Insect and Mite Galls: Myths and Misconceptions

Total Page:16

File Type:pdf, Size:1020Kb

Insect and Mite Galls: Myths and Misconceptions PART 2 OF A 3 PART SERIES Insect and Mite Galls: Myths and Misconceptions In Part II of this series, we learn about insect and mite galls, including the Six Laws of such galls. By Joe Boggs and Jim Chatfield n the first installment of this series Although insect and mite gall forma- sharp, piercing mouthparts (chelicerae) on plant galls (May 2015), we talk- tion is not entirely understood, research- to rupture plant cells so they can feed on ed about the difference between ers theorize there are two possible path- the contents. Only the feeding activity of gall-like structures and true galls, ways. Some gall researchers believe certain some species of eriophyid mites induc- including bacterial crown galls, types of plant gall growth are directed by es gall growth; there are no spider mite fungal galls, leaf/petiole galls, the feeding activity of the gall-maker. The gall-makers. This gall-growth pathway flower/fruit galls, bud galls and galls are produced by a combination of may explain how simple felt-like erineum stem galls. Galls galore! But there’s more. constant but subtle feeding irritation, per- patches (a.k.a. “erineum galls”) develop ILet’s dig deeper into insect and mite haps coupled with the release of chemical under the direction of a number eriophyid (arthropods) galls. Unlike bacterial crown inducers by the gall-maker. mite species. However, it does not explain galls, which are a mass of plant cells that Certain eriophyid mites provide an how highly organized plant gall structures have been modified by bacterial DNA, or example. These unusual mites are much develop. fungal galls, which are an assemblage of smaller than spider mites (you need at Some types of insect and mite galls fungal cells intertwined with plant cells, least 40x magnification to see them); are composed of complex plant struc- galls produced by insects and mites are however, both types of mites use their tures and may include functional plant constructed entirely of plant cells. Dominant arthropod gall-makers in- clude insects belonging to three orders: Hymenoptera (wasps, sawflies); Hemip- tera (aphids/adelgids, phylloxerans, psyl- lids); and Diptera (midge flies). The only mites capable of inducing galls are erio- phyids (order Trombidiformes, family Eriophyidae). There are more than 2,000 species of insect gall-makers in the U.S.; however, three quarters belong to only two families: Cynipidae (“gall wasps”) and Cecidomyii- dae (“gall midges”). Note the “cecido-” in the name of the gall midge family; Ceci- dology is the scientific study of plant galls. Of the over 800 different gall-makers on oaks, more than 700 are gall wasps. In other words, when trying to identify an insect gall, keep in mind that there is a high probability it was produced by a gall wasp or gall midge. Top of page, fuzzy, felt-like erineum patch galls appear on a birch leaf. All photos: Courtesy of Joe Boggs 22 | June 2015 | American Nurseryman Mossy rose gall is a good example of a plurilocular, unilarval gall (multiple chambers but only one larva per The large burl affecting this walnut is not a true gall. chamber), while hickory phylloxera petiole gall is a typical unilocular, multilarval gall (one chamber hosting several Below, the oak anthracnose fungus, Apiognomonia larvae). quercina, is seen infecting the plant tissue of the small oak apple gall.. organs such as nectaries. These types of cells that were originally destined to plant galls require a different gall-growth become leaf cells begin marching to a theory; one that includes the ability of the different drummer. Once the errant leaf gall-maker to turn plant genes on and off cells fall under the chemical spell of a gall- as they direct plant cells to form highly or- maker, there is no turning back—they ganized plant structures. will become gall tissue. This means that Research has revealed that some gall formation cannot occur once meri- gall-making insects and mites produce stematic leaf bud cells are committed to chemical replicas of plant hormones, or becoming leaf tissue; it’s one reason the “plant hormone analogs” meaning the leaf-gall season begins in the spring! How- molecules are nothing like plant hor- ever, once the galls start growing they will mones but the plant’s response is the same continue to grow, even after the leaves as with plant hormones. The gall-forming fully expand. galls, midge galls, and so on. While it is process is usually initiated by the female Stem galls that arise from cambial ultimately important to know the when she injects gall-inducing chemicals tissue present a different scenario. Since gall-maker, gall identification usually into the plant along with her eggs. The cambial cells remain “free