Molecular Taxonomy and Population Structure of a Culicoides Midge Vector
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Detection of Culicoides Spp. and Culicoides Imicola, The
Molecular detection of Culicoides spp. and Culicoides imicola, the principal vector of bluetongue (BT) and African horse sickness (AHS) in Africa and Europe Catherine Cêtre-Sossah, Thierry Baldet, Jean-Claude Delécolle, Bruno Mathieu, Aurélie Perrin, Colette Grillet, Emmanuel Albina To cite this version: Catherine Cêtre-Sossah, Thierry Baldet, Jean-Claude Delécolle, Bruno Mathieu, Aurélie Perrin, et al.. Molecular detection of Culicoides spp. and Culicoides imicola, the principal vector of bluetongue (BT) and African horse sickness (AHS) in Africa and Europe. Veterinary Research, BioMed Central, 2004, 35 (3), pp.325-337. 10.1051/vetres:2004015. hal-00902785 HAL Id: hal-00902785 https://hal.archives-ouvertes.fr/hal-00902785 Submitted on 1 Jan 2004 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Vet. Res. 35 (2004) 325–337 325 © INRA, EDP Sciences, 2004 DOI: 10.1051/vetres:2004015 Original article Molecular detection of Culicoides spp. and Culicoides imicola, the principal vector of bluetongue (BT) and African horse sickness (AHS) in Africa and Europe -
Diptera: Ceratopogonidae) in Tunisia, with Emphasis on the Bluetongue Vector Culicoides Imicola Hammami S.*, Bouzid M.*, Hammou F.*, Fakhfakh E.* & Delecolle J.C.**
Article available at http://www.parasite-journal.org or http://dx.doi.org/10.1051/parasite/2008152179 OCCURRENCE OF CULICOIDES SPP. (DIPTERA: CERATOPOGONIDAE) IN TUNISIA, WITH EMPHASIS ON THE BLUETONGUE VECTOR CULICOIDES IMICOLA HAMMAMI S.*, BOUZID M.*, HAMMOU F.*, FAKHFAKH E.* & DELECOLLE J.C.** Summary: Résumé : PRÉSENCE DE DIFFÉRENTES ESPÈCES DE CULICOIDES (DIPTERA : CERATOPOGONIDAE) EN TUNISIE, EN PARTICULIER DE Following the bluetongue (BT) outbreaks in Tunisia from 1999 to CULICOIDES IMICOLA, VECTEUR DE LA FIÈVRE CATARRHALE OVINE 2002, BTV (bluetongue virus) serotype 2 was isolated; however, no entomological investigation was performed. In the study Suite à l’incursion de la fièvre catarrhale ovine (bluetongue) en presented here, we assessed the Culicoides species populations Tunisie en 1999, le sérotype 2 du virus responsable a été isolé, (particularly C. imicola) in proximity to the BT outbreaks locations, toutefois, aucune investigation entomologique n’a été entreprise. both as a retrospective analysis and to update the list of Dans cette étude, nous avons évalué les populations de Culicoides Culicoides species present in Tunisia. The insects were caught (en particulier C. imicola) à proximité des foyers de la maladie, using light traps and the species identification was performed comme approche rétrospective et pour mettre à jour la liste des according to the standard entomological methods. This study espèces de Culicoides présentes dans le pays. Les insectes ont été revealed the presence of significant numbers of C. imicola in all capturés en utilisant des pièges lumineux. Cette étude a permis de the tested locations. In addition, we reported a new Culicoides détecter un grand nombre de C. -
Insects in Cretaceous and Cenozoic Amber of Eurasia and North America
Insects in Cretaceous and Cenozoic Amber of Eurasia and North America Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, ul. Bogdana Khmel’nitskogo 15, Kiev, 01601 Ukraine email: [email protected] Edited by E. E. Perkovsky ISSN 00310301, Paleontological Journal, 2016, Vol. 50, No. 9, p. 935. © Pleiades Publishing, Ltd., 2016. Preface DOI: 10.1134/S0031030116090100 The amber is wellknown as a source of the most Eocene ambers. However, based on paleobotanical valuable, otherwise inaccessible information on the data, confirmed by new paleoentomological data, it is biota and conditions in the past. The interest in study dated Middle Eocene. Detailed discussions of dating ing Mesozoic and Paleogene ambers has recently and