Optimization of Signal Versus Background in Liquid Xe Detectors

Total Page:16

File Type:pdf, Size:1020Kb

Optimization of Signal Versus Background in Liquid Xe Detectors Abstract of “Measurement and Analysis of WIMP Detection Backgrounds, and Characteri- zation and Performance of the Large Underground Xenon Dark Matter Search Experiment” by David Charles Malling, Ph.D., Brown University, May 2014. The dominant component of matter in the universe, referred to as dark matter, cannot be explained by the standard model of particle physics. A leading candidate for dark matter is the weakly interacting massive particle (WIMP). The WIMP theory is well motivated by several extensions of the standard model, and has been tested directly in the laboratory over the last 30 years. The Large Underground Xenon (LUX) experiment seeks to identify the signatures of WIMP interactions with baryonic matter. LUX measures particle interactions at the keV level by the detection of single-photon signals in a 250 kg Xe target mass. The LUX detector inner fiducial region is the lowest measured background particle detector in the world at 3 1 1 1 keV energies, with background rates at the level of 10− counts keV− kg− day− . Low background rates are essential for identifying WIMP interactions in the detector, which 1 1 occur with frequencies <1kg− (5 years)− . LUX completed its first low-background science run at the Sanford Underground Re- search Facility in August 2013. WIMP search results are reported from an 85 live day anal- ysis. The experiment places the tightest constraint on WIMP spin-independent interaction cross-sections to date. Results from LUX also exclude several potential dark matter signal claims from other direct detection experiments, for WIMP masses in the range 6–15 GeV. The LUX result is the product of low detector background rates and high photon signal collection efficiency. Analysis of the first WIMP search data has provided direct characterization of low- energy backgrounds in LUX. Measured background rates were found to be in agreement with expectations based on models of detector material radioactivity. The data also provides the first measurements of intrinsic radioactive contaminants in the detector, including short- lived cosmogenic Xe radioisotopes. I will describe the LUX background model, detailing work which was used in the design and early performance projections of the LUX detector, as well as background measurements which constrain and support the model. Measurement and Analysis of WIMP Detection Backgrounds, and Characterization and Performance of the Large Underground Xenon Dark Matter Search Experiment by David Charles Malling Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Program in Physics at Brown University Providence, Rhode Island May 2014 Copyright © 2013 David Charles Malling This dissertation by David Charles Malling is accepted in its present form by the Physics Department as satisfying the dissertation requirement for the degree of Doctor of Philosophy. Date: Richard Gaitskell, Advisor Recommended to the Graduate Council Date: David Cutts, Reader Date: Savvas Koushiappas, Reader Approved by the Graduate Council Date: Peter Weber, Dean of the Graduate School iii Curriculum Vitae 1984 Born in Syracuse, NY (USA) 2007 B.S. Engineering Physics. Syracuse University, Syracuse NY (USA) 2010 M.S. Physics. Brown University, Providence RI (USA) Appointments and Teaching 2007- Research Assistant. Brown University, Physics Department, Providence RI (USA) 2006- Summer Undergraduate Research Fellowship. California Institute of Technology, Pasadena, CA (USA) 2006-2007 Undergraduate Teaching Assistant. Syracuse University, Physics Department, Syracuse NY (USA) 2005-2007 Research Assistant. Syracuse University, Physics Department, Syracuse NY (USA) Refereed Publications Corresponding author • D.C. Malling et al., “Rare Event Search Backgrounds from Primordial Radionuclide Chain Disequilibrium.” Submitted to Astropart. Phys. (2013). arXiv:1305.5183 [astro- ph.IM]. iv • D.S. Akerib et al., “An Ultra-Low Background PMT for Liquid Xenon Detectors.” Nucl. Instr. Meth. A703 (2013) 