agents” starts with the gall itself. eggs themselves may ooze gall-inducing throughout the growing season, galls can We’ll provide a quick recap from Part chemicals and once the eggs hatch, the be formed from these cells anytime during I: The first step is to consider where the interaction continues with the immature the growing season, although most stem gall is found on the plant. Most identifica- gall-makers continuing to exude chem- galls also start growing early in the season tion resources use the following locations: icals to direct plant growth to suit their to provide ample time for the gall-maker leaf/petiole galls; flower/fruit galls; bud needs. to complete its development. galls; stems galls; and root galls. The resulting galls provide both a Next, galls are described based on protective home and nourishment for Insect and mite gall their structure such as general appear- the next generation of gall-maker. The identification ance (for example, ball-like, hairy, etc.), a continual direction of gall growth by the Identifying insect and mite galls is number of chambers, and the number gall-maker using chemicals to turn plant challenging because of the limited num- of gall-makers housed in the chambers. genes on and off speaks to why some find ber of accurate and updated gall identifi- Recall that unilocular galls have only one insect and mite plant galls so fascinating. cation resources, both online and printed. chamber; plurilocular galls have multi- The chemicals exuded by gall-mak- This is particularly true for galls found in ple chambers. Unilarval galls only have ers can only act upon meristematic plant North America; the European gall litera- one gall-maker per chamber; multilarval cells, such as the cambial cells mentioned ture is more robust. galls have more than one gall-maker per in Part 1 of this series or the meristemat- The existing gall identification re- chamber. The aforementioned ball-like ic cells in leaf buds; the precursors to leaf sources tend to follow the same general larger oak apple gall is a unilocular, uni- cells. Under the influence of chemicals outline. Most begin by separating galls larval gall. The hairy-looking mossy rose exuded by a gall-maker, the meristematic based on the gall-maker, such as wasp Continued on page 24 The continual direction of gall growth by the gall-maker using chemicals to turn plant genes on and off speaks to why some find insect and mite plant galls so fascinating. www.amerinursery.com | June 2015 | 23 Looking like a green apple, a large oak apple gall contains a wasp larva; once the larva pupates, the mature gall turns tannish brown and appears empty. Continued from page 23 The First Gall Law: Galls are abnormal plant gall produced under the direction of the gall wasp, Diplolepis rosae; a species first growths produced under the direction of a living described by Carl Linnaeus, is a plurilocu- lar, unilarval gall with many chambers but gall-maker; they do not arise spontaneously, nor only one larva per chamber. The ball-like hickory petiole galls are they in response to plant wounding that does produced by several phylloxeran spe- cies (Phylloxera spp.) are usually uniloc- ular, multilarval galls; there is a single not involve a gall-maker. chamber housing many of these aphid relatives. The First Gall Law: Galls are abnor- away plant hormone production; they are mal plant growths produced under the not considered “true galls.” Insect and mite gall laws direction of a living gall-maker; they do The Second Gall Law: Insect and mite While the highly organized plant not arise spontaneously, nor are they in galls are abnormal plant structures that galls produced under the direction of response to plant wounding that does not are composed entirely of plant tissue; many insect and mite gall-makers repre- involve a gall-maker. This law removes they’re not part of the gall-maker. Infec- sent a wide range of forms and locations, certain tree growth such as “burls” from tions by fungal plant pathogens can illus- there are certain consistencies that can be the gall arena. It is believed these abnor- trate that insect and mite plant galls are summarized as “gall laws.” mal plant growths are the result of run- indeed plant structures. The oak anthrac- nose fungus, Apiognomonia quercina, normally infects the leaf cells of its name- sake host producing blackened, necrotic A history of galls leaf tissue. The fungus can also infect the plant tissue of the small oak apple gall Plant galls are remarkable plant structures that have been observed, studied and utilized produced under the direction of the gall since antiquity. The Greek naturalist Theophrastus (372-286 B.C.) wrote about “gall-nuts” of Syria. wasp, Cynips clivorum, because the gall is The Roman naturalist Pliny the Elder (23-79 A.D.) wrote about medical uses of gall extracts.
