Time of Phases of the Moon Spreadsheet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phases of the Moon by Patti Hutchison
Phases of the Moon By Patti Hutchison 1 Was there a full moon last night? Some people believe that a full moon affects people's behavior. Whether that is true or not, the moon does go through phases. What causes the moon to appear differently throughout the month? 2 You know that the moon does not give off its own light. When we see the moon shining at night, we are actually seeing a reflection of the Sun's light. The part of the moon that we see shining (lunar phase) depends on the positions of the sun, moon, and the earth. 3 When the moon is between the earth and the sun, we can't see it. The sunlit side of the moon is facing away from us. The dark side is facing toward us. This phase is called the new moon. 4 As the moon moves along its orbit, the amount of reflected light we see increases. This is called waxing. At first, there is a waxing crescent. The moon looks like a fingernail in the sky. We only see a slice of it. 5 When it looks like half the moon is lighted, it is called the first quarter. Sounds confusing, doesn't it? The quarter moon doesn't refer to the shape of the moon. It is a point of time in the lunar month. There are four main phases to the lunar cycle. Four parts- four quarters. For each of these four phases, the moon has orbited one quarter of the way around the earth. -
Technical Memorandum
Technical Memorandum To: Thaddeus Johnson, Jessica Kronenwetter, Kevin Work, William Chadwick, Brian Middleton, Kevin Ludlum, and Seth Iacangelo (NOAA/OSPO, GOES-R/MOST) From: Fangfang Yu, Xiangqian Wu and Xi Shao (NOAA/STAR) Subject: ABI Lunar Trending Image Collection Requirements in the Operational Period Date: 05/01/2018 Rev: Rev 2.0 Cc: Jon Fulbright (NOAA GOES-R/PRO) This technical memo lists the set of lunar trending requirements for the GOES-16 ABI operational period, which can be summarized as followed: Scan pattern: (1) the unclipped Moon can be scanned with either MESO1 or MESO2; and (2) the Moon should be located near the center of the MESO swath at the north-south direction for all the ABI bands. Location: (1) the Moon should appear within the ABI field of regard (FOR); (2) the center of the Moon should be at least 0.013 radians away from the Earth limb for all the ABI bands; and (3) the edge of the Moon should be at least 0.002 radians away from the MESO frame boundary at the east-west direction. Frequency per month: 2-4 trending events per lunar phase. Phase Angle Range: (1) the highest priority two lunar trending events shall have the smallest absolute phase angle as possible between Earth and Moon, but not less than 5.0 degrees. These two trending events shall be on opposite sides of the Earth. (2). The other two lunar trending events with relatively lower priority shall have an absolute phase angle as close as possible to 60 degrees between Earth and Moon, but not more than 90.0 degrees. -
The Moon and Eclipses
Lecture 10 The Moon and Eclipses Jiong Qiu, MSU Physics Department Guiding Questions 1. Why does the Moon keep the same face to us? 2. Is the Moon completely covered with craters? What is the difference between highlands and maria? 3. Does the Moon’s interior have a similar structure to the interior of the Earth? 4. Why does the Moon go through phases? At a given phase, when does the Moon rise or set with respect to the Sun? 5. What is the difference between a lunar eclipse and a solar eclipse? During what phases do they occur? 6. How often do lunar eclipses happen? When one is taking place, where do you have to be to see it? 7. How often do solar eclipses happen? Why are they visible only from certain special locations on Earth? 10.1 Introduction The moon looks 14% bigger at perigee than at apogee. The Moon wobbles. 