Sprayed Zinc Galvanic Anodes for Concrete Marine Bridge Substructures
Total Page:16
File Type:pdf, Size:1020Kb
SHRP-S-405 Sprayed Zinc Galvanic Anodes for Concrete Marine Bridge Substructures Alberto A. Sagti6s Department of Civil Engineering and Mechanics University of South Florida Tampa, Florida 33620 Rodney G. Powers Materials Office Florida Department of Transportation Gainesville, Florida 32601 Strategic Highway Research Program National Research Council Washington, DC 1994 SHRP-S-405 Contract ID-024 ISBN 0-309-05819-8 Product nos. 2034, 4009 Program Manager: Kuppusamy Thirumalai Project Manager: H. Martin (Marty) Laylor Consultant: John P. Broomfield Program Area Secretary: Carina S. Hreib Production Editor: Margaret S. Milhous key words: cathodic protection corrosion galvanic anode sprayed zinc concrete bridges Strategic Highway Research Program National Research Council 2101 Constitution Avenue N.W. Washington, DC 7'.0418 (202) 334-3774 The publication of this report does not necessarily indicate approval or endorsement by the National Academy of Sciences, the United States Government, or the American Association of State Highway and Transportation Officials or its member states of the findings, opinions, conclusions, or recommendations either inferred or specifically expressed herein. ©1994 National Academy of Sciences I .SM/NAP/694 Acknowledgments The research described herein was supported by the Strategic Highway Research Program (SHRP) under contract no. SHRP-88-ID024. SHRP is a unit of the National Research Council that was authorized by section 128 of the Surface Transportation and Uniform Relocation Assistance Act of 1987. The work was conducted jointly by personnel of the Materials Office of the Florida Department of Transportation and the Department of Civil Engineering and Mechanics of the University of South Florida. The report was prepared by Alberto A. Sagii6s, Rodney G. Powers, Toshiya Murase, and Ivan Lasa. °.. 111 Contents Acknowledgments ................................................. iii List of Tables .................................................... vii List of Figures ..................................................... ix Abstract ......................................................... 1 Executive Summary ................................................. 3 1. Introduction, Objectives, and Approach .............................. 5 1.1 Introduction ............................................ 5 1.1.1 Corrosion Control in Marine Substructures .................. 5 1.1.2 Nature of the Innovation Investigated ...................... 6 1.1.3 Previous Work in Related Areas ......................... 7 1.1.4 Research Needs Addressed by This Investigation ............. 8 1.2 Objectives .............................................. 9 1.3 Approach .............................................. 9 2. Procedure--Laboratory Experiments ............................... 11 2.1 Compact Test Specimens (Slabs) ............................. 11 2.1.1 Galvanic Current Delivery ............................ 13 2.1.2 Instant-Off Potentials ................................ 14 2.1.3 Inter-element Resistance .............................. 14 2.1.4 Polarization Decay .................................. 14 2.1.5 Polarization Diagrams ............................... 14 2.1.6 Microstructural Examination ........................... 15 2.1.7 Surface Wetting Tests ............................... 15 2.2 Instrumented Test Columns ................................. 15 2.2.1 Inter-element Currents ............................... 16 2.2.2 Instant-Off Potentials ................................ 17 2.2.3 Inter-element Resistance .............................. 17 2.2.4 Polarization Decay .................................. 17 2.2.5 Surface Wetting .................................... 17 V 3. Procedure--Field Investigations 3.1 Site Selection .......................................... 23 3.2 Application of the Sprayed Zinc Anode ........................ 23 3.3 Instrumentation ......................................... 25 4. Results--Laboratory Experiments ................................. 31 4.1 Compact Test Specimens .................................. 31 4.1.1 Current Delivery, Galvanic Specimens (No Impressed Current) . .. 31 4.1.2 Potentials, Galvanic Specimens ......................... 31 4.1.3 Potentials, Impressed-Current Specimens .................. 32 4.1.4 Resistance ........................................ 32 4.1.5 Polarization Decay Tests ............................. 33 4.1.6 Polarization Measurements ............................ 34 4.1.7 Microstructural Examination ........................... 34 4.1.8 Anode Surface Wetting .............................. 34 4.2 Instrumented Test Columns ................................. 35 4.2.1 Current Delivery ................................... 