Endangered Species Bulletin Is an On-Line Publication

Total Page:16

File Type:pdf, Size:1020Kb

Endangered Species Bulletin Is an On-Line Publication U.S. Fish & Wildlife Service Fall 2009 Volume 34, No. 3 IN THIS ISSUE 4 Oases for Endangered Species 6 Bringing a Butterfly Back From the Brink Telephone: 703-358-2171 Contributors Fax: 703-358-1735 Greg Siekaniec 8 Ocelots and the Heritage of Texas E-mail: [email protected] Susan Morse Karen Leggett Web site: Kendall Slee www.fws.gov/endangered/bulletin.html Len Deibert Editor Ken Foote Mike Bender 10 New Disease Threatens Bat Art Director Jennifer A. Hennessey Conservation 13 Biologists Track Sea Otter Decline Cover: At Great Swamp NWR in New Jersey, Indiana bats roost during summer under loose tree bark. (See 16 Mississippi’s Sandhill Cranes story on page 10.) ©Merlin D. Tuttle/Bat Conservation International Opposite page: Sunrise at Okefenokee NWR in Georgia, a refuge for a variety of wildlife, including 18 The Life of a Piping Plover endangered species such as red- cockaded woodpeckers. 20 Bringing Life to a Poisoned River 22 A Challenging Future for the Steller’s Eider The Endangered Species Bulletin is an on-line publication. Three electronic 24 Replanting a Tallgrass Prairie editions are posted each year at www.fws.gov/endangered/bulletin.html, and one highlights edition is published each year. To be notified when a new on-line edi- tion has been posted, sign up for our list-serv by clicking on “E-Mail List” on the Bulletin Web page. The Bulletin welcomes manuscripts on a wide range of topics related to endangered species. We are particularly interested in news about recovery actions and conservation 26 Restoring Habitat at Pearl Harbor partnerships. Please send us your comments and ideas! E-mail them to us at [email protected]. Fall 2009 Endangered Species Bulletin Oases for Endangered Species by Greg Siekaniec It’s no exaggeration to say that controlling water levels and salt content the National Wildlife Refuge System, in sensitive estuaries, replanting native the country’s premier land stewardship vegetation, clearing invasives, restoring system, is vital to many endangered spe- wetlands, and staging controlled burns. cies. More than 280 of the country’s 1,320 But the contribution of national wildlife endangered or threatened species make refuges to vulnerable plants and animals these 550 oases of natural habitat their goes beyond habitat conservation. home. Fifty-nine of these refuges were Working in tandem with other gov- created specifically to protect species at ernment agencies and wildlife groups, risk. refuge biologists study plant life cycles Refuges actively manage the envi- and animal nesting and foraging habits, ronment for these and other creatures, monitoring vulnerable populations by Endangered wood storks nest in the upper branches of trees at Harris Neck National Wildlife Refuge in Georgia. John and Karen Hollingsworth Endangered Species Bulletin Fall 2009 Fall 2009 Endangered Species Bulletin methods as low-tech as visual inspection and as high-tech as radio and satellite A Safe Harbor for Beach Wildlife telemetry. They take part in captive breeding The Bon Secour National Wildlife Refuge on Alabama’s programs, help guard against diseases, Gulf Coast was established in 1980 to preserve more than five and go to great lengths (and depths, in miles (eight kilometers) of intact coastal strand, one of the the case of endangered Ohio River mus- most imperiled and dynamic habitats in the country. These sels) to aid in species recovery programs. dynamic dunes provide habitat for the endangered Alabama Visitor services staff meanwhile incorpo- beach mouse (Peromyscus polionotus ammobates) and three rate the emerging science into outreach listed species of nesting sea turtles. programs, educating the public about the creatures they are protecting and the Bon Secour, translated from French as “safe harbor,” also need for conservation measures large and provides habitat for more than 370 species of birds. Many small. of these are migratory species that complete their arduous Thanks in part to refuge-based efforts, journey from South and Central America to North America 21 species (including, famously, the to breed each year. Bon Secour is the first land these long- bald eagle and, less famously, Eggert’s distance migrants encounter after flying across the Gulf of sunflower) have recovered enough to Mexico. The diverse habitats of the refuge, from coastal be removed from Endangered Species strand to pine flatwoods and mixed hardwoods, provide food, Act protection, and 17 others have been cover, shelter, and resting areas for these weary travelers. upgraded in status from endangered to threatened. New threats loom, however, Bon Secour hosts thousands of visitors each year. It pro- from development pressure, climate vides excellent opportunities for nature study and environ- change, and habitat fragmentation. And mental stewardship to everyone from elementary students to even in the absence of such threats, senior “snowbird” visitors. The refuge benefits from a grow- species recovery can be a long and tricky ing network of volunteers and the support of an established business, given some creatures’ low birth Friends organization. Because one of the purposes of the rates and slow maturation cycles. refuge is to serve as a living laboratory, Bon Secour also hosts A collaborative effort of the Fish university groups, interns, graduate students, and scientists and Wildlife Service’s National Wildlife throughout the year. All are invited to take part. Refuge System and the Endangered Species program, this special issue of the Endangered Species Bulletin looks at Refuge System activities on behalf of several endangered species, from Indiana bats to ocelots in Texas. The stories illus- trate some of the formidable challenges involved in wildlife protection. They also show the dedication and zeal with which refuge staffers face those challenges − and the fascination they have with the creatures they are striving to help. See if you agree. Greg Siekaniec is the Chief of the Service’s National Wildlife Refuge System. George Gentry Rare beach dune habitat supports the endangered Alabama beach mouse at Bon Secour National Wildlife Refuge. Endangered Species Bulletin Fall 2009 Fall 2009 Endangered Species Bulletin Bringing a Butterfly Back by Susan Morse From the Brink As refuges go, it’s not much to look Metalmark butterflies – fragile and at: a sandy patch of scrub land in urban brightly colored – are named for their central California, wedged between a grey, or metallic-tinged, wing tips. Unlike row of industrial complexes and the San many other butterflies that can produce Joaquin River. But unassuming Antioch several generations of offspring each Dunes National Wildlife Refuge is the year, the Lange’s metalmark breeds only world’s last holdout of a finicky spe- once annually. For reasons that are not cies: the Lange’s metalmark butterfly well understood, it sticks close to home. (Apodemia mormo langei). It’s also a fussy customer. It will take Whether the species will survive is not nectar from various plant species, but for yet clear. But human intervention may, at its host plant it prefers a single variety long last, be improving its odds. of buckwheat – naked stem buckwheat (Eriogonum nudum ssp. auriculatum) – found on the refuge. Such habits have helped put the but- A Lange’s metalmark butterfly perches on naked stem buckwheat, its preferred host plant. terfly in a precarious spot. Steady declines in the metalmark’s numbers led to its federal listing in 1976, when it was one of the first insects to be protected under the Endangered Species Act. But the species seemed headed for extinction when, in 2006, the total popula- tion dropped to 158, down from 5,976 in 1997. Even more alarming was the peak count – a key measure butterfly experts, or lepidopterists, use to assess and compare the reproductive health of a species from year to year. Once a week in August through September, they count the number of butterflies that emerge as adults from the chrysalis, the enclosure in which the caterpillar transforms into an adult butterfly. The number of butterflies counted builds weekly and then crests and falls, forming a bell curve. The peak count is the highest of the weekly emergence counts. Louis Terrazas/FWS Endangered Species Bulletin Fall 2009 Fall 2009 Endangered Species Bulletin In 2006, the peak count was just 45. weed trimmers. “It’s really labor inten- head of cattle. “There are lots of native Fish and Wildlife Service staff decided sive,” says Terrazas. “Plus, it’s difficult seeds out there,” says Euing. “They just there was no more time to lose. because you have the two endangered have trouble competing with grasses and plants plus buckwheat out there, which invasives. So if we could take off the top Biologists to the Rescue could have butterflies on it. So you’ve got layer of invasives by grazing, it may allow During the next year’s breeding sea- to be careful where you step, where you native plants to come up on their own.” son, biologists captured nine egg-bearing set equipment, be careful not to pull the The refuge has also had some success females and placed them in two breeding wrong thing.” Using herbicides would be managing for fire. Wildfires over the last facilities – one at Moorpark College, problematic. “If we spray, there might decade have destroyed acres of butterfly the other at University of California- be drift that kills endangered plants habitat, but there’s been no fire on the Riverside. In August 2008 scientists or butterflies,” says Terrazas. “It’s a refuge for almost three years. released 30 adults, 25 larvae, and five predicament.” The metalmark’s future is uncertain, pupae (cocoons) produced from that but Terrazas prefers to look on the bright initial stock onto the refuge. It marked Wanted: More Sand side. “The population has come back up the first successful breed-and-release This past fall and winter, staff and − not in a spectacular fashion, but it’s program for this species.