59% of its surface can be seen from the Earth. The Moon can not hold the atmosphere The Moon does NOT have an atmosphere and the Moon does NOT have liquid water. Q: what factors determine the presence of an atmosphere? The Moon probably formed from debris cast into space when a huge planetesimal struck the proto-Earth. 10.2 Exploration of the Moon Unmanned exploration: 1950, Lunas 1-3 -- 1960s, Ranger -- 1966-67, Lunar Orbiters -- 1966-68, Surveyors (first soft landing) -- 1966-76, Lunas 9-24 (soft landing) -- 1989-93, Galileo -- 1994, Clementine -- 1998, Lunar Prospector Achievement: high-resolution lunar surface images; surface composition; evidence of ice patches around the south pole. -
Lunar Motion Motion A
2 Lunar V. Lunar Motion Motion A. The Lunar Calendar Dr. Bill Pezzaglia B. Motion of Moon Updated 2012Oct30 C. Eclipses 3 1. Phases of Moon 4 A. The Lunar Calendar 1) Phases of the Moon 2) The Lunar Month 3) Calendars based on Moon b). Elongation Angle 5 b.2 Elongation Angle & Phase 6 Angle between moon and sun (measured eastward along ecliptic) Elongation Phase Configuration 0º New Conjunction 90º 1st Quarter Quadrature 180º Full Opposition 270º 3rd Quarter Quadrature 1 b.3 Elongation Angle & Phase 7 8 c). Aristarchus 275 BC Measures the elongation angle to be 87º when the moon is at first quarter. Using geometry he determines the sun is 19x further away than the moon. [Actually its 400x further !!] 9 Babylonians (3000 BC) note phases are 7 days apart 10 2. The Lunar Month They invent the 7 day “week” Start week on a) The “Week” “moon day” (Monday!) New Moon First Quarter b) Synodic Month (29.5 days) Time 0 Time 1 week c) Spring and Neap Tides Full Moon Third Quarter New Moon Time 2 weeks Time 3 weeks Time 4 weeks 11 b). Stone Circles 12 b). Synodic Month Stone circles often have 29 stones + 1 xtra one Full Moon to Full Moon off to side. Originally there were 30 “sarson The cycle of stone” in the outer ring of Stonehenge the Moon’s phases takes 29.53 days, or ~4 weeks Babylonians measure some months have 29 days (hollow), some have 30 (full). 2 13 c1). Tidal Forces 14 c). Tides This animation illustrates the origin of tidal forces. -
In Astrology, the Moon Represents Our Inner World (Feelings + Desires), Whereas the Sun Represents Our O Uter World (How We ‘Show Up’ in the World)
THE MOON CYCLE 101: WHAT DOES THE MOON MEAN FOR US? In astrology, the moon represents our inner world (feelings + desires), whereas the sun represents our outer world (how we ‘show up’ in the world). The moon phases mirror our emotional / energetic phases - our energy begins to build at the start of a cycle, then reaches a peak at the full moon. After that, it wanes again like diminishing moon, until the cycle ends. We can align our actions with the moon cycle to make our manifesting easier. One full lunar cycle around the earth is 29.5 days. It looks like this: Kait Fowlie Tarot Reader | Reiki Practitioner | Blogger Web: Kaitfowlie.com IG: @kait_fowlie THE MOON PHASES NEW MOON: FEEL INSIDE FOR AN INTENTION, PLANT A SEED The moon is positioned between the earth and the sun so the back side is lit, and we see darkness. Because everything goes dark, we have a blank canvas on which to create. New moon = limitless possibilities! ● Set intentions ● Decide what you want to call in, visualize having it ● Take one first step! FIRST QUARTER MOON (WAXING): BUILD MOMENTUM About 1 week after the new moon. The moon - and our emotional state - grow! ● Put together a plan and take steps to make your intentions real ● Speak and act as if you have. Be confident! FULL MOON: MANIFEST + OBSERVE 2 weeks after the new moon. The moon is on the exact opposite side of the Earth from the sun - that’s why it’s so bright! This is the culmination of the lunar cycle. -
The Lunar Cycle: a Cue for Amphibian Reproductive Phenology?
