaluate the developmental forms of parasites colonizing edible insects in Editor: Pedro L. Oliveira, Universidade Federal do household farms and pet stores in Central Europe and to determine the potential risk of par- Rio de Janeiro, BRAZIL asitic infections for humans and animals.
    [Show full text]
  • Helminths of Squirrels (Sciuridae)
    Occasional Papers Museum of Texas Tech University Number 303 5 October 2011 HELMINT H S OF SQUIRRELS (SCIURIDAE ) FROM MONGOLIA DAVI D S. TINNIN , SUMIYA GANZORI G , AN D SCO tt L. GAR D NER ABSTRACT Two species of ground squirrels, Urocitellus undulatus and Spermophilus alashanicus, were collected and examined for parasites from two localities in Mongolia in 1999. A total of 24 individuals of U. undulatus were examined resulting in a total of six taxa of helminths found, including: Ascaris tarbagan, Physaloptera massino, Streptopharagus kutassi, Anoplocephaloides transversaria, Hymenolepis suslica, and Moniliformis sp. This represents four new species records and an additional host record for the country. Two individuals of S. alashanicus were examined and found to be uninfected. Key words.—acanthocephala, cestode, helminth, Mongolia, nematode, Spermophilus, squirrel, Urocitellus INTRODUCTION The geographic distribution of the long-tailed which some authors consider to be synonymous with ground squirrel, Urocitellus undulatus (Pallas 1778) C. marmotae; Mesocestoides sp.; and Moniliformis extends through a wide band of central Asia including moniliformis (Bremser 1811) (see Danzan 1978; Gan- suitable habitats in Kazakhstan across southern and zorig et al. 1988; Ganzorig et al. 1998; Ganzorig et eastern Siberia through Mongolia and into northern al. 2007). Tokobaev (1976) reports the finding of two China (Tinnin et al. 2002). Although patchy in occur- helminths, Trichuris citellorum (Kirshenblat 1939) and rence through this region, these squirrels are found in Ctenotaenia citelli, from Kazakhstan. great abundance in some areas with numerical densi- ties sometimes exceeding 18 individuals/hectare (ha) In contrast, there have been nine publications (Tinnin 2002) with some observers reporting very high that examined the parasite fauna of the long-tailed densities of “…hundreds all over the plains” (Allen ground squirrel in eastern Siberia, reporting 35 spe- 1940).
    [Show full text]
  • THE LARGER ANIMAL PARASITES of the FRESH-WATER FISHES of MAINE MARVIN C. MEYER Associate Professor of Zoology University of Main
    THE LARGER ANIMAL PARASITES OF THE FRESH-WATER FISHES OF MAINE MARVIN C. MEYER Associate Professor of Zoology University of Maine PUBLISHED BY Maine Department of Inland Fisheries and Game ROLAND H. COBB, Commissioner Augusta, Maine 1954 THE LARGER ANIMAL PARASITES OF THE FRESH-WATER FISHES OF MAINE PART ONE Page I. Introduction 3 II. Materials 8 III. Biology of Parasites 11 1. How Parasites are Acquired 11 2. Effects of Parasites Upon the Host 12 3. Transmission of Parasites to Man as a Result of Eating Infected Fish 21 4. Control Measures 23 IV. Remarks and Recommendations 27 V. Acknowledgments 30 PART TWO VI. Groups Involved, Life Cycles and Species En- countered 32 1. Copepoda 33 2. Pelecypoda 36 3. Hirudinea 36 4. Acanthocephala 37 5. Trematoda 42 6. Cestoda 53 7. Nematoda 64 8. Key, Based Upon External Characters, to the Adults of the Different Groups Found Parasitizing Fresh-water Fishes in Maine 69 VII. Literature on Fish Parasites 70 VIII. Methods Employed 73 1. Examination of Hosts 73 2. Killing and Preserving 74 3. Staining and Mounting 75 IX. References 77 X. Glossary 83 XI. Index 89 THE LARGER ANIMAL PARASITES OF THE FRESH-WATER FISHES OF MAINE PART ONE I. INTRODUCTION Animals which obtain their livelihood at the expense of other animals, usually without killing the latter, are known as para- sites. During recent years the general public has taken more notice of and concern in the parasites, particularly those occur- ring externally, free or encysted upon or under the skin, or inter- nally, in the flesh, and in the body cavity, of the more important fresh-water fish of the State.