relationships of Sakhalinian ants is provided in the sharply increased throughout the world. The studies first paper of the present volume, in which the earliest included in this volume concern Coleoptera, ant of the subfamily Myrmicinae is described from Hymenoptera, and Diptera from the Cretaceous, the Sakhalinian amber and assigned to an extant Eocene, and Miocene amber of the Taimyr Peninsula, genus. The earliest pedogenetic gall midge of the Sakhalin Island, Baltic Region, Ukraine, and Mexico. tribe Heteropezini from the Sakhalinian amber is Yantardakh is the most important Upper Creta also described here. ceous insect locality in northern Asia, which was dis The Late Eocene Baltic amber is investigated better covered by an expedition of the Paleontological Insti than any other; nevertheless, more than half of its tute of the Academy of Sciences of the USSR fauna remains undescribed; the contemporaneous (at present, Borissiak Paleontological Institute, Rus fauna from the Rovno amber is investigated to a con sian Academy of Sciences: PIN) in 1970 and addition siderably lesser degree. -
<I>Culicoides
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 2015 A revision of the biting midges in the Culicoides (Monoculicoides) nubeculosus-stigma complex in North America with the description of a new species (Diptera: Ceratopogonidae) William L. Grogan Jr. Florida State Collection of Arthropods, [email protected] Timothy J. Lysyk Lethbridge Research Centre, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Grogan, William L. Jr. and Lysyk, Timothy J., "A revision of the biting midges in the Culicoides (Monoculicoides) nubeculosus-stigma complex in North America with the description of a new species (Diptera: Ceratopogonidae)" (2015). Insecta Mundi. 947. http://digitalcommons.unl.edu/insectamundi/947 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0441 A revision of the biting midges in the Culicoides (Monoculicoides) nubeculosus-stigma complex in North America with the description of a new species (Diptera: Ceratopogonidae) William L. Grogan, Jr. Florida State Collection of Arthropods Florida Department of Agriculture and Consumer Services Gainesville, Florida 32614-7100 U.S.A. Timothy J. Lysyk Lethbridge Research Centre 5401-1st Ave. South P. O. Box 3000 Lethbridge, Alberta T1J 4B1, Canada Date of Issue: August 28, 2015 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL William L. -
Insects Commonly Mistaken for Mosquitoes
Mosquito Proboscis (Figure 1) THE MOSQUITO LIFE CYCLE ABOUT CONTRA COSTA INSECTS Mosquitoes have four distinct developmental stages: MOSQUITO & VECTOR egg, larva, pupa and adult. The average time a mosquito takes to go from egg to adult is five to CONTROL DISTRICT COMMONLY Photo by Sean McCann by Photo seven days. Mosquitoes require water to complete Protecting Public Health Since 1927 their life cycle. Prevent mosquitoes from breeding by Early in the 1900s, Northern California suffered MISTAKEN FOR eliminating or managing standing water. through epidemics of encephalitis and malaria, and severe outbreaks of saltwater mosquitoes. At times, MOSQUITOES EGG RAFT parts of Contra Costa County were considered Most mosquitoes lay egg rafts uninhabitable resulting in the closure of waterfront that float on the water. Each areas and schools during peak mosquito seasons. raft contains up to 200 eggs. Recreational areas were abandoned and Realtors had trouble selling homes. The general economy Within a few days the eggs suffered. As a result, residents established the Contra hatch into larvae. Mosquito Costa Mosquito Abatement District which began egg rafts are the size of a grain service in 1927. of rice. Today, the Contra Costa Mosquito and Vector LARVA Control District continues to protect public health The larva or ÒwigglerÓ comes with environmentally sound techniques, reliable and to the surface to breathe efficient services, as well as programs to combat Contra Costa County is home to 23 species of through a tube called a emerging diseases, all while preserving and/or mosquitoes. There are also several types of insects siphon and feeds on bacteria enhancing the environment. -