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Taxonomic Notes and Type Designations of Gall Inducing Cynipid Wasps Described by G.Mayr (Insecta: Hymenoptera: Cynipidae)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 2001 Band/Volume: 103B Autor(en)/Author(s): Bechtold M., Melika George Artikel/Article: Taxonomic notes and type designations of gall inducing cynipid wasps described by G.Mayr (Insecta: Hymenoptera: Cynipidae). 327-339 ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien 103 B 327 - 339 Wien, Dezember 2001 Taxonomic notes and type designations of gall inducing cynipid wasps described by G. Mayr (Insecta: Hymenoptera: Cynipidae) G. Melika & M. Bechtold* Abstract Lectotypes for twelve of Mayr's cynipid gall wasp species (Hymenoptera: Cynipidae: Cynipinae) are desi- gnated. From twenty cynipid gall wasp species, described by Mayr, seven have already been synonymized, and thirteen species are still valid. Andricus insana (WESTWOOD, 1837) syn.n. is a new synonym of Andricus quercustozae (Bosc, 1792). Key words: Cynipidae, gall wasps, Hymenoptera, lectotype designation, Gustav Mayr, new synonymy, taxonomy. Zusammenfassung Lectotypen für zwölf der von Mayr beschriebenen Gallwespenarten (Hymenoptera: Cynipidae: Cynipinae) werden designiert. Mayr hat zwanzig Gallwespenarten beschrieben, davon sind sieben bereits synonymi- siert worden, dreizehn Arten sind noch gültig. Andricus insana (WESTWOOD, 1837) syn.n. ist ein neues Synonym von Andricus quercustozae (Bosc, 1792). Introduction Gustav Mayr, a famous Austrian entomologist, described eleven genera of gall inducing Cynipidae and twenty species from twelve genera (Hymenoptera: Cynipoidea). Seven of them have already been synonymized, while thirteen species are still valid. However, he never designated types for his newly described species. All the specimens are syn- or cotypes and usually these specimens were marked with "Type" or even not so.
    [Show full text]
  • Calameuta Konow 1896 Trachelastatus Morice and Durrant 1915 Syn
    105 NOMINA INSECTA NEARCTICA Calameuta Konow 1896 Trachelastatus Morice and Durrant 1915 Syn. Monoplopus Konow 1896 Syn. Neateuchopus Benson 1935 Syn. Haplocephus Benson 1935 Syn. Microcephus Benson 1935 Syn. Calameuta clavata Norton 1869 (Phylloecus) Trachelus tabidus Fabricius 1775 (Sirex) Sirex macilentus Fabricius 1793 Syn. Cephus Latreille 1802 Cephus mandibularis Lepeletier 1823 Syn. Astatus Jurine 1801 Unav. Cephus nigritus Lepeletier 1823 Syn. Perinistilus Ghigi 1904 Syn. Cephus vittatus Costa 1878 Syn. Peronistilomorphus Pic 1916 Syn. Calamenta [sic] johnsoni Ashmead 1900 Syn. Fossulocephus Pic 1917 Syn. Pseudocephus Dovnar-Zapolskii 1931 Syn. Cephus cinctus Norton 1872 (Cephus) CERAPHRONIDAE Cephus occidentalis Riley and Marlatt 1891 Syn. Cephus graenicheri Ashmead 1898 Syn. Cephus pygmaeus Linnaeus 1766 (Sirex) Tenthredo longicornis Geoffroy 1785 Syn. Aphanogmus Thomson 1858 Tenthredo polygona Gmelin 1790 Syn. Banchus spinipes Panzer 1801 Syn. Aphanogmus bicolor Ashmead 1893 (Aphanogmus) Astatus floralis Klug 1803 Syn. Aphanogmus claviger Kieffer 1907 Syn. Banchus viridator Fabricius 1804 Syn. Ceraphron reitteri Kieffer 1907 Syn. Cephus subcylindricus Gravenhorst 1807 Syn. Aphanogmus canadensis Whittaker 1930 (Aphanogmus) Cephus leskii Lepeletier 1823 Syn. Aphanogmus dorsalis Whittaker 1930 (Aphanogmus) Cephus atripes Stephens 1835 Syn. Aphanogmus floridanus Ashmead 1893 (Aphanogmus) Cephus flavisternus Costa 1882 Syn. Aphanogmus fulmeki Szelenyi 1940 (Aphanogmus) Cephus clypealis Costa 1894 Syn. Aphanogmus parvulus Roberti 1954 Syn. Cephus notatus Kokujev 1910 Syn. Aphanogmus fumipennis Thomson 1858 (Aphanogmus) Cephus tanaiticus Dovnar-Zapolskii 1926 Syn. Aphanogmus grenadensis Ashmead 1896 Syn. Aphanogmus formicarius Kieffer 1905 Syn. Hartigia Schiodte 1838 Ceraphron formicarum Kieffer 1907 Syn. Cerobractus Costa 1860 Syn. Aphanogmus clavatus Kieffer 1907 Syn. Macrocephus Schlechtendal 1878 Syn. Cerphron armatus Kieffer 1907 Syn. Cephosoma Gradl 1881 Syn.
