Epigenetics: the Second Genetic Code

Total Page:16

File Type:pdf, Size:1020Kb

Epigenetics: the Second Genetic Code CHAPTER THREE Epigenetics: The Second Genetic Code Nathan M. Springer* and Shawn M. Kaeppler† Contents 1. Introduction 60 2. Molecular Mechanisms of Epigenetic Inheritance 60 2.1. DNA methylation 61 2.2. Histone modifications 62 2.3. Chromatin structure 63 2.4. Role of RNA in heritable silencing 64 2.5. Interactions among DNA methylation, histone modifications, and chromatin structure 65 3. Epigenetic Phenomena in Plants 65 3.1. Phenotypic examples of epigenetic inheritance 66 3.2. Genomic and molecular genetic examples of epigenetic variation 70 4. Epigenetic Inheritance and Crop Improvement 71 4.1. Epigenetics in quantitative inheritance and selection response 72 4.2. Epialleles and gene discovery 73 References 73 Abstract Plant breeders utilize directed selection and transgenics to produce novel cultivars of diploid and polyploid species. DNA sequence is clearly important in these processes, but growing evidence implicates epigenetics as an impor- tant factor in controlling genetic variation and gene/transgene expression. In this article, we focus on epigenetic variation defined as mitotically and meioti- cally heritable but reversible states of gene expression that are not conditioned by differences in DNA sequence. We summarize mechanisms underlying epige- netic states of expression, and discuss implications of epigenetics in cultivar development. * Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA { Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706, USA Advances in Agronomy, Volume 100 # 2008 Elsevier Inc. ISSN 0065-2113, DOI: 10.1016/S0065-2113(08)00603-2 All rights reserved. 59 60 Nathan M. Springer and Shawn M. Kaeppler 1. Introduction Plant breeders have made tremendous progress towards altering plant phenotypes to provide more productive crops. The majority of these gains have been made through selection of variation that is present within a species. While it is clear that phenotypic selection has resulted in improved plant characteristics, the molecular basis of the selected variation remains largely unknown. Traditionally, it was assumed that the majority of herita- ble variation was due to genetic sequence differences. However, a growing body of evidence suggests that intraspecific expression differences among genotypes can also be caused by epigenetic variation. To some researchers, epigenetics is used as a catchall term to describe any variation that does not seem to follow Mendelian inheritance patterns. In this article, we use the term epigenetics to specifically describe meiotically or mitotically heritable differences in gene expression that are not caused by sequence differences. We will begin by describing some of the molecular changes that are associated with epigenetic variation and then proceed to discussing some of the well characterized examples of epigenetic variation. Finally, we will discuss the potential impact of epigenetic inheritance in crop improvement. 2. Molecular Mechanisms of Epigenetic Inheritance Epigenetics involves changes in heritable phenotypes without changes in DNA sequence. With the exception of protein-based inheritance such as prions, epigenetic differences are the result of altered gene expression levels. Research on the molecular mechanisms of epigenetic inheritance has iden- tified several complementary pathways for the stable regulation of gene expression without sequence changes. The basis of epigenetic inheritance is the manner in which DNA is packaged and modified. DNA in plant cells contains four standard bases, cytosine, guanine, thymine, and adenine, but can also contain the modified base 5-methylcytosine. Most often, presence of 5-methylcytosine is asso- ciated with repressed gene expression. DNA in the cell is packaged by various sets of proteins. The first level of packaging involves wrapping DNA around cores of histone octamers containing two each of the proteins: Histone 2A (H2A), Histone 2B (H2B), Histone 3 (H3), and Histone 4 (H4). The histone proteins in the octamer can contain various modifications. The most relevant modifications for epigenetic expression are acetylation and methylation, which occur on the tails of H3 and H4. The tails of these histones extend outside of the DNA/protein core, and the modifications affect how those cores are packaged into a higher order structure. Epigenetics: The Second Genetic Code 61 Various proteins are involved in methylation of the DNA, modification of the histones, recognition of chromatin state, and in energy-dependent remodeling of one chromatin state to another. Following is a brief summary of some of the most important players in this process, chosen largely because one or more members have proven effects on gene expression in plants. 