ARTICLE IN PRESS Animal Behaviour xxx (2009) 1–9 Contents lists available at ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/yanbe The lunar cycle: a cue for amphibian reproductive phenology? Rachel A. Grant a,*, Elizabeth A. Chadwick b,1, Tim Halliday a a Department of Life Sciences, The Open University b School of Biosciences, Cardiff University article info Lunar cycles give rise to cues that can be recognized by animals, including changes in light intensity, Article history: geomagnetism and gravity. Many environmental variables affect reproductive timing in amphibians and Received 16 July 2008 we tested the hypothesis that lunar cycles provide one of the cues for amphibian breeding phenology. For Initial acceptance 12 August 2008 several species of anurans, the number of individuals arriving, amplexed or spawning at breeding sites in Final acceptance 8 May 2009 Italy and the U.K. were recorded each day over several breeding seasons. Data on various aspects of Available online xxx reproductive phenology were also collated from the published literature, for several anuran and urodele MS. number: 08-00454 species. Large arrival, amplexus and spawning events were more frequent around the full moon than the new moon in anurans, although the date that the first spawn was observed showed no lunar periodicity. Keywords: Anurans could be responding directly to lunar light, or could have a lunar-synchronized endogenous anuran cycle. First sightings and peak arrivals of urodeles occurred more frequently around new and full moons, breeding but less frequently during the third quarter of the lunar cycle, while departure dates did not show lunar Bufo bufo geomagnetism periodicity. -
ARTEMIS: the First Mission to the Lunar Libration Orbits
ARTEMIS: The First Mission to the Lunar Libration Orbits (1) (2) (3) Mark Woodard , David Folta , Dennis Woodfork (1) NASA/GSFC, Greenbelt, MD 20771 USA, +1 301.286.9611, [email protected] (2) NASA/GSFC, Greenbelt, MD 20771 USA, +1 301.286.6082, [email protected] (3) NASA/GSFC, Greenbelt, MD 20771 USA, +1 301.286.6009, [email protected] ABSTRACT The ARTEMIS mission will be the first to navigate to and perform stationkeeping operations around the Earth-Moon L1 and L2 Lagrangian points. The NASA Goddard Space Flight Center (GSFC) has previous mission experience flying in the Sun-Earth L1 (SOHO, ACE, WIND, ISEE-3) and L2 regimes (WMAP) and have maintained these spacecraft in libration point orbits by performing regular orbit stationkeeping maneuvers. The ARTEMIS mission will build on these experiences, but stationkeeping in Earth-Moon libration orbits presents new challenges since the libration point orbit period is on the order of two weeks rather than six months. As a result, stationkeeping maneuvers to maintain the Lissajous orbit will need to be performed frequently, and the orbit determination solutions between maneuvers will need to be quite accurate. The ARTEMIS mission is a collaborative effort between NASA GSFC, the University of California at Berkeley (UCB), and the Jet Propulsion Laboratory (JPL). The ARTEMIS mission is part of the THEMIS extended mission. ARTEMIS comprises two of the five THEMIS spacecraft that will be maneuvered from near-Earth orbits into lunar libration orbits using a sequence of designed orbital maneuvers and Moon & Earth gravity assists. -
Reference Frames and Astronomy Teaching: the Development of a Topocentric Approach to the Lunar Phases
REVIEW ARTICLE Reference Frames and Astronomy Teaching: The Development of a Topocentric Approach to the Lunar Phases Diego Galperin*, Andrés Raviolo National University of Rio Negro, Bariloche, Argentina *Corresponding Author: [email protected] ABSTRACT Research related to the teaching and learning of the lunar phases reveals a low level of understanding of this astronomical phenomenon by most students of all educational levels. Therefore, there is a need to develop didactic materials to promote adequate comprehension of this phenomenon and which have been tried out in the classroom. Presented here is the implementation process of a didactic proposal for the teaching