    [Show full text]
  • Developmental Morphology of Bud Galls Induced on the Vegetative Meristems of Quercus Castanea by Amphibolips Michoacaensis (Hymenoptera: Cynipidae)
    Botanical Sciences 93 (4): 685-693, 2015 ECOLOGY DOI: 10.17129/botsci.607 DEVELOPMENTAL MORPHOLOGY OF BUD GALLS INDUCED ON THE VEGETATIVE MERISTEMS OF QUERCUS CASTANEA BY AMPHIBOLIPS MICHOACAENSIS (HYMENOPTERA: CYNIPIDAE) PAULINA HERNÁNDEZ-SOTO1, 4, 6, MIGUEL LARA-FLORES2, LOURDES AGREDANO-MORENO3, LUIS FELIPE JIMÉNEZ-GARCÍA3 , PABLO CUEVAS-REYES5 AND KEN OYAMA1, 4 1Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México. Morelia, Michoacán, México. 2Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México. León, Guanajuato, México. 3Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. México, D.F. 4Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México. Morelia, Michoacán, México. 5Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México. 6Corresponding author: [email protected] Abstract: A gall is the result of complex interactions between a gall inducing-insect and its host plant. Certain groups of insects have the ability to induce a new structure, a gall, on plant organs by altering the normal growth of the host involved plant organ. The gall usually provides shelter and nutrients, in addition to protection against adverse environmental conditions and natural en- emies to the inducing insect and its offspring. The ecological uniqueness of a gall is that it allows the inducing-insect to complete their life cycles. In this study, we have described the structures of different stages of growth of a gall induced by Amphibolips mi- choacaensis on the buds of leaves on Quercus castanea (Fagaceae) to know the subcellular changes during development. The gall consist of various layers such as a nutritive tissue, a lignifi ed sheath, a spongy layer and an outermost epidermis around a centrally located larval chamber.
    [Show full text]
  • A New Genus of Oak Gallwasp, Kokkocynips Pujade-Villar & Melika Gen
    ISSN 0065-1737 Acta Zoológica MexicanaActa Zool. (n.s.), Mex. 29(1): (n.s.) 209-218 29(1) (2013) A NEW GENUS OF OAK GALLWASP, KOKKOCYNIPS PUJADE-VILLAR & MELIKA GEN. N., WITH A DESCRIPTION OF A NEW SPECIES FROM MEXICO (HYMENOPTERA, CYNIPIDAE) J. PUJADE-VILLAR1, A. EQUIHUA-MARTÍNEZ2, E. G. ESTRADA-VENEGAS2 & G. MELIKA3 1 Universitat de Barcelona, Facultat de Biologia, Departament de Biologia Animal, Avda. Diagonal 645, 08028-Barcelona (Spain). < [email protected]> 2 Instituto de Fitosanidad, Colegio de Postgraduados, 56230 Montecillo, Texcoco, Estado de México (México). <[email protected]>; <[email protected]> 3 Budapest Pest Diagnostic Laboratory, Directorate of Plant Protection, Soil Conservation and Agri- environment, National Food Chain Safety Office. Budaörsi u. 141-145, H-1118 Budapest (Hungary). <[email protected]> Pujade-Villar, J., Equihua-Martínez, A., Estrada-Venegas, E. G. & Melika, G. 2013. A new genus of oak gallwasp, Kokkocynips Pujade-Villar & Melika gen. n., with a description of a new species from Mexico (Hymenoptera, Cynipidae). Acta Zoológica Mexicana (n. s.), 29(1): 209-218. ABSTRACT. A new genus of oak gallwasp, Kokkocynips Pujade-Villar & Melika gen. n., is described from Mexico. Diagnostic characters and generic limits of the new genus are discussed in detail. Galls were found on branches of Quercus acutifolia Née. Diagnostic characters, distribution and biology of the new species are described and illustrated. Key words: Cynipidae, gallwasp, Kokkocynips doctorrosae, taxonomy, morphology, distribution, biology. Pujade-Villar, J., Equihua-Martínez, A., Estrada-Venegas, E. G. & Melika, G. 2013. Nuevo género de avispa agallícola del encino, Kokkocynips Pujade-Villar & Melika gen. n., con descripción de una nueva especies de México (Hymenoptera, Cynipidae).