2.1. DNA methylation DNA methylation is found in the genomes of many plant and animal species. In eukaryotic genomes, DNA methylation refers primarily to 5-methylcytosine although some evidence for methylated adenines has been reported. The methyl moiety is added to cytosine residues present in double stranded DNA by a group of enzymes referred to as DNA methyl- transferases. The majority of DNA methylation is found in CpG dinucleo- tide (plants and animals) and CpHpG trinucleotide (plants only) sequence contexts. Plant genomes encode several different DNA methyltransferase enzymes that fall into three different functional categories (reviewed by Chan et al., 2005). The Domains Rearranged Methyltransferases (DRM) encode de novo methyltransferases. These enzymes are capable of adding methyl groups to DNA that is unmethylated. The other two categories, DNA methyltransferases (MET) and chromomethylases (CMT), encode maintenance methyltransferases. Following DNA replication, the parent strand retains 5-methylcytosine but all cytosines within the daughter strand are unmethylated. This hemimethylated substrate is the target of the main- tenance methyltransferases. Hemimethylated CpGs are the target of the MET class of enzymes while hemimethylated CpHpGs are methylated by CMTs. The targeting of a DRM protein to a specific genomic location will result in methylation of all cytosines within the region. If the targeting signal is no longer present then only the CpG and CpHpG methylation will be maintained by maintenance activities. These are likely oversimplifications of the activities and preferences for these enzymes as there appears to be some redundancy and locus-specific activities for these classes (reviewed by Chan et al., 2005). In general, DNA methylation is associated with transcriptional silencing of a locus. DNA methylation can result in silencing by directly interfering with the binding of transcriptional activators or by recruiting proteins that bind to methylated DNA and recruit transcriptional repressors (Bird and Wolffe, 1999; Klose and Bird, 2006). DNA methylation is often associated with centromeres and repetitive elements (Zhang et al., 2006). Recently, the application of microarrays and high-throughput sequencing approaches have provided a view of genome-wide DNA methylation patterns in Arabi- dopsis and the relationship of DNA methylation and gene expression (Cokus et al., 2008; Lister et al., 2008; Zhang et al., 2006; Zilberman et al., 2007). DNA methylation is quite high in transposon sequences and loss of CpG 62 Nathan M. Springer and Shawn M. Kaeppler methylation often results in transcriptional activation of these sequences. Two different types of genic methylation were noted (Lister et al., 2008; Zhang et al., 2006; Zilberman et al., 2007). A significant proportion of genes (33%) exhibit methylation within the coding region and a much smaller proportion of genes (5%) exhibit promoter methylation. However, a relatively small number of genes (500) exhibit altered expression when DNA methylation is reduced (Zhang et al., 2006). The majority of genes which are sensitive to DNA methylation exhibit promoter methylation. Interestingly, most of the genes controlled by CpG methylation are pseudogenes located within peri- centromeric heterochromatin while the genes regulated by CpHpG methyla- tion are spread throughout euchromatic portions of the genome (Zhang et al., 2006). There is also evidence for altered expression of antisense and nc RNAs in plants with reduced DNA methylation levels suggesting that DNA methyl- ation may be required to reduce transcriptional ‘‘noise.’’ 2.2. Histone modifications The histone proteins exhibit remarkable sequence conservation in eukaryotes within the globular head domain that interacts with other histones and DNA as well as within the ‘‘tail’’ domain that protrudes from the central octomer– DNA complex. Recent research has identified a number of posttranslational modifications that occur to the histone tails including acetylation, methylation, SUMOlation, ubiquitination, and others (reviewed by Kouzarides, 2007; Pfluger and Wagner, 2007). These histone modifications can provide a variety of functions including transcriptional activation, transcriptional repression, efficient assembly into chromatin, and DNA replication. The theory of a histone code, in which each modification indicates a specific meaning and the combinations of modifications result in interpretations of chromatin state, was proposed ( Jenuwein and Allis, 2001). However, most current research suggests that there are actually a limited number of chromatin states and that the many of the modifications can act in a redundant manner (Kouzarides, 2007; Peterson and Laniel, 2004). Histone modifications can have
Recommended publications
  • Genetic Code
    AccessScience from McGraw-Hill Education Page 1 of 9 www.accessscience.com Genetic code Contributed by: P. Schimmel, K. Ewalt Publication year: 2014 The rules by which the base sequences of deoxyribonucleic acid (DNA) are translated into the amino acid sequences of proteins. Each sequence of DNA that codes for a protein is transcribed or copied ( Fig. 1 ) into messenger ribonucleic acid (mRNA). Following the rules of the code, discrete elements in the mRNA, known as codons, specify each of the 20 different amino acids that are the constituents of proteins. In a process called translation, the cell decodes the message in mRNA. During translation ( Fig. 2 ), another class of RNAs, called transfer RNAs (tRNAs), are coupled to amino acids, bind to the mRNA, and in a step-by-step fashion provide the amino acids that are linked together in the order called for by the mRNA sequence. The specific attachment of each amino acid to the appropriate tRNA, and the precise pairing of tRNAs via their anticodons to the correct codons in the mRNA, form the basis of the genetic code. See also: DEOXYRIBONUCLEIC ACID (DNA) ; PROTEIN ; RIBONUCLEIC ACID (RNA) . Universal genetic code The genetic information in DNA is found in the sequence or order of four bases that are linked together to form each strand of the two-stranded DNA molecule. The bases of DNA are adenine, guanine, thymine, and cytosine, which are abbreviated A, G, T, and C. Chemically, A and G are purines, and C and T are pyrimidines. The two strands of DNA are wound about each other in a double helix that looks like a twisted ladder (Fig.