of the lunar phases at the primary school level, designed from a topocentric frame of reference. It includes the construction of an explanatory model of the phenomenon, based on observation of the Moon’s motion in the sky. Its usefulness lies in that it does not require students to “place themselves in outer space” to describe the lunar movement and in its direct relationship with what they can observe with the naked eye every day. The proposal includes two diagrams that provide alternative images that support the construction of the model. The results obtained indicate that the proposal is effective in improving primary pupils’ comprehension of the moon phases. KEY WORDS: astronomy teaching; lunar phases; topocentric reference frame; primary level INTRODUCTION evaluated under real classroom conditions. The fundamental core of the plan is to enable pupils to relate to observable aspects of the umerous studies carried out over the past 30 years have phenomenon, hence the exclusive use of the topocentric system of shown that the lunar phase phenomenon is understood reference. -
What Is a Lunar Standstill III |
Documenta Praehistorica XLIII (2016) What is a lunar standstill III 1| Lionel Sims University of East London, London, UK [email protected] ABSTRACT – Prehistoric monument alignments on lunar standstills are currently understood for hori- zon range, perturbation event, crossover event, eclipse prediction, solstice full Moon and the solari- sation of the dark Moon. The first five models are found to fail the criteria of archaeoastronomy field methods. The final model of lunar-solar conflation draws upon all the observed components of lunar standstills – solarised reverse phased sidereal Moons culminating in solstice dark Moons in a roughly nine-year alternating cycle between major and minor standstills. This lunar-solar conflation model is a syncretic overlay upon an antecedent Palaeolithic template for lunar scheduled rituals and amenable to transformation. IZVLE∞EK – Poravnava prazgodovinskih spomenikov na Lunine zastoje se trenutno sklepa za razpon horizonta, perturbacijo, prehod Lune, napovedovanje Luninih mrkov, polne lune na solsticij in sola- rizacije mlaja. Prvih pet modelov ne zadostuje kriterijem arheoastronomskih terenskih metod. Zad- nji model lunarno-solarne zamenjave temelji na vseh opazovanih komponentah Luninega zastoja – solarizirane obrnjene Lune, ki kulminirajo v mlaju v solsticiju v devetletnem izmeni≠nem ciklu med najve≠jim in najmanj∏im zastojem. Ta lunarno-solarni model je postavljen na temeljih predhodne paleolitske predloge za na≠rtovanje lunarnih ritualov in je dojemljiv za preobrazbe. KEY WORDS – lunar standstill; synodic; sidereal; lunar-solar; syncretic Introduction Thom’s publications between 1954 and 1975 galva- properties of prehistoric monument ‘astronomical’ nised a generation – with horror among many ar- alignments to trace their variable engagement by chaeologists and inspiration for others, some of different researchers. -
Eclipse Activity Guide Our Place in the Solar System— Sun, Earth, Moon and Eclipses
National Aeronautics and Space Administration EXPERIENCE THE 2017ECLIPSE ACROSS AMERICA THROUGH THE EYES OF NASA http://eclipse2017.nasa.gov Aniol Credit: S. Habbal, M. Druckmüller and P. Eclipse Activity Guide Our Place in the Solar System— Sun, Earth, Moon and Eclipses www.nasa.gov CREDITS FOR ACTIVITIES AND RESOURCES This Activity Guide was developed by the Girl Scout Stars team at the SETI Institute, ARIES Scientific, Inc., Girl Scouts of Northern California, Girl Scouts of the USA, University of Arizona , and the Astronomical Society of the Pacific. Louis Mayo and Edna DeVore co-authored this booklet of activities, with significant contri- butions by Pamela Harman, Larry Lebofsky, Vivian White, Theresa Summer, Jean Fahy, Jessica Henricks, Elspeth Kersh, and Wendy Chin. Further contributions were made by Joanne Berg, Cole Grissom, Amanda Hudson, Don McCarthy, and Wendy Friedman. The team was led by Edna DeVore, Principal Investigator of “Reaching for the Stars: NASA Science for Girl Scouts,” which is funded by NASA