    [Show full text]
  • Hymenoptera: Cynipidae: Cynipini
    Dugesiana 18(1): 17-22 Fecha de publicación: 29 de julio de 2011 © Universidad de Guadalajara A new species of Disholcaspis Dalla Torre and Kieffer oak gallwasp from Costa Rica (Hymenoptera: Cynipidae: Cynipini) Una especie nueva de avispa formadora de agallas del género Disholcaspis Dalla Torre y Kieffer de Costa Rica (Hymenoptera: Cynipidae: Cynipini) G. Melika 1, P. Hanson 2 & J. Pujade-Villar 3 1 Pest Diagnostic Laboratory, Plant Protection & Soil Conservation Directorate of County Vas, Ambrozy setany 9762 Tanakajd (Hungary). e-mail: [email protected]; 2 Escuela de Biología, Universidad de Costa Rica, San Pedro, Costa Rica. e-mail: [email protected]; 3 Universitat de Barcelona, Facultat de Biologia, Departament de Biologia Animal, Avda. Diagonal 645, 08028-Barcelona (Spain). e-mail: [email protected] ABSTRACT A new species of oak gallwasp, Disholcaspis costaricensis Melika & Pujade-Villar, is described from Costa Rica. Only asexual females are known and they induce galls on Quercus bumelioides. Data on the diagnosis, distribution and biology of the new species are given. Key words: Cynipidae, oak gallwasp, Disholcaspis, taxonomy, morphology, distribution, biology. RESUMEN Se describe una nueva especie de avispa formadora de agallas de Costa Rica: Disholcaspis costaricensis Melika & Pujade-Villar. Sólo se conoce la generación asexual, la cual se obtiene de agallas colectadas en Quercus bumelioides. Se exponen los datos diagnósticos la distribución y biología de esta especie. Palabras clave: Cynipidae, avispas cecidógenas, Disholcaspis, taxonomía, morfología, distribución, biología. INTRODUCTION MATERIALS AND METHODS The cynipid gallwasp fauna (Hymenoptera: Cynipidae) of Adult gallwasps were reared from galls collected on Quercus Costa Rica is poorly known. Fergusson (1995) mentioned the bumelioides Liebm.
    [Show full text]
  • A Keeper of Many Crypts: the Parasitoid Euderus Set Manipulates the Behavior of a Taxonomically Diverse Array of Oak Gall Wasp Species
    bioRxiv preprint doi: https://doi.org/10.1101/516104; this version posted March 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A keeper of many crypts: the parasitoid Euderus set manipulates the behavior of a taxonomically diverse array of oak gall wasp species. Anna K. G. Ward1, Omar S. Khodor1, Scott P. Egan2, Kelly L. Weinersmith2 and Andrew A. Forbes1 1 Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA 2 Department of BioSciences, Rice University, Houston, Texas 77005, USA Abstract: Parasites of animals and plants can encounter trade-offs between their specificity to any single host and their fitness on alternative hosts. For parasites that manipulate their host’s behavior, the complexity of that manipulation may further limit the parasite’s host range. The recently described crypt- keeper wasp, Euderus set, changes the behavior of the gall wasp Bassettia pallida such that B. pallida chews an incomplete exit hole in the side of its larval chamber and “plugs” that hole with its head. E. set benefits from this head plug, as it facilitates the escape of the parasitoid from the crypt after it completes development. Here, we ask whether this behavioral manipulator is limited to Bassettia hosts. We find that E. set attacks and manipulates the behavior of at least six additional gall wasp species, and that these hosts are taxonomically diverse. Interestingly, each of E. set’s hosts has converged upon similarities in their extended phenotypes: the galls they induce on oaks share characters that may make them vulnerable to attack by E.