Recommended publications
  • Anchialine Cave Biology in the Era of Speleogenomics Jorge L
    International Journal of Speleology 45 (2) 149-170 Tampa, FL (USA) May 2016 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Life in the Underworld: Anchialine cave biology in the era of speleogenomics Jorge L. Pérez-Moreno1*, Thomas M. Iliffe2, and Heather D. Bracken-Grissom1 1Department of Biological Sciences, Florida International University, Biscayne Bay Campus, North Miami FL 33181, USA 2Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, USA Abstract: Anchialine caves contain haline bodies of water with underground connections to the ocean and limited exposure to open air. Despite being found on islands and peninsular coastlines around the world, the isolation of anchialine systems has facilitated the evolution of high levels of endemism among their inhabitants. The unique characteristics of anchialine caves and of their predominantly crustacean biodiversity nominate them as particularly interesting study subjects for evolutionary biology. However, there is presently a distinct scarcity of modern molecular methods being employed in the study of anchialine cave ecosystems. The use of current and emerging molecular techniques, e.g., next-generation sequencing (NGS), bestows an exceptional opportunity to answer a variety of long-standing questions pertaining to the realms of speciation, biogeography, population genetics, and evolution, as well as the emergence of extraordinary morphological and physiological adaptations to these unique environments. The integration of NGS methodologies with traditional taxonomic and ecological methods will help elucidate the unique characteristics and evolutionary history of anchialine cave fauna, and thus the significance of their conservation in face of current and future anthropogenic threats.
    [Show full text]
  • Integrative and Comparative Biology Integrative and Comparative Biology, Volume 60, Number 2, Pp
    Integrative and Comparative Biology Integrative and Comparative Biology, volume 60, number 2, pp. 288–303 doi:10.1093/icb/icaa022 Society for Integrative and Comparative Biology SYMPOSIUM Phenotypic Comparability from Genotypic Variability among Physically Structured Microbial Consortia Downloaded from https://academic.oup.com/icb/article/60/2/288/5827464 by College of Charleston user on 02 October 2020 Stephanie K. Hoffman ,1,*,† Kiley W. Seitz,*,‡ Justin C. Havird ,*,§ David A. Weese,*,¶ and Scott R. Santos* *Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, Auburn, AL 36849, USA; †Department of Biological Sciences, Green River College, Auburn, WA 98092, USA; ‡Strutural and Computational Biology Unit, European Molecular Biological Laboratory, 69117 Heidelberg, Germany; §Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA; ¶Department of Biological and Environmental Sciences, Georgia College & State University, Milledgeville, GA 31061, USA From the symposium “SICB Wide Symposium: Building Bridges from Genome to Phenome: Molecules, Methods and Models” presented at the annual meeting of the Society for Integrative and Comparative Biology January 3–7, 2020 at Austin, Texas. 1E-mail: [email protected] Synopsis Microbiomes represent the collective bacteria, archaea, protist, fungi, and virus communities living in or on individual organisms that are typically multicellular eukaryotes. Such consortia have become recognized as having significant impacts on the development, health, and disease status of their hosts. Since understanding the mechanistic connections between an individual’s genetic makeup and their complete set of traits (i.e., genome to phenome) requires consideration at different levels of biological organization, this should include interactions with, and the organization of, microbial consortia.
