✐ ✐ “BN15N21” — 2020/6/30 — 11:16 — page 93 — #1 ✐ Bulletin of the Institute of Mathematics Academia Sinica (New Series) Vol. 15 (2020), No. 2, pp. 93-122 DOI: 10.21915/BIMAS.2020201 MORSE INEQUALITIES AND EMBEDDINGS FOR CR MANIFOLDS WITH CIRCLE ACTION HENDRIK HERRMANN1,a AND XIAOSHAN LI2,b 1 Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany. a E-mail:
[email protected];
[email protected] 2 School of Mathematics and Statistics, Wuhan University, Hubei 430072, China. b E-mail:
[email protected] Abstract In this paper, we would like to make a report on Morse inequalities and embeddings for CR manifolds with transversal CR circle action. The results are contained in [24], [23], [21], [20] and [25]. Furthermore, in the last section we will give an explicit example for S1-equivariant Szeg˝okernels and their expansion on the sphere S3 in C2 with respect to a family of transversal CR S1-actions. 1. Introduction Let X be a real smooth manifold of dimension 2n 1, n 2, together − ≥ with a Lie group action of S1. A CR structure (of codimension one or hy- persurface type) on X is a complex subbundle T 1,0X of rank n 1 of the − complexified tangent space CT X which is formally Frobenius integrable and satisfies T 1,0X T 1,0X = 0 . Given a Lie group action of S1 we say that ∩ { } this S1-action is CR if it preserves T 1,0X and transversal if its infinitesimal generator is transversal to the real part of T 1,0X T 1,0X at every point.