    [Show full text]
  • Worms, Germs, and Other Symbionts from the Northern Gulf of Mexico CRCDU7M COPY Sea Grant Depositor
    h ' '' f MASGC-B-78-001 c. 3 A MARINE MALADIES? Worms, Germs, and Other Symbionts From the Northern Gulf of Mexico CRCDU7M COPY Sea Grant Depositor NATIONAL SEA GRANT DEPOSITORY \ PELL LIBRARY BUILDING URI NA8RAGANSETT BAY CAMPUS % NARRAGANSETT. Rl 02882 Robin M. Overstreet r ii MISSISSIPPI—ALABAMA SEA GRANT CONSORTIUM MASGP—78—021 MARINE MALADIES? Worms, Germs, and Other Symbionts From the Northern Gulf of Mexico by Robin M. Overstreet Gulf Coast Research Laboratory Ocean Springs, Mississippi 39564 This study was conducted in cooperation with the U.S. Department of Commerce, NOAA, Office of Sea Grant, under Grant No. 04-7-158-44017 and National Marine Fisheries Service, under PL 88-309, Project No. 2-262-R. TheMississippi-AlabamaSea Grant Consortium furnish ed all of the publication costs. The U.S. Government is authorized to produceand distribute reprints for governmental purposes notwithstanding any copyright notation that may appear hereon. Copyright© 1978by Mississippi-Alabama Sea Gram Consortium and R.M. Overstrect All rights reserved. No pari of this book may be reproduced in any manner without permission from the author. Primed by Blossman Printing, Inc.. Ocean Springs, Mississippi CONTENTS PREFACE 1 INTRODUCTION TO SYMBIOSIS 2 INVERTEBRATES AS HOSTS 5 THE AMERICAN OYSTER 5 Public Health Aspects 6 Dcrmo 7 Other Symbionts and Diseases 8 Shell-Burrowing Symbionts II Fouling Organisms and Predators 13 THE BLUE CRAB 15 Protozoans and Microbes 15 Mclazoans and their I lypeiparasites 18 Misiellaneous Microbes and Protozoans 25 PENAEID
    [Show full text]
  • Differential Responses of Prairie Rodents to Edge Effects from Recreational Trails
    A peer-reviewed open-access journal Nature Conservation 41: Response113–140 (2020) of prairie rodents to edge effects from recreational trails 113 doi: 10.3897/natureconservation.41.52100 RESEarcH arTICLE http://natureconservation.pensoft.net Launched to accelerate biodiversity conservation Differential responses of prairie rodents to edge effects from recreational trails Cameron M. Shorb1, Laur A. Freymiller1, Daniel L. Hernández1 1 Carleton College Biology Department, 1 North College St., Northfield, MN 55057, USA Corresponding author: Daniel L. Hernández ([email protected]) Academic editor: Jochen A.G. Jaeger | Received 15 March 2020 | Accepted 28 July 2020 | Published 10 September 2020 http://zoobank.org/AB43B43E-EE9A-4998-9CFC-22A6F492B7B8 Citation: Shorb CM, Freymiller LA, Hernández DL (2020) Differential responses of prairie rodents to edge effects from recreational trails. Nature Conservation 41: 113–140. https://doi.org/10.3897/natureconservation.41.52100 Abstract Edge effects are a common phenomenon in which an ecological variable changes with respect to distance from a habitat edge. Recreational trails may constitute a habitat edge for prairie rodents because of high human presence, high predator presence, or limited shelter compared to the prairie core. Despite the prevalence of trails in conservation parcels, their effect on wildlife distribution remains largely unstudied. We examined the impacts of recreational trails on small mammal activity in the restored prairies of the Cowling Arboretum at Carleton College. The prairies were restored from 1995 to 2008 and now com- prise a contiguous prairie block of approximately 155 ha. Over 2 consecutive summers, we used infrared motion-sensing cameras to record the relative amount of time rodents spend at baited stations placed at different distances from the trail.
    [Show full text]
  • Sciurid Phylogeny and the Paraphyly of Holarctic Ground Squirrels (Spermophilus)
    MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 31 (2004) 1015–1030 www.elsevier.com/locate/ympev Sciurid phylogeny and the paraphyly of Holarctic ground squirrels (Spermophilus) Matthew D. Herron, Todd A. Castoe, and Christopher L. Parkinson* Department of Biology, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816-2368, USA Received 26 May 2003; revised 11 September 2003 Abstract The squirrel family, Sciuridae, is one of the largest and most widely dispersed families of mammals. In spite of the wide dis- tribution and conspicuousness of this group, phylogenetic relationships remain poorly understood. We used DNA sequence data from the mitochondrial cytochrome b gene of 114 species in 21 genera to infer phylogenetic relationships among sciurids based on maximum parsimony and Bayesian phylogenetic methods. Although we evaluated more complex alternative models of nucleotide substitution to reconstruct Bayesian phylogenies, none provided a better fit to the data than the GTR + G + I model. We used the reconstructed phylogenies to evaluate the current taxonomy of the Sciuridae. At essentially all levels of relationships, we found the phylogeny of squirrels to be in substantial conflict with the current taxonomy. At the highest level, the flying squirrels do not represent a basal divergence, and the current division of Sciuridae into two subfamilies is therefore not phylogenetically informative. At the tribal level, the Neotropical pygmy squirrel, Sciurillus, represents a basal divergence and is not closely related to the other members of the tribe Sciurini. At the genus level, the sciurine genus Sciurus is paraphyletic with respect to the dwarf squirrels (Microsciurus), and the Holarctic ground squirrels (Spermophilus) are paraphyletic with respect to antelope squirrels (Ammosper- mophilus), prairie dogs (Cynomys), and marmots (Marmota).