    [Show full text]
  • From Waha'uia to Ka'aha, Puna and Ka'u, Hawai'i
    COOPERATIVE NATIONAL PARK RESOURCES STUDIES UNIT tlMVEESITY OF HAWAII Department of Botany 3190 Maile Way Honolulu, Hawaii 96822 (808) 541-1247 948-8218 FTS 551-1247 Technical Report 69 AN INVENTORY AND ASSESSMENT OF ANCHLALTNE POOLS IN HAWAII VOLCANOES NATIONAL PARK FROM WAHA'UIA TO KA'AHA, PUNA AND KA'U, HAWAI'I David K. Chai Natural Resources Consultant 75-5776 Iuna Place Kailua-Kona, Hawaii 96740 Linda W. Cuddihy and Charles P. Stone Research Division Hawaii Volcanoes National Park P.O. Box 52 Hawaii National Park, Hawaii 96718 February 1989 UNIVERSITY OF HAWAII AT MANOA NATIONAL PARK SERVICE CONTRACT NO. CA 8015-2-0001 ABSTRACT Seven sites containing a total of 19 anchialine pools were examined along the coast of Hawaii Volcanoes National Park (HAVO) in May and July, 1988. Location, physical characteristics, aquatic macrofauna, and floral comities were recorded from 14 pools (one had no fauna). Fauna included 17 taxa (seven fishes, nine crustaceans, one mollusk). Flora recorded from the pools was in most cases a mixed community of cyanophytes; relatively few pools contained chlorophytes, rhodophytes, and chrysophytes. Reduction of the native biota in many anchialine pools of HAVO is largely attributed to the alien prawn Macrobrachium Lrand the advanced senescence of two pool complex sites. The alien sourbush, Pluchea odorata, accelerates senescence of pools by contributing litter. Results of this study are compared with those from anchialine pools of other locations in Hawai'i, and management recommendations are provided. During a preliminary aerial survey of coastal ponds by the U.S. Fish and Wildlife Service in 1986 (Yuen 1986), several anchialine pool sites were tentatively identified in Hawaii Volcanoes National Park (HAVO) between Wahalula and Kalaha (Figs.
    [Show full text]
  • Assessment of Coastal Water Resources and Watershed Conditions in Kaloko-Honokohau National Historical Park, Hawai‘I
    National Park Service U.S. Department of the Interior Water Resources Division Technical Report NPS/NRWRD/NRTR-2005/344 Natural Resource Program Center ASSESSMENT OF COASTAL WATER RESOURCES AND WATERSHED CONDITIONS IN KALOKO-HONOKOHAU NATIONAL HISTORICAL PARK, HAWAI‘I Dr. Daniel Hoover and Colette Gold Cover photos provided by Kristen Keteles. The National Park Service Water Resources Division is responsible for providing water resources management policy and guidelines, planning, technical assistance, training, and operational support to units of the National Park System. Program areas include water rights, water resources planning, regulatory guidance and review, hydrology, water quality, watershed management, watershed studies, and aquatic ecology. Technical Reports The National Park Service disseminates the results of biological, physical, and social research through the Natural Resources Technical Report Series. Natural resources inventories and monitoring activities, scientific literature reviews, bibliographies, and proceedings of technical workshops and conferences are also disseminated through this series. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the National Park Service. Copies of this report are available from the following: National Park Service (970) 225-3500 Water Resources Division 1201 Oak Ridge Drive, Suite 250 Fort Collins, CO 80525 National Park Service (303) 969-2130 Technical Information Center Denver Service Center P.O. Box 25287 Denver, CO 80225-0287 ii Assessment of Coastal Water Resources and Watershed Conditions in Kaloko-Honokohau National Historical Park, Hawai‘i Dr. Daniel Hoover, Colette Gold Technical Report NPS/NRWRD/NRTR- 2005/344 Department of Oceanography University of Hawai‘i at Manoa Honolulu, HI 96822 December 2005 This report was prepared under Task Order J2380040120 of the Hawai‘i-Pacific Islands Cooperative Ecosystems Studies Unit (agreement H8080040012).