Diptera: Psychodidae) of Northern Thailand, with a Revision of the World Species of the Genus Neotelmatoscopus Tonnoir (Psychodinae: Telmatoscopini)" (2005)
Masthead Logo Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1-1-2005 A review of the moth flies D( iptera: Psychodidae) of northern Thailand, with a revision of the world species of the genus Neotelmatoscopus Tonnoir (Psychodinae: Telmatoscopini) Gregory Russel Curler Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Recommended Citation Curler, Gregory Russel, "A review of the moth flies (Diptera: Psychodidae) of northern Thailand, with a revision of the world species of the genus Neotelmatoscopus Tonnoir (Psychodinae: Telmatoscopini)" (2005). Retrospective Theses and Dissertations. 18903. https://lib.dr.iastate.edu/rtd/18903 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. A review of the moth flies (Diptera: Psychodidae) of northern Thailand, with a revision of the world species of the genus Neotelmatoscopus Tonnoir (Psychodinae: Telmatoscopini) by Gregory Russel Curler A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Entomology Program of Study Committee: Gregory W. Courtney (Major Professor) Lynn G. Clark Marlin E. Rice Iowa State University Ames, Iowa 2005 Copyright © Gregory Russel Curler, 2005. All rights reserved. 11 Graduate College Iowa State University This is to certify that the master's thesis of Gregory Russel Curler has met the thesis requirements of Iowa State University Signatures have been redacted for privacy Ill TABLE OF CONTENTS LIST OF FIGURES .............................. -
(Neuroptera) from the Upper Cenomanian Nizhnyaya Agapa Amber, Northern Siberia
Cretaceous Research 93 (2019) 107e113 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Short communication New Coniopterygidae (Neuroptera) from the upper Cenomanian Nizhnyaya Agapa amber, northern Siberia * Vladimir N. Makarkin a, Evgeny E. Perkovsky b, a Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia b Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, ul. Bogdana Khmel'nitskogo 15, Kiev, 01601, Ukraine article info abstract Article history: Libanoconis siberica sp. nov. and two specimens of uncertain affinities (Neuroptera: Coniopterygidae) are Received 28 April 2018 described from the Upper Cretaceous (upper Cenomanian) Nizhnyaya Agapa amber, northern Siberia. Received in revised form The new species is distinguished from L. fadiacra (Whalley, 1980) by the position of the crossvein 3r-m 9 August 2018 being at a right angle to both RP1 and the anterior trace of M in both wings. The validity of the genus Accepted in revised form 11 September Libanoconis is discussed. It easily differs from all other Aleuropteryginae by a set of plesiomorphic 2018 Available online 15 September 2018 character states. The climatic conditions at high latitudes in the late Cenomanian were favourable enough for this tropical genus, hitherto known from the Gondwanan Lebanese amber. Therefore, the Keywords: record of a species of Libanoconis in northern Siberia is highly likely. © Neuroptera 2018 Elsevier Ltd. All rights reserved. Coniopterygidae Aleuropteryginae Cenomanian Nizhnyaya Agapa amber 1. Introduction 2. Material and methods The small-sized neuropteran family Coniopterygidae comprises This study is based on three specimens originally embedded in ca. -
Volume 2, Chapter 12-19: Terrestrial Insects: Holometabola-Diptera