    [Show full text]
  • A Review of Longnose Skates Zearaja Chilensisand Dipturus Trachyderma (Rajiformes: Rajidae)
    Univ. Sci. 2015, Vol. 20 (3): 321-359 doi: 10.11144/Javeriana.SC20-3.arol Freely available on line REVIEW ARTICLE A review of longnose skates Zearaja chilensis and Dipturus trachyderma (Rajiformes: Rajidae) Carolina Vargas-Caro1 , Carlos Bustamante1, Julio Lamilla2 , Michael B. Bennett1 Abstract Longnose skates may have a high intrinsic vulnerability among fishes due to their large body size, slow growth rates and relatively low fecundity, and their exploitation as fisheries target-species places their populations under considerable pressure. These skates are found circumglobally in subtropical and temperate coastal waters. Although longnose skates have been recorded for over 150 years in South America, the ability to assess the status of these species is still compromised by critical knowledge gaps. Based on a review of 185 publications, a comparative synthesis of the biology and ecology was conducted on two commercially important elasmobranchs in South American waters, the yellownose skate Zearaja chilensis and the roughskin skate Dipturus trachyderma; in order to examine and compare their taxonomy, distribution, fisheries, feeding habitats, reproduction, growth and longevity. There has been a marked increase in the number of published studies for both species since 2000, and especially after 2005, although some research topics remain poorly understood. Considering the external morphological similarities of longnose skates, especially when juvenile, and the potential niche overlap in both, depth and latitude it is recommended that reproductive seasonality, connectivity and population structure be assessed to ensure their long-term sustainability. Keywords: conservation biology; fishery; roughskin skate; South America; yellownose skate Introduction Edited by Juan Carlos Salcedo-Reyes & Andrés Felipe Navia Global threats to sharks, skates and rays have been 1.
    [Show full text]
  • Associated with Thymic Lymphoma in Gunnison's Prairie Dogs in Colorad
    viruses Article A Novel Retrovirus (Gunnison’s Prairie Dog Retrovirus) Associated With Thymic Lymphoma in Gunnison’s Prairie Dogs in Colorado, USA Molly D. Butler 1, Karen Griffin 2, Connie D. Brewster 1 , Marylee L. Kapuscinski 1, Mark D. Stenglein 1 , Daniel W. Tripp 2, Sandra L. Quackenbush 1,* and Karen A. Fox 2,* 1 Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; [email protected] (M.D.B.); [email protected] (C.D.B.); [email protected] (M.L.K.); [email protected] (M.D.S.) 2 Colorado Division of Parks and Wildlife, Wildlife Health Laboratory, Fort Collins, CO 80521, USA; karen.griffi[email protected] (K.G.); [email protected] (D.W.T.) * Correspondence: [email protected] (S.L.Q.); [email protected] (K.A.F.); Tel.: 1-970-491-3545 (S.L.Q.); Tel: 1-970-472-4318 (K.A.F.) Received: 8 May 2020; Accepted: 31 May 2020; Published: 2 June 2020 Abstract: As part of research and wildlife disease surveillance efforts, we performed necropsy examinations of 125 free-ranging (n = 114) and captive (n = 11) prairie dogs in Colorado from 2009 to 2017. From these cases, we identified three cases of thymic lymphoma in free-ranging Gunnison’s prairie dogs (Cynomys gunnisoni), and we identified a novel retroviral sequence associated with these tumors. The viral sequence is 7700 nucleotides in length and exhibits a genetic organization that is consistent with the characteristics of a type D betaretrovirus.
    [Show full text]
  • Endoparasites in the Endangered Fennoscandian Population of Arctic Foxes
    Endoparasites in the endangered Fennoscandian population of arctic foxes () Tomas Meijer, Roland Mattsson, Anders Angerbjörn, Eva Osterman-Lind, Xavier Fernández-Aguilar, Dolores Gavier-Widén To cite this version: Tomas Meijer, Roland Mattsson, Anders Angerbjörn, Eva Osterman-Lind, Xavier Fernández-Aguilar, et al.. Endoparasites in the endangered Fennoscandian population of arctic foxes (). European Journal of Wildlife Research, Springer Verlag, 2011, 57 (4), pp.923-927. 10.1007/s10344-011-0505-2. hal- 00669044 HAL Id: hal-00669044 https://hal.archives-ouvertes.fr/hal-00669044 Submitted on 11 Feb 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Eur J Wildl Res (2011) 57:923–927 DOI 10.1007/s10344-011-0505-2 ORIGINAL PAPER Endoparasites in the endangered Fennoscandian population of arctic foxes (Vulpes lagopus) Tomas Meijer & Roland Mattsson & Anders Angerbjörn & Eva Osterman-Lind & Xavier Fernández-Aguilar & Dolores Gavier-Widén Received: 17 December 2009 /Revised: 19 January 2011 /Accepted: 24 January 2011 /Published online: 11 February 2011 # Springer-Verlag 2011 Abstract The Fennoscandian arctic fox (Vulpes lagopus) oocysts 28% (2008) and 26% (2010); Cystoisospora population is endangered due to overharvest and competi- ohiensis-like oocysts 38% (2008) and 4% (2010); Eimeria tion with the larger red fox (Vulpes vulpes).
    [Show full text]