    [Show full text]
  • Behavioral Responses of the Endemic Shrimp Halocaridina Rubra
    Behavioral Responses of the Endemic Shrimp Halocaridina rubra (Malacostraca: Atyidae) to an Introduced Fish, Gambusia affinis (Actinopterygii: Poeciliidae) and Implications for the Trophic Structure of Hawaiian Anchialine Ponds1 Krista A. Capps,2 Caroline B. Turner,2 Michael T. Booth,2 Danica L. Lombardozzi,2 Scott H. McArt,4 David Chai,3 and Nelson G. Hairston Jr.2,5 Abstract: In the Hawaiian Islands, intentionally introduced exotic fishes have been linked to changes in native biodiversity and community composition. In 1905, the mosquito fish Gambusia affinis was introduced to control mosquitoes. Subsequently, G. affinis spread throughout the Islands and into coastal anchia- line ponds. Previous studies suggest that presence of invasive fishes in anchialine ponds may eliminate native species, including the endemic shrimp Halocaridina rubra. We examined effects of G. affinis on H. rubra populations in anchialine ponds on the Kona-Kohala coast of the island of Hawai‘i. In the presence of G. affinis, H. rubra exhibited a diel activity pattern that was not seen in fishless ponds. Shrimp in ponds with fish were active only at night. This pattern was ev- ident in anchialine ponds and in laboratory experiments. In laboratory predation experiments, G. affinis preferentially consumed smaller H. rubra, and in the field the H. rubra collected from invaded sites were larger than those from fishless ponds. Analysis of trophic position using stable isotope analyses showed that feeding of H. rubra was not significantly distinct from that of snails, assumed to feed at trophic level 2.0 on epilithic algae, but G. affinis was slightly omnivo- rous, feeding at tropic level 2.2.
    [Show full text]
  • Index to Volume 53
    Index to Volume 53 Author Index ABURTO-OROPEZA, OCTAVIo-see Sala et al. EWING, CURTIS ALLEN, MELINDA S., and GAIL M. MURAKAMI The Endemic Hawaiian Sap Beetles (Coleoptera: Liina'i Island's Arid Lowland Vegetation in Late Nitidulidae): Distribution, Ecological Shifts, and Prehistory, 88-112 Adaptation (abstract), 114-115 ARREOLA-RoBLES, JosE L.-see Sala et al. ASQUITH, ADAM-see Kido et al. ATAN, HUGO-see Osorio et al. FILARDI, CHRISTOPHER E., CATHERINE E. SMITH, ATKINSON, MARLIN J.-see Tarrant et al. ANDREW W. KRATTER, DAVID W. STEADMAN, and ATKINSON, SHANNON-See Tarrant et al. H. PRICE WEBB New Behavioral, Ecological, and Biogeographic Data BAILEy-BROCK, JULIE H. on the Avifauna of Rennell, Solomon Islands, 319­ NeriIlidae of Hawai'i: Two New Records of 340 Interstitial Polychaetes, 299-304 FLETCHER, CHARLES H., III-see Harney et al. see also Brock et al. FOALE, SIMON BAILEy-BROCK, JULIE H., VERNON R. BROCK, and Local Ecological Knowledge and Biology of the Land RiCHARD E. BROCK Crab Cardisoma hirtipes (Decapoda: Gecarcinidae) Intrusion of Anchialine Species in the Marine at West Nggela, Solomon Islands, 37-49 Environment: The Appearance of an Endemic FOSTER, JAMIE S. Hawaiian Shrimp, Halocaridina rubra, on the South Lipopolysaccharide-Induced Apoptosis in the Shore ofO'ahu (Hawaiian Islands), 367-369 Symbiotic Light Organ of the Sepiolid Squid BIRKELAND, C. E.-see Green et al. Euprymna scolopes (abstract), liS BROCK, RICHARD E.-see Bailey-Brock et al. BROCK, RiCHARD, JULIE H. BAILEy-BROCK, and JOHN GARB, JESSICA E. GOODY Origins ofthe Hawaiian Crab Spider Fauna (abstract), A Case Study of Efficacy of Freshwater Immersion in 115-116 Controlling Introduction of Alien Marine Fouling GARRISON, JENNIFER Communities: The USS Missouri, 223-231 Role of Alien Tree Plantations in Native Forest BROCK, VERNON R.-see Bailey-Brock et al.
