Relativistic plasma physics in supercritical fields Cite as: Phys. Plasmas 27, 050601 (2020); https://doi.org/10.1063/1.5144449 Submitted: 27 December 2019 . Accepted: 23 April 2020 . Published Online: 26 May 2020 P. Zhang , S. S. Bulanov, D. Seipt , A. V. Arefiev , and A. G. R. Thomas COLLECTIONS Note: Invited Perspective Article. This paper was selected as Featured Phys. Plasmas 27, 050601 (2020); https://doi.org/10.1063/1.5144449 27, 050601 © 2020 Author(s). Physics of Plasmas PERSPECTIVE scitation.org/journal/php Relativistic plasma physics in supercritical fields Cite as: Phys. Plasmas 27, 050601 (2020); doi: 10.1063/1.5144449 Submitted: 27 December 2019 . Accepted: 23 April 2020 . Published Online: 26 May 2020 P. Zhang,1,a) S. S. Bulanov,2,b) D. Seipt,3,c) A. V. Arefiev,4,d) and A. G. R. Thomas3,e) AFFILIATIONS 1Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824-1226, USA 2Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 3Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109-2099, USA 4Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, California 92093, USA Note: Invited Perspective Article. a)Electronic mail:
[email protected] b)Electronic mail:
[email protected] c)Electronic mail:
[email protected] d)Electronic mail: aarefi
[email protected] e)Electronic mail:
[email protected] ABSTRACT Since the invention of chirped pulse amplification, which was recognized by a Nobel Prize in physics in 2018, there has been a continuing increase in available laser intensity. Combined with advances in our understanding of the kinetics of relativistic plasma, studies of laser–plasma interactions are entering a new regime where the physics of relativistic plasmas is strongly affected by strong-field quantum electrodynamics (QED) processes, including hard photon emission and electron–positron (eÀ–eþ) pair production.