    [Show full text]
  • Dna the Code of Life Worksheet
    Dna The Code Of Life Worksheet blinds.Forrest Jowled titter well Giffy as misrepresentsrecapitulatory Hughvery nomadically rubberized herwhile isodomum Leonerd exhumedremains leftist forbiddenly. and sketchable. Everett clem invincibly if arithmetical Dawson reinterrogated or Rewriting the Code of Life holding for Genetics and Society. C A process look a genetic code found in DNA is copied and converted into value chain of. They may negatively impact of dna worksheet answers when published by other. Cracking the Code of saw The Biotechnology Institute. DNA lesson plans mRNA tRNA labs mutation activities protein synthesis worksheets and biotechnology experiments for open school property school biology. DNA the code for life FutureLearn. Cracked the genetic code to DNA cloning twins and Dolly the sheep. Dna are being turned into consideration the code life? DNA The Master Molecule of Life CDN. This window or use when he has been copied to a substantial role in a qualified healthcare professional journals as dna the pace that the class before scientists have learned. Explore the Human Genome Project within us Learn about DNA and genomics role in medicine and excellent at the Smithsonian National Museum of Natural. DNA The Double Helix. Most enzymes create a dna the code of life worksheet is getting the. Worksheet that describes the structure of DNA students color the model according to instructions Includes a. Biology Materials Handout MA-H2 Microarray Virtual Lab Activity Worksheet. This user has, worksheet the dna code of life, which proteins are carried on. Notes that scientists have worked 10 years to disappoint the manner human genome explains that DNA is a chemical message that began more data four billion years ago.
    [Show full text]
  • Genetic Code: a New Understanding of Codon – Amino Acid Assignment
    GENETIC CODE: A NEW UNDERSTANDING OF CODON – AMINO ACID ASSIGNMENT Zvonimir M. Damjanović* and Miloje M. Rakočević** *Montenegrin Academy of science and arts (CANU), Podgorica, Montenegro ** Department of Chemistry, Faculty of Science, University of Niš, Serbia (E-mail: [email protected]) Abstract. In this work it is shown that 20 canonical amino acids (AAs) within genetic code appear to be a whole system with strict AAs positions; more exactly, with AAs ordinal number in three variants; first variant 00-19, second 00-21 and third 00-20. The ordinal number follows from the positions of belonging codons, i.e. their digrams (or “doublets”). The reading itself is a reading in quaternary numbering system if four bases possess the values within a specific logical square: A = 0, C = 1, G = 2, U = 3. By this, all splittings, distinctions and classifications of AAs appear to be in accordance to atom and nucleon number balance as well as to the other physico-chemical properties, such as hydrophobicity and polarity. K e y w o r d s: Genetic code, Genetic code table, Translation, Numbering system, Spiral model of Genetic code, Canonical amino acids, Logical square, Hydrophobicity, Polarity, Hydropathy, Perfect numbers, Friendly numbers. 1 INTRODUCTION Gamow was the first who attempted to resolve the problem of codon – amino acid assignment, i.e. to answer the question how 64 codons can have the possible meanings for 20 canonical amino acids (AAs). His solution was the so called “diamond code” (Gamow, 1954) in which 64 codons were classified into 20 classes, corresponding to 20 AAs (Hayes, 1998: “Symmetries of the diamond code sort the 64 codons into 20 classes ..