    [Show full text]
  • Trails in Snæfellsjökull National Park
    fn Hraunha ardalur (Kinn) Tunguhyrna "Hraunhöfn (Háarif) Ytri Knarratunga Krossavík Syðri Knarrartunga 37 ! Egilsskarð Brimnes Rif Kálfá "Knörr Kinnarhyrna " Hellissandur " " Hella Melnes " (Selvellir) " " Gufuskálavör Skorri (Litlahella) Axlar- p Harðikambur (Hraunskarð) !! Gufuskálar æ " " " 574 Höskuldsá Ingjaldshóll ³ ¬1 (Stapatún) ³ hyrna Öxl un Móðurvör Írskrabrunnur ra Búðaós " rh (Þæfusteinn) " ja (Sveinsstaðakot) (Ósakot) æ (Sveinsstaðir) 574 ³ Fiskbyrgi ³ B Heimahraun Trails in (Skarð) (Vaðstakksheiði) Þórðarklettur ë Bára 68 Breiðavatn ! 1964 57 " (Foss) ! 67 ! Gamlavík Öndverðarnes Írskubúðir Hríshóll Ólafsvík LangavatnJaðargata ¬35 Hákonarhóll Iglutjörn Fálki ! Snæfellsjökull Skarðsvík ¬8 (Jaðragata) Enni e i æ S r ð Sandahraun 232 ! B a v Búðir Búrfell Dýjadalsvatn " í ¬2 Stemmuklettur Selvarða Bekkjahraun Húsanesvatn Miðhús ¬ 25 k 3 ! " (Ytri-Bugur) " National Park M v " ó Innri-Bugur ¬33 P r e s t a h r a u n (Miðhúsavatn) ð u 579 læ ³ 168 ³ ! Laxá (Hraunlönd) Búðahellir k Hvalsá Hvalrauf u Væjuhraun (Fróðárkot) ö r 36 Klettsgata ! 418 ! 18 ¬ ¬ !! 34 88 5 Fossá !! Hólmkelsá Frambúðir Hólsdalur Rjúpnaborgir Skálasnagi Where shall we go? Take care – there Saxhólsbjarg Hellisfjall Búðaklettur r N e s h r a u n Klettsborgir Búðavík ð Fagurhóll There are many hiking trails in and Hallberukjálki ¬10 Hrói ! Hólastígur ö are many natural r t Klukkufoss Snekkjufoss a Bót around Snæfellsjökull National Park, g Anne Dorothea ë B n ¬ Vatnsborgarhóll Rauðhóll 11 l a 469 dangers. Be especially alert t 125 ! á 1817 ! ¬12 and you are sure to find something L g Vik Hreggnasi Saxhólar i Öldungahóll l suitable. Some are clearly marked, and 290! in these areas: Svanborg ë ¬7 ¬14 556 ! 384 most routes are easy to follow.
    [Show full text]
  • Anchialine Restoration in Hawai'i – One Pool Complex at a Time
    Anchialine restoration in Hawai‘i – One pool complex at a time Megan Lamson, Stacey Breining & Bill Gilmartin Hawai‘i Wildlife Fund (wildhawaii.org) 4th Int’l Symposium for Anchialine Ecosystems – Oct 2018 ‘Ula ka loko kāheka i ka ‘ula o loko. Sacred is the red pond where the red shrimp dwell within. B. Seidel Hawai‘i Wildlife Fund Our mission is to protect the native wildlife of Hawai‘i through research, education & conservation projects. Anchialine Pools in Hawai‘i J. Bagshaw / DOFAW B. Seidel Ka‘u Calendar Where in the …. ? C. Yuen / County of Hawai‘i Maps from: http://www.hawaiiecoregionplan.info/anchpoolNC.html Wai‘ōhinu Forest Reserve (Hawai‘i Island) 1,331 acres (538 ha) / 2 mi (3.3 km) of coastline: • Plants: 36 species of native coastal vegetation, including endangered ‘ōhai (Sesbania tomentosa) • Pools: At least 6 anchialine pools with 3 species of shrimp (Halocaridina rubra, Metabetaeus lohena, Palaemon debilis) & a cave • Petroglyphs: Several petroglyph fields & numerous other cultural resources / archeological features 1 3 2 Native wildlife utilizing pools Utah DNR Utah G. Smith / FWS M. Kimura B. Harry / NPS Native plants in/around pools Threats to anchialine ecosystems SOURBUSH CHRISTMAS BERRY SEASHORE PASPALUM LANTANA WHITE LEADTREE Misc. photographers – thank you google. Restoration Phase I (Plants) Restoration Phase II (Sediment) Restoration Phase III (Fish) Photo by John Hoover. According to Leo Nico of USGS, they ran similar bioassays in June 2018 with CFT Legumine (rotenone product) on 3 native neritid snails (Neripteron vespertinum, Neripteron vespertinum, Nerita picea) and 2 more invasive fish species: Mollies (Poecilia sphenops complex), Western Mosquitofish (Gambusia affinis) – all of which are found in anchialine pool ecosystems.