Glime, J. M. 2017. Terrestrial Insects: Holometabola – Diptera Nematocera 2. In: Glime, J. M. Bryophyte Ecology. Volume 2. 12-19-1 Interactions. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. eBook last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 12-19 TERRESTRIAL INSECTS: HOLOMETABOLA – DIPTERA NEMATOCERA 2 TABLE OF CONTENTS Cecidomyiidae – Gall Midges ........................................................................................................................ 12-19-2 Mycetophilidae – Fungus Gnats ..................................................................................................................... 12-19-3 Sciaridae – Dark-winged Fungus Gnats ......................................................................................................... 12-19-4 Ceratopogonidae – Biting Midges .................................................................................................................. 12-19-6 Chironomidae – Midges ................................................................................................................................. 12-19-9 Belgica .................................................................................................................................................. 12-19-14 Culicidae – Mosquitoes ................................................................................................................................ 12-19-15 Simuliidae – Blackflies -
Detection of Vesicular Stomatitis Virus Indiana from Insects Collected During the 2020 Outbreak in Kansas, USA
pathogens Article Detection of Vesicular Stomatitis Virus Indiana from Insects Collected during the 2020 Outbreak in Kansas, USA Bethany L. McGregor 1,† , Paula Rozo-Lopez 2,† , Travis M. Davis 1 and Barbara S. Drolet 1,* 1 Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; [email protected] (B.L.M.); [email protected] (T.M.D.) 2 Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Vesicular stomatitis (VS) is a reportable viral disease which affects horses, cattle, and pigs in the Americas. Outbreaks of vesicular stomatitis virus New Jersey serotype (VSV-NJ) in the United States typically occur on a 5–10-year cycle, usually affecting western and southwestern states. In 2019–2020, an outbreak of VSV Indiana serotype (VSV-IN) extended eastward into the states of Kansas and Missouri for the first time in several decades, leading to 101 confirmed premises in Kansas and 37 confirmed premises in Missouri. In order to investigate which vector species contributed to the outbreak in Kansas, we conducted insect surveillance at two farms that experienced confirmed VSV-positive cases, one each in Riley County and Franklin County. Centers for Disease Control and Prevention miniature light traps were used to collect biting flies on the premises. Two genera of known VSV vectors, Culicoides biting midges and Simulium black flies, were identified to species, Citation: McGregor, B.L.; Rozo- pooled by species, sex, reproductive status, and collection site, and tested for the presence of VSV- Lopez, P.; Davis, T.M.; Drolet, B.S. -
Culicoides Variipennis and Bluetongue-Virus Epidemiology in the United States1
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 1996 CULICOIDES VARIIPENNIS AND BLUETONGUE-VIRUS EPIDEMIOLOGY IN THE UNITED STATES1 Walter J. Tabachnick Arthropod-Borne Animal Diseases Research Laboratory, USDA, ARS Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Tabachnick, Walter J., "CULICOIDES VARIIPENNIS AND BLUETONGUE-VIRUS EPIDEMIOLOGY IN THE UNITED STATES1" (1996). Publications from USDA-ARS / UNL Faculty. 2218. https://digitalcommons.unl.edu/usdaarsfacpub/2218 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. AN~URev. Entomol. 19%. 41:2343 CULICOIDES VARIIPENNIS AND BLUETONGUE-VIRUS EPIDEMIOLOGY IN THE UNITED STATES' Walter J. Tabachnick Arthropod-Borne Animal Diseases Research Laboratory, USDA, ARS, University Station, Laramie, Wyoming 8207 1 KEY WORDS: arbovirus, livestock, vector capacity, vector competence, population genetics ABSTRACT The bluetongue viruses are transmitted to ruminants in North America by Culi- coides vuriipennis. US annual losses of approximately $125 million are due to restrictions on the movement of livestock and germplasm to bluetongue-free countries. Bluetongue is the most economically important arthropod-borne ani- mal disease in the United States. Bluetongue is absent in the northeastern United States because of the inefficient vector ability there of C. variipennis for blue- tongue. The vector of bluetongue virus elsewhere in the United States is C. -