    [Show full text]
  • Basic Genetic Terms for Teachers
    Student Name: Date: Class Period: Page | 1 Basic Genetic Terms Use the available reference resources to complete the table below. After finding out the definition of each word, rewrite the definition using your own words (middle column), and provide an example of how you may use the word (right column). Genetic Terms Definition in your own words An example Allele Different forms of a gene, which produce Different alleles produce different hair colors—brown, variations in a genetically inherited trait. blond, red, black, etc. Genes Genes are parts of DNA and carry hereditary Genes contain blue‐print for each individual for her or information passed from parents to children. his specific traits. Dominant version (allele) of a gene shows its Dominant When a child inherits dominant brown‐hair gene form specific trait even if only one parent passed (allele) from dad, the child will have brown hair. the gene to the child. When a child inherits recessive blue‐eye gene form Recessive Recessive gene shows its specific trait when (allele) from both mom and dad, the child will have blue both parents pass the gene to the child. eyes. Homozygous Two of the same form of a gene—one from Inheriting the same blue eye gene form from both mom and the other from dad. parents result in a homozygous gene. Heterozygous Two different forms of a gene—one from Inheriting different eye color gene forms from mom mom and the other from dad are different. and dad result in a heterozygous gene. Genotype Internal heredity information that contain Blue eye and brown eye have different genotypes—one genetic code.
    [Show full text]
  • DNA : TACGCGTATACCGACATT Transcription Will Make Mrna From
    Transcription and Translation Practice: Name _____________________________________ Background: • DNA controls our traits • DNA is found in the nucleus of our cells • Our traits are controlled by proteins • DNA is the instructions to make proteins • Proteins are made in ribosomes (outside the nucleus) • Proteins are made of amino acids Transcription makes RNA from DNA • RNA is complementary to DNA • RNA can leave the nucleus (DNA cannot) Translation makes proteins using RNA • Takes place at the ribosome • mRNA is “read” to put together a protein from amino acids Example: Beyonce has brown eyes. Her eyes look brown because her DNA codes for a brown pigment in the cells of her eyes. This is the gene that codes for brown eyes. DNA : T A C G C G T A T A C C G A C A T T Transcription will make mRNA from DNA mRNA: A U G C G C _________________________ Transcription will join amino acids to make the protein Rules for Transcription: Methionine - Arginine - ____________________________________ Base of DNA → Base in mRNA A → U Rules of Translation: C → G Three letters of mRNA = a codon G → C A codon “codes” for an amino acid We use the “Genetic Code” to determine the amino acids T → A RNA contains Uracil instead of Thymine The complete chain of amino acids will complete the protein that will give Beyonce her brown eyes. If you have brown eyes you have the same protein. If you have blue or green eyes your DNA sequence is a little different which will make the amino acid sequence (protein) a little different.
    [Show full text]
  • Transcription Study Guide This Study Guide Is a Written Version of the Material You Have Seen Presented in the Transcription Unit
    Transcription Study Guide This study guide is a written version of the material you have seen presented in the transcription unit. The cell’s DNA contains the instructions for carrying out the work of the cell. These instructions are used by the cell’s protein-making machinery to create proteins. If the cell’s DNA were directly read by the protein-making machinery, however, it could be damaged and the process would be slow and cumbersome. The cell avoids this problem by copying genetic information from its DNA into an intermediate called messenger RNA (mRNA). It is this mRNA that is read by the cell’s protein-making machinery. This process is called transcription. Components In this section you will be introduced to the components involved in the process of RNA synthesis, called transcription. This process requires an enzyme that uses many nucleotide bases to copy the instructions present in DNA into an intermediate messenger RNA molecule. RNA What is RNA? · Like DNA, RNA is a polymer made up of nucleotides. · Unlike DNA, which is composed of two strands of nucleotides twisted together, RNA is single-stranded. It can also sometimes fold into complex three-dimensional structures. · RNA contains the same nucleotides as DNA, with the substitution of uraciluridine (U) for thymidine (T). · RNA is chemically different from DNA so that the cell can easily tell the two apart. · In this animation, you will see one type of RNA, messenger RNA, being put together. · There are three types of RNA: mRNA, which you will read more about; tRNA, which is used in the translation process, and rRNA, which acts as a structural element in the ribosome (a translation component).