    [Show full text]
  • Reproduction and Development in Halocaridina Rubra Holthuis, 1963 (Crustacea: Atyidae) Clarifies Larval Ecology in the Hawaiian Anchialine Ecosystem
    Reference: Biol. Bull. 229: 134–142. (October 2015) © 2015 Marine Biological Laboratory Reproduction and Development in Halocaridina rubra Holthuis, 1963 (Crustacea: Atyidae) Clarifies Larval Ecology in the Hawaiian Anchialine Ecosystem JUSTIN C. HAVIRD*,†, REBECCA C. VAUGHT, DAVID A. WEESE‡, AND SCOTT R. SANTOS Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Bldg., Auburn, Alabama 36849 Abstract. Larvae in aquatic habitats often develop in and significantly higher in brackish and seawater (88% and environments different from those they inhabit as adults. 72%, respectively). Correlated with this finding, identifi- Shrimp in the Atyidae exemplify this trend, as larvae of able gills capable of ion transport did not develop until many species require salt or brackish water for develop- metamorphosis into juveniles. Thus, early life stages of ment, while adults are freshwater-adapted. An exception H. rubra are apparently excluded from surface waters, within the Atyidae family is the “anchialine clade,” which which are characterized by lower and fluctuating salini- are euryhaline as adults and endemic to habitats with sub- ties. Instead, these stages are restricted to the subterra- terranean fresh and marine water influences. Although the nean (where there is higher and more stable salinity) Hawaiian anchialine atyid Halocaridina rubra is a strong portion of Hawaii’s anchialine habitats due to their in- osmoregulator, its larvae have never been observed in na- ability to tolerate low salinities. Taken together, these ture. Moreover, larval development in anchialine species is data contribute to the understudied area of larval ecology poorly studied. Here, reproductive trends in laboratory col- in the anchialine ecosystem.
    [Show full text]
  • Anchialine Shrimps in the Waikolao Area Has Been Constant, Except for Increases in ‘Ōpae ‘Ula Abundance Since 1996
    Anchialine Ponds Anchialine Pond Shrimps Antecaridina lauensis Calliasmata pholidota ‘Ōpae ‘ula or Halocaridina rubra Halocaridina palahemo Metabetaeus lohena Procaris hawaiana Palaemonella burnsi Vetericaris chaceoru Metabetaeus lohena Courtesy Karl Magnacca SPECIES STATUS: All Federally Listed as Candidates except Halocaridina All State Listed as Candidates except Halocaridina IUCN Red List - Not considered All Endemic except Antecaridina, Calliasmata, Metabeteus SPECIES INFORMATION: This group of species live in underground (hypogeal) environments and in anchialine ponds which have a mix of freshwater and seawater through underground connections to the sea. All of the species except A. lauensis, C. pholidota, and M. lohena are endemic to Hawaii. ‘Ōpae ‘ula reaches 1.5 centimeters (one-half inch) in length and is an herbivore that grazes on algal, bacterial, and diatom films growing on rocks and other hard substrates. They can also filter feed in mid-water and at the surface. The other species are all larger (up to five cm or two inches long) and some are predatory. M. lohena is a snapping shrimp and feeds on ‘ōpae ‘ula. C. pholidota feeds on crustaceans and polychaetes, while P. hawaiana has been seen feeding on shrimp. All have red color and reduced appendages. ‘Ōpae ‘ula carry about 12 fertilized eggs under their abdomen for a brood period of about 38 days. They reproduce one to two times per year. Lifespan of ‘ōpae ‘ula is long, up to 20 years in captivity. Less is known about the life history of the other species, but they are relatively long- lived for species in their taxa. A. lauensis and M. lohena can live six years.