    [Show full text]
  • Index to Cecidology up to Vol. 31 (2016)
    Index to Cecidology Up to Vol. 31 (2016) This index has been based on the contents of the papers rather than on their actual titles in order to facilitate the finding of papers on particular subjects. The figures following each entry are the year of publication, the volume and, in brackets, the number of the relevant issue. Aberbargoed Grasslands: report of 2011 field meeting 2012 27 (1) Aberrant Plantains 99 14(2) Acacia species galled by Fungi in India 2014 29(2) Acer gall mites (with illustrations) 2013 28(1) Acer galls: felt galls re-visited 2005 20(2) Acer saccharinum – possibly galled by Dasineura aceris new to Britain 2017 32(1) Acer seed midge 2009 24(1) Aceria anceps new to Ireland 2005 20 (1) Aceria geranii from North Wales 1999 14(2) Aceria heteronyx galling twigs of Norway Maple 2014 29(1) Aceria ilicis (gall mite) galling holm oak flowers in Brittany 1997 12(1) In Ireland 2010 25(1) Aceria mites on sycamore 2005 20(2) Aceria populi galling aspen in Scotland 2000 15(2) Aceria pterocaryae new to the British mite fauna 2008 23(2) Aceria rhodiolae galling roseroot 2013 28(1): 2016 31(1) Aceria rhodiolae in West Sutherland 2014 29(1) Aceria tristriata on Walnut 2007 22(2) Acericecis campestre sp. nov. on Field Maple 2004 19(2) Achillea ptarmica (sneezewort) galled by Macrosiphoniella millefolii 1993 8(2) Acorn galls on red oak 2014 29(1) Acorn stalks: peculiar elongation 2002 17(2) Aculops fuchsiae – a fuchsia-galling mite new to Britain 2008 23 (1) Aculus magnirostris new to Ireland 2005 20 (1) Acumyia acericola – the Acer seed
    [Show full text]
  • Molecular Identification of Andricus Species (Hymenoptera
    Edinburgh Research Explorer Molecular identification of Andricus species (Hymenoptera Citation for published version: Tavakoli, M, Khaghaninia, S, Melika, G, Stone, GN & Hosseini-Chegeni, A 2019, 'Molecular identification of Andricus species (Hymenoptera: Cynipidae) inducing various oak galls in Central Zagros of Iran', Mitochondrial DNA Part A, pp. 1-8. https://doi.org/10.1080/24701394.2019.1622693 Digital Object Identifier (DOI): 10.1080/24701394.2019.1622693 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Mitochondrial DNA Part A Publisher Rights Statement: This is an Accepted Manuscript of an article published by Taylor & Francis in Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis on 20 June 2019, available online: https://www.tandfonline.com/doi/full/10.1080/24701394.2019.1622693 General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 Molecular identification of Andricus species (Hymenoptera: Cynipidae) inducing various oak galls in central Zagros of Iran Majid Tavakolia, Samad Khaghaniniaa, George Melikab, Graham N. Stonec, Asadollah Hosseini-Chegenid,e a University of Tabriz, Faculty of Agriculture, Department of Plant Protection, Tabriz, Iran b Plant Health and Molecular Biology Laboratory, National Food Chain Safety Office, Directorate of Plant Protection, Soil Conservation and Agri-environment, Budaorsi str.
    [Show full text]
  • Not All Oak Gall Wasps Gall Oaks: the Description of DRYOCOSMUS RILEYPOKEI, a New, Apostate Species of Cynipini from California
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA Systematic Entomology Laboratory Entomology Collections, Miscellaneous 2009 Not All Oak Gall Wasps Gall Oaks: The Description of DRYOCOSMUS RILEYPOKEI, a new, Apostate Species of Cynipini from California Matthew L. Buffington Smithsonian Institution, [email protected] Shelah I. Morita North Carolina State University Follow this and additional works at: https://digitalcommons.unl.edu/systentomologyusda Part of the Entomology Commons Buffington, Matthew L. and Morita, Shelah I., "Not All Oak Gall Wasps Gall Oaks: The Description of DRYOCOSMUS RILEYPOKEI, a new, Apostate Species of Cynipini from California" (2009). USDA Systematic Entomology Laboratory. 64. https://digitalcommons.unl.edu/systentomologyusda/64 This Article is brought to you for free and open access by the Entomology Collections, Miscellaneous at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA Systematic Entomology Laboratory by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. PROC. ENTOMOL. SOC. WASH. 111(1), 2009, pp. 244–253 NOT ALL OAK GALL WASPS GALL OAKS: THE DESCRIPTION OF DRYOCOSMUS RILEYPOKEI, A NEW, APOSTATE SPECIES OF CYNIPINI FROM CALIFORNIA MATTHEW L. BUFFINGTON AND SHELAH I. MORITA1 (MLB) Systematic Entomology Lab, USDA, c/o NMNH, Smithsonian Institution, 10th & Constitution Ave NW, P.O. Box 37012 MRC-168, Washington DC 20013, USA (tel: 202-382-1784 e-mail: [email protected]); (SIM) Department of Entomology, North Carolina State University, Campus Box 7613, 2301 Gardner Hall, Raleigh, NC 27695-7613, USA (e-mail: [email protected]) Abstract.—Cynipini gall wasps (Hymenoptera: Cynipidae) are commonly known as oak gall wasps for their almost exclusive use of oak (Quercus spp.; Fagaceae) as their host plant.