Cooperative Agreement #NNX16AB90A. ACTIVITY OR RESOURCE AUTHOR and SOURCES LIVING IN A BUBBLE—PLAY WITH MAGNETS AND COMPASSES L. Mayo, and Multiverse—UC Berkeley Space Sciences Lab SUNBURN—ULTRAVIOLET LIGHT DETECTORS L. Mayo, E. DeVore SEEING THE INVISIBLE—INFRARED LIGHT DETECTORS L. Mayo, NASA Airborne Astronomy Ambassadors LET’S SEE LIGHT IN A NEW WAY—DIFFRACTION SPECTRA L. Mayo, E. DeVore A LIGHT SNACK—COOKIE BOX SPECTROMETERS L. Mayo, E. DeVore, NASA: The Science of the sun MAKE SUN S’MORES! NASA Climate Kids HOW BIG IS BIG? SOLAR PIZZAS L. Mayo, NASA sun-Earth Day EARTH AS A PEPPERCORN—SIZE AND SCALE OF THE SOLAR SYSTEM Guy Ottwell, The Thousand Yard Model SUN TRACKING J. -
Graphing Moon Phases
~ LPI EDUCATION/PUBLIC ENGAGEMENT SCIENCE ACTIVITIES ~ Graphing Moon Phases OVERVIEW — Students examine and analyze lunar phase data by creating and analyzing graphs that plot the data for different weeks. Grades: 3 to 8 Duration: 30 minutes This activity can be used to explore lunar phases, but will not enable students understand the causes of the phases. It can be followed by other lunar phase activities and can be paired with “The Moon’s Relation to Ocean Tides” using tide data for the same time period. OBJECTIVE — Students will: • Create graphs depicting how the percent of the Moon (as seen from Earth) illuminated by sunlight changes over time. • Analyze the graphs to indicate which dates depict the major phases of new moon, full moon, first quarter, and third quarter, and to describe the pattern. MATERIALS — For the class: • Tape to place the students’ graphs in order on the wall For each student or pair of students: • A week of data • Student graph sheet ACTIVITY — Facilitator’s Note: The data for this activity were selected to match data for the Moon’s Relations to Ocean Tides. If more recent or future data is preferred, use the US Naval Observatory’s Fraction of the Moon Illuminated program, at http://aa.usno.navy.mil/data/docs/MoonFraction.php. 1. Gather students’ prior knowledge of Moon phases, through an earlier activity, a formative assessment, or a class discussion. • What are the names of the phases of the Moon? (Responses can include New, Full, First Quarter, Third Quarter, and even waxing and waning gibbous and crescent.) • Why is the Moon bright? (Sunlight is reflecting off of its surface.) • When the Moon is “New,” how much of its surface can we see? (none or 0%) • When the Moon is “Full,” how much of the side facing us do we see? (All of it—100%) 2. -
NASA Space User Update: Advancing Interoperability and Lunar PNT
NASA Space User Update: Advancing Interoperability and Lunar PNT Commercial Lunar Lander (Left) and Joel J. K. Parker the Lunar Gateway (Right), two U.S. National Aeronautics and Space Administration potential applications of Lunar PNT international collaboration September 22, 2020 NASA’s Role in U.S. PNT / Space Policy • The U.S. Space-Based Positioning, The PNT Advisory Board has implemented a “PTA” program to: Navigation, and Timing (PNT) Policy tasks the • Protect the radio spectrum + identify NASA Administrator to develop and provide + prosecute interferers requirements for the use of GPS & its • Toughen GPS receivers against natural and human interference augmentations to support civil space systems • Augment with additional GNSS/PNT • NASA works with the Air Force to contribute sources and techniques making GPS services more accessible, interoperable, robust, and precise • The 2010 National Space Policy reaffirmed PNT Policy commitments to GPS service provisions, international cooperation, and interference mitigation • In 2018 the National Space Council recommended to develop protections for the radiofrequency spectrum [such as that used by GPS] facilitating commercial space activities Space Uses of Global Navigation Satellite Systems (GNSS) Earth Sciences Launch Vehicle Range Ops Attitude Determination Time Synchronization Real-Time On-Board Navigation Precise Orbit Determination 3 Demonstrated Benefits of GNSS for Space Navigation and Timing • Significantly improves real-time navigation performance (from km-class to meter-class)