    [Show full text]
  • (Crustacea, Amphipoda, Ingolfiellidae) from an Anchialine Pool on Abd Al Kuri Island, Socotra Archipelago, Yemen
    A peer-reviewed open-access journal ZooKeys 302:A 1–12 new (2013) Ingolfiellid( Crustacea, Amphipoda, Ingolfiellidae) from an anchialine pool... 1 doi: 10.3897/zookeys.302.5261 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research A new Ingolfiellid (Crustacea, Amphipoda, Ingolfiellidae) from an anchialine pool on Abd al Kuri Island, Socotra Archipelago, Yemen Valentina Iannilli1,2,†, Ronald Vonk3,4,‡ 1 ENEA, Technical Unit of Sustainable Management of Agro-Ecosystems, C.R. Casaccia via Anguillarese 301, 00123 Rome, Italy 2 Museo Civico di Storia Naturale di Verona, Lungadige Porta Vittoria, 9, I-37129 – Verona, Italy 3 Naturalis Biodiversity Center, Darwinweg 2, P.O. Box 9517, 2300 RA Leiden, The Ne- therlands 4 Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam 1098 XH, The Netherlands † urn:lsid:zoobank.org:author:73E6D417-5CD1-4749-989E-BF336E24AE16 ‡ urn:lsid:zoobank.org:author:A12CE9EA-80D0-4AF2-83D1-70A87EC56A93 Corresponding author: Ronald Vonk ([email protected]) Academic editor: C. O. Coleman | Received 15 April 2013 | Accepted 15 May 2013 | Published 20 May 2013 urn:lsid:zoobank.org:pub:6F033BB9-B120-412A-957B-0EA64874CD47 Citation: Iannilli V, Vonk R (2013) A new Ingolfiellid (Crustacea, Amphipoda, Ingolfiellidae) from an anchialine pool on Abd al Kuri Island, Socotra Archipelago, Yemen. ZooKeys 302: 1–12. doi: 10.3897/zookeys.302.5261 Abstract Ingolfiella arganoi sp. n. from Abd al Kuri Island in the Arabian Sea is described from two specimens, a male and a female. The western shore of the Indian Ocean was hitherto a vacant spot in the distribution of circumtropical shallow marine interstitial ingolfiellids and therefore the location of the new species fills a meaningful gap in the geography of the family.
    [Show full text]
  • Anchialine Pond Detective Story
    Activity #1 Coastal Unit 3 Activity #1 Anchialine Pond Detective Story ••• Class Period One Anchialine Pond Detective Story Materials & Setup • “The Anchialine Pond Detective Story” acetates (master, pp. 11-19) • Overhead projector and screen For each student or group of three to four students • Student Page “The Anchialine Pond Detective Worksheet” (pp. 20-25) For each student • Student Page “Hypothetically Speaking” (pp. 26-28) Instructions 1) Divide the class into groups of three to four students, or have students work individually. Hand out the Student Page “The Anchialine Pond Detective Worksheet.” 2) There are eight acetates. • Acetate #1 introduces anchialine ponds and the activity. • Acetates #2-6 each pose a mystery for students to resolve to by developing hypotheses. Most include the question, a photo, and a series of observations. • Acetate #7 is an “Information Interlude” that provides students with background for the next “mystery” acetate. • Acetate #8 is another “mystery” acetate that includes a question, a photo, and a series of observations. Use the acetates as a “script” for this activity. Go through the acetates, one by one, giving student groups time to come up with a hypothesis for each question and write it on their worksheets. You may incorporate class discussion into this activity by asking students to discuss their ideas openly with each other before recording their hypotheses. Before moving on to the next acetate, review the correct answer using the responses and additional information provided in the teacher back- ground for “The Anchialine Pond Detective Story” (pp. 7-10). 3) Hand out the Student Page “Hypothetically Speaking” as homework.
    [Show full text]