35 4.2.2 Potentials ........................................ 35 4.2.3 Resistance ........................................ 36 4.2.4 Polarization Decay Tests ............................. 36 4.2.5 Anode Surface Wetting .............................. 37 5. Results--Field Investigations 5.1 Zinc Bond Strength ...................................... 57 5.2 Anode/Cathode Current Density ............................. 57 5.3 Potential Measurements ................................... 57 5.4 Window to Structure Resistance ............................. 58 5.5 Window to Probe Resistance ................................ 58 5.6 Polarization Decay ....................................... 58 6. Discussion ................................................. 73 6.1 Field Behavior ......................................... 73 6.2 Laboratory Columns ..................................... 74 6.3 Compact Specimens and Anode Polarization ..................... 75 6.4 Surface Wetting of the Anodes .............................. 76 6.5 Durability and Materials .................................... 78 7. Conclusions ................................................ 81 8. References ................................................. 83 vi List of Tables Table 2.1 Compact Test Specimens. Test Conditions and Number of Specimens per Condition .......................................... 12 Table 2.2 Concrete Mix--Compact Laboratory Specimens .................. 13 Table 2.3 Concrete Mix--Laboratory Columns .......................... 16 Table 3.1 Sprayed Zinc Anode Test Sites, U.S. Highway 1, Florida Keys ........ 24 Table 4.1 Steel Polarization Decay Tests, Compact Laboratory Specimens Average Potential Shift (mV) after 4 and 24 Hours Following Disconnection .... 33 Table 4.2 4-Hour Polarization Decay Tests, Laboratory Columns Average Potential Shift (mV) ............................................ 36 Table 5.1 Bond Strength Test ...................................... 59 Table 5.2 Window to Structure Electrical Properties ....................... 61 Table 5.3 Probe (Cathode) Current ................................... 63 Table 5.4 Probe Depolarization Test .................................. 65 vii List of Figures Figure 2.1 Base configuration of compact test specimens (1 in. = 2.54 cm) ....... 18 Figure 2.2 Connections of soil resistance meter used to measure "anode to midpoint" and "steel to midpoint" resistances. C1, C2 and P1, P2 designate current and potential terminals respectively of the Nilsson 400 meter ....................................... 19 Figure 2.3 Instrumented test column (1 in. = 2.54 cm) ..................... 20 Figure 2.4 Schematic connection of the instrumented test columns. Electronic currents flowing in the direction of the arrows are defined as positive ....................................... 21 Figure 3.1 Schematic of test site at Bahia Honda Bridge (1 in. = 2.54 cm; 1 ft = 30.5 cm) ......................................... 26 Figure 3.2 Schematic of test site at Long Key Bridge (1 in. = 2.54 cm; 1 ft = 30.5 cm) .......................................... 27 Figure 3.3 Schematic of test site at Niles Channel Bridge (1 in. = 2.54 cm; 1 ft = 30.5 cm) ......................................... 28 Figure 3.4 Schematic of test site at Seven Mile Bridge (1 in. = 2.54 cm; 1 ft = 30.5 cm) .......................................... 29 Figure 4.1 Average current densities of the galvanic test specimens as a function of exposure time for the three relative humidity (RH) environments (1 mA/ft 2= 1.1 _tA/cm2) ......................... 38 Figure 4.2 Average instant-off potential of the anode (Zn) and steel (Fe) of the galvanic test specimens in the 85% relative humidity environment as a function of exposure time ..................... 38 Figure 4.3 Average instant-off potential of the anode (Zn) and steel (Fe) of the galvanic test specimens in the 60% relative humidity environment as a function of exposure time ..................... 39 Figure 4.4 Average instant-off potential of the anode (Zn) and steel (Fe) of the galvanic test specimens in the 25% relative humidity environment as a function of exposure time ..................... 39 Figure 4.5 Average potential of the anode (Zn) and steel (Fe) of the control test specimens (always disconnected) in the 85% relative humidity environment as a function of exposure time ......... 40 Figure 4.6 Average instant-off potential of the zinc anode of the 1 mA/ft 2 (1.1 i.tA/cm2) impressed-current Type A1 (single anode) test ix specimens in the 25% and 85% relative humidity (RH) environments as a function of exposure time ..................... 40 Figure 4.7 Average instant-off potential of the zinc anode of the 1 mA/fl 2 (1.1 p.A/cm2) impressed-current Type A3 and Type A4 (dual anode uncoated and coated, respectively) test specimens in the 85% relative