    [Show full text]
  • The Genomics Era: the Future of Genetics in Medicine - Glossary
    The Genomics Era: the Future of Genetics in Medicine - Glossary The glossary below provides a list of key terms used throughout the course. You do not need to read them all now; we’ll be linking back to the main glossary step wherever these terms appear, so you may refer back to this list if you are unsure of the terminology being used. Term Definition The process of matching reads back to their original Alignment position in the reference genome. An allele is one of a number of alternative forms of the same gene or genetic locus. We inherit one copy Allele of our genetic code from our mother and one copy of our genetic code from our father. Each copy is known as an allele. Microarray based genomic comparative hybridisation. This is a technique used to detect chromosome imbalances by comparing patient and control DNA and comparing differences between the two sets. It is Array CGH a useful technique for detecting small chromosome deletions and duplications which would not have been detected with more traditional karyotyping techniques. A unit of DNA. There are four bases which form the Base cross links (or rungs) of the DNA double helix: adenine (A), thymine (T), guanine (G) and cytosine (C). Capture see Target enrichment. The process by which a cell becomes specialized in Cell differentiation order to perform a specific function. Centromere The point at which the sister chromatids are joined. #1 FutureLearn A structure located in the nucleus all living cells, comprised of DNA bound around proteins called histones. The normal number of chromosomes in each Chromosome human cell nucleus is 46 and is composed of 22 pairs of autosomes and a pair of sex chromosomes which determine gender: males have an X and a Y chromosome whilst females have two X chromosomes.
    [Show full text]
  • Glossary/Index
    Glossary 03/08/2004 9:58 AM Page 119 GLOSSARY/INDEX The numbers after each term represent the chapter in which it first appears. additive 2 allele 2 When an allele’s contribution to the variation in a One of two or more alternative forms of a gene; a single phenotype is separately measurable; the independent allele for each gene is inherited separately from each effects of alleles “add up.” Antonym of nonadditive. parent. ADHD/ADD 6 Alzheimer’s disease 5 Attention Deficit Hyperactivity Disorder/Attention A medical disorder causing the loss of memory, rea- Deficit Disorder. Neurobehavioral disorders character- soning, and language abilities. Protein residues called ized by an attention span or ability to concentrate that is plaques and tangles build up and interfere with brain less than expected for a person's age. With ADHD, there function. This disorder usually first appears in persons also is age-inappropriate hyperactivity, impulsive over age sixty-five. Compare to early-onset Alzheimer’s. behavior or lack of inhibition. There are several types of ADHD: a predominantly inattentive subtype, a predomi- amino acids 2 nantly hyperactive-impulsive subtype, and a combined Molecules that are combined to form proteins. subtype. The condition can be cognitive alone or both The sequence of amino acids in a protein, and hence pro- cognitive and behavioral. tein function, is determined by the genetic code. adoption study 4 amnesia 5 A type of research focused on families that include one Loss of memory, temporary or permanent, that can result or more children raised by persons other than their from brain injury, illness, or trauma.
    [Show full text]
  • "The" Genetic Code?
    Evolutionary Anthropology 14:6–11 (2005) CROTCHETS & QUIDDITIES “The” Genetic Code? KENNETH M. WEISS AND ANNE V. BUCHANAN The DNA-based code for protein through messenger and transfer RNA is widely themselves, that carry the informa- regarded as the code of life. But genomes are littered with other kinds of coding tion. elements as well, and all of them probably came after a supercode for the tRNA Your life depends on the fidelity of system itself. these many codes. Aberrant codes re- lated to cell behavior can lead to dys- genesis or various metabolic diseases. Evolution and the diversification of Everyone knows of “the” genetic Anomalous cell-surface proteins can organisms are made possible by code, by which nucleotide triplets in cause autoimmune destruction, and vi- codes, or arbitrary assignments of DNA in the nucleus of cells specify the ruses are the Alan Turings of life that “meaning,” in multiple ways. Many amino acid (aa) sequence of proteins. evolve ways to break their receptor are not widely appreciated. Codes al- This is the code described in text- codes to gain illicit entry into cells (Fig. low the same system of components books as the heart of the genetic the- 1). to be used for multiple purposes. ory of life and its evolution. Discover- But there is an additional code, a These can be open-ended, the way the ies in recent years have made things code of codes, that makes all of this alphabet and vocabulary make this more complicated by showing that ge- possible, including “the” genetic code column possible, but the flexibility of nomes are littered with all sorts of itself, and may be the oldest and most a code can become constrained once a other kinds of coding elements.