    [Show full text]
  • A Survey of Key Arthropod Pests on Common Southeastern Street Trees
    Arboriculture & Urban Forestry 45(5): September 2019 155 Arboriculture & Urban Forestry 2019. 45(5):155–166 ARBORICULTURE URBAN FORESTRY Scientific Journal of the International& Society of Arboriculture A Survey of Key Arthropod Pests on Common Southeastern Street Trees By Steven D. Frank Abstract. Cities contain dozens of street tree species each with multiple arthropod pests. Developing and implementing integrated pest management (IPM) tactics, such as scouting protocols and thresholds, for all of them is untenable. A survey of university research and extension personnel and tree care professionals was conducted as a first step in identifying key pests of common street tree genera in the Southern United States. The survey allowed respondents to rate seven pest groups from 0 (not pests) to 3 (very important or damaging) for each of ten tree genera. The categories were sucking insects on bark, sucking insects on leaves, defoliators and leafminers, leaf and stem gall forming arthropods, trunk and twig borers and bark beetles, and mites. Respondents could also identify important pest species within categories. Some tree genera, like Quercus and Acer, have many important pests in multiple categories. Other genera like Lirioden- dron, Platanus, and Lagerstroemia have only one or two key pests. Bark sucking insects were the highest ranked pests of Acer spp. Defo- liators, primarily caterpillars, were ranked highest on Quercus spp. followed closely by leaf and stem gallers, leaf suckers, and bark suckers. All pest groups were rated below ‘1’ on Zelkova spp. Identifying key pests on key tree genera could help researchers prioritize IPM development and help tree care professionals prioritize their training and IPM implementation.
    [Show full text]
  • Hymenoptera: Cynipidae: Cynipini) G
    Dugesiana16(1): 35-39 Fecha de publicación: 31 de julio de 2009 © Universidad de Guadalajara New species of oak gallwasp from Costa Rica (Hymenoptera: Cynipidae: Cynipini) G. Melika 1, N. Pérez-Hidalgo2, P. Hanson 3 & J. Pujade-Villar 4 1 Pest Diagnostic Laboratory, Plant Protection & Soil Conservation Directorate of County Vas, Ambrozy setany 9762 Tanakajd (Hungary). e-mail: [email protected]; 2 Universidad de León, Departamento de Biodiversidad y Gestión Ambiental, 24071. León (Spain). e-mail: [email protected]; 3 Universidad de Costa Rica, Biología, UCR, San Pedro, Costa Rica. e-mail: [email protected]; 4 Universitat de Barcelona, Facultat de Biologia, Departament de Biologia Animal, Avda. Diagonal 645, 08028-Barcelona (Spain). E-mail: [email protected] Abstract A new species of oak gallwasp, Andricus costaricensis Pujade-Villar & Melika is described from Costa Rica. Only asexual females are known to induce galls on Quercus costaricensis. Data on the diagnosis, distribution and biology of the new species is given. Key words: Cynipidae, oak gallwasp, Andricus, taxonomy, morphology, distribution, biology. The cynipid gallwasp fauna (Hymenoptera: Cynipidae) of (Alan Hadley) and Adobe Photoshop 6.0. Gall images were Costa Rica is poorly known. Fergusson (1995) mentioned the taken by N. Pérez-Hidalgo. presence of different cynipid genera; Díaz et al. (2002) listed The type material is deposited in the next institutions: UB, 6 species of Cynipidae. Recently one species, Odontocynips University of Barcelona, Spain (curator J. Pujade-Villar); PDL, hansoni Pujade-Villar was described (Pujade-Villar, 2009). Pest Diagnostic Laboratory (the former Systematic Parasitoid The species diversity of the Mexican gallwasps, especially Laboratory, SPL), Tanakajd, Hungary (G.
    [Show full text]