Some Irradiation Studies and Related Biological Data for Culicoides Variipennis (Diptera: Ceratopogonidae)1
836 X\NNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA [Vol. 60, No. 4 tory, natural enemies and the poisoned bait spray as a of the Diptera of America North of Mexico. USDA method of control of the imported onion fly (Phorbia Agr. Handbook 276. 1696 p. scpctorum Meade) with notes on other onion pests. Vos de Wilde, B. 1935. Contribution a l'etude des lar- J. Econ. Entomol. 8: 342-50. ves de Dipteres Cyclorraphes, plus specialament des Steyskal, G. C. 1947. The genus Diacrita Gerstaecker larvae d'Anthomyides. (Reference in Hennig 1939, (Diptera, Otitidae). Bull. Brooklyn Entomol. Soc. p. 11.) 41: 149-54. Wahlberg, P. F. 1839. Bidrag till Svenska dipternas 1951. The dipterous fauna of tree trunks. Papers Kannedom. Kungl. Vetensk.-Akad. Handl. 1838: Mich. Acad. Sci., Arts, Letters (1949). 35: 121-34. 1-23. 1961. The genera of Platystomatidae and Otitidae Weiss, A. 1912. Sur un diptere du genre Chrysoviyaa known to occur in America north of Mexico (Diptera, nuisable a l'etat de larve a la cultur du dattier dans Acalyptratae). Ann. Entomol. Soc. Amer. 54: 401-10. l'Afrique de Nord. Bull. Soc. Hist. Nat. Afrique 1962. The American species of the genera Melieria Nord. 4: 68-69. and Pseudotcphritis (Diptera: Otitidae). Papers Weiss, H. B., and B. West. 1920. Fungus insects and Mich. Acad. Sci., Arts, Letters (1961) 47: 247-62. their hosts. Proc. Biol. Soc. Wash. 33: 1-19. 1963. The genus Notogramma Loew (Diptera Acalyp- Wolcott, G. N. 1921. The minor sugar-cane insects of tratae, Otitidae). Proc. Entomol. Soc. Wash. 65: Porto Rico. -
Spatial Distribution Modelling of Culicoides
Diarra et al. Parasites & Vectors (2018) 11:341 https://doi.org/10.1186/s13071-018-2920-7 RESEARCH Open Access Spatial distribution modelling of Culicoides (Diptera: Ceratopogonidae) biting midges, potential vectors of African horse sickness and bluetongue viruses in Senegal Maryam Diarra1,2,3*, Moussa Fall1, Assane Gueye Fall1, Aliou Diop2, Renaud Lancelot4,5, Momar Talla Seck1, Ignace Rakotoarivony4,5, Xavier Allène4,5, Jérémy Bouyer1,4,5 and Hélène Guis4,5,6,7,8 Abstract Background: In Senegal, the last epidemic of African horse sickness (AHS) occurred in 2007. The western part of the country (the Niayes area) concentrates modern farms with exotic horses of high value and was highly affected during the 2007 outbreak that has started in the area. Several studies were initiated in the Niayes area in order to better characterize Culicoides diversity, ecology and the impact of environmental and climatic data on dynamics of proven and suspected vectors. The aims of this study are to better understand the spatial distribution and diversity of Culicoides in Senegal and to map their abundance throughout the country. Methods: Culicoides data were obtained through a nationwide trapping campaign organized in 2012. Two successive collection nights were carried out in 96 sites in 12 (of 14) regions of Senegal at the end of the rainy season (between September and October) using OVI (Onderstepoort Veterinary Institute) light traps. Three different modeling approaches were compared: the first consists in a spatial interpolation by ordinary kriging of Culicoides abundance data. The two others consist in analyzing the relation between Culicoides abundance and environmental and climatic data to model abundance and investigate the environmental suitability; and were carried out by implementing generalized linear models and random forest models.