    [Show full text]
  • How Genes Work
    Help Me Understand Genetics How Genes Work Reprinted from MedlinePlus Genetics U.S. National Library of Medicine National Institutes of Health Department of Health & Human Services Table of Contents 1 What are proteins and what do they do? 1 2 How do genes direct the production of proteins? 5 3 Can genes be turned on and off in cells? 7 4 What is epigenetics? 8 5 How do cells divide? 10 6 How do genes control the growth and division of cells? 12 7 How do geneticists indicate the location of a gene? 16 Reprinted from MedlinePlus Genetics (https://medlineplus.gov/genetics/) i How Genes Work 1 What are proteins and what do they do? Proteins are large, complex molecules that play many critical roles in the body. They do most of the work in cells and are required for the structure, function, and regulation of thebody’s tissues and organs. Proteins are made up of hundreds or thousands of smaller units called amino acids, which are attached to one another in long chains. There are 20 different types of amino acids that can be combined to make a protein. The sequence of amino acids determineseach protein’s unique 3-dimensional structure and its specific function. Aminoacids are coded by combinations of three DNA building blocks (nucleotides), determined by the sequence of genes. Proteins can be described according to their large range of functions in the body, listed inalphabetical order: Antibody. Antibodies bind to specific foreign particles, such as viruses and bacteria, to help protect the body. Example: Immunoglobulin G (IgG) (Figure 1) Enzyme.
    [Show full text]
  • The Universal Genetic Code, Protein Coding Genes and Genomes of All Species Were Optimized for Frameshift Tolerance Abstract
    bioRxiv preprint doi: https://doi.org/10.1101/067736; this version posted March 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The shiftability of the protein coding genes 1 The universal genetic code, protein coding genes and genomes of 2 all species were optimized for frameshift tolerance 3 Xiaolong Wang*1, Quanjiang Dong2, Gang Chen1, Jianye Zhang1, Yongqiang Liu1, Jinqiao 4 Zhao1, Haibo Peng1, Yalei Wang1, Yujia Cai1, Xuxiang Wang1, Chao Yang1, Michael Lynch3 5 1. College of Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China 6 2. Qingdao Municipal Hospital, Qingdao, Shandong, 266003, P. R. China 7 3. Center for Mechanisms of Evolution, BioDesign Institute, Arizona State University, Tempe, 8 AZ, 85287-7701 9 Abstract 10 Frameshifted coding genes yield truncated and dysfunctional peptides. Frameshift 11 protein sequences encoded by the alternative reading frames of a coding gene have 12 been considered as meaningless. And frameshift mutations have been considered as 13 utterly harmful and of little or no importance for the molecular evolution of proteins. 14 However, previous studies showed that frameshift coding genes can be expressed, and 15 frameshift proteins can be functional by themselves. By analyzing all coding genes in 16 nine model organisms, here we show that protein coding genes have a quasi-constant 17 shiftability of 0.5: the frameshift protein sequences encoded in the alternative frames 18 remain nearly half conservative when compared with the protein sequence encoded in 19 the main frame.
    [Show full text]
  • The Evolution of the Genetic Code: Impasses and Challenges
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of the Academy's Library Special Issue on Code Biology in BioSystems The evolution of the genetic code: impasses and challenges Ádám Kun1,2,3 & Ádám Radványi4 1 Parmenides Center for the Conceptual Foundations of Science, Munich/Pullach, Germany. 2 MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Budapest, Hungary. 3 Evolutionary Systems Research Group, Centre for Ecological Research, Tihany, Hungary 4 Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Eötvös University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary Abstract The origin of the genetic code and translation is a “notoriously difficult problem”. In this survey we present a list of questions that a full theory of the genetic code needs to answer. We assess the leading hypotheses according to these criteria. The stereochemical, the coding coenzyme handle, the coevolution, the four-column theory, the error minimization and the frozen accident hypotheses are discussed. The integration of these hypotheses can account for the origin of the genetic code. But experiments are badly needed. Thus we suggest a host of experiments that could (in)validate some of the models. We focus especially on the coding coenzyme handle hypothesis (CCH). The CCH suggests that amino acids attached to RNA handles enhanced catalytic activities of ribozymes. Alternatively, amino acids without handles or with a handle consisting of a single adenine, like in contemporary coenzymes could have been employed. All three scenarios can be tested in in vitro compartmentalized systems. Keywords Origin of Life; genetic code; RNA world; ribozyme; coding coenzyme handle; Introduction Modern cells store information in DNA and have peptide enzymes to carry out the metabolism for the cell.
    [Show full text]