1–6. arXiv:1205.2272 [physics.ins-det]. • D.C. Malling et al., “After LUX: The LZ Program.” Proceedings of the 2011 Meeting of the Division of Particles and Fields of the American Physical Society, eConf C110809 (2011). arXiv:1110.0103 [astro-ph.IM]. Contributing Author • D.S. Akerib et al., “First results from the LUX dark matter experiment at the Sanford Underground Research Facility.” Submitted to Phys. Rev. Lett. (2013). arXiv:1310.8214 [astro-ph.CO]. • D.S. Akerib et al., “The Large Underground Xenon (LUX) Experiment.” Nucl. Instr. Meth. A704 (2013) 111–126. arXiv:1211.3788 [physics.ins-det]. • D.S. Akerib et al., “The LUX Prototype Detector: Heat Exchanger Development.” Nucl. Instr. Meth. A709 (2013) 29–36. arXiv:1207.3665 [physics.ins-det]. • D.S. Akerib et al., “Technical Results from the Surface Run of the LUX Dark Matter Experiment.” Astropart. Phys. 45 (2013) 34–43. arXiv:1210.4569 [astro-ph.IM]. • D.S. Akerib et al., “LUXSim: A Component-Centric Approach to Low-Background Simulations.” Nucl. Instr. Meth. A675 (2012) 63–77. arXiv:1111.2074 [physics.data- an]. Presentations Talks • American Physical Society April Meeting, April 2013, Denver CO • Identification of Dark Matter 2012, Kavli Institue for Cosmological Physics at the University of Chicago, July 2012, Chicago IL • Brookhaven Forum, October 2011, Upton NY v • American Physical Society Division of Particles and Fields, August 2011, Providence RI • American Physical Society April Meeting, February 2010, Washington D.C. Posters • Topics in Astroparticle and Underground Physics 2013, September 2013, Asilomar CA Honors and Awards • 2007 - B.S. Engineering Physics. Magna Cum Laude. • 2006 - Summer Undergraduate Research Fellowship, California Institute of Technol- ogy, Pasadena CA • 2003 - Centennial Scholar, Syracuse University, Syracuse NY vi Acknowledgments This dissertation represents a condensed version of only a few of the fascinating projects that I have had the opportunity to work on since my arrival at Brown in June 2007. I have worked hard, I have been fortunate, and I have been supported in all ways by a number of special people. Here I mention only a selection of those who have had the most direct impact on this dissertation. I have had the good fortune to know and work with many more people throughout my career at Brown, before this at Syracuse, and even earlier. I save their mention for what will undoubtedly be a best-selling autobiography. I thank Rick Gaitskell for an immense number of things. I am deeply grateful for his guidance in matters both LUX and non-LUX, whether in the lab, in the office, or strolling around the east side attempting to find a patch of sunshine in the middle of New England “winter1.” I have been truly inspired by Rick’s ebullient approach to all things. I like to think that, in significant part from his mentoring, I have left Brown after six and a half years not only more knowledgeable, but actually smarter, and with a great deal more confidence. I am thankful to Savvas Koushiappas and Dave Cutts for their extremely helpful guid- ance as my thesis committee, along with Rick. From their input, a great deal of refinement in both accuracy and precision have been made on the work captured in this dissertation. From their questions and comments, along with those from Bob Lanou and Ian Dell’Antonio, a very engaging and entertaining discussion has been had of this work, and of the bigger 1I use quotations because I am from Syracuse; the gloomy, brisk, snowless tantrum thrown by the southern New England area from December through March hardly qualifies as the season that I came to know growing up as “The Culling.” vii picture into which this work fits. I gratefully acknowledge the immense amount of help I received from “Papa” Luiz de Viveiros and Peter “Den Mother” Sorensen during my first years in the group. It has been a pleasure continuing to work with them on LUX after their graduation from Brown, and our intellectual discourse and sessions at the bar were no less engaging or valuable after meeting again in South Dakota. I thank my fellow grads, Jeremy Chapman, Carlos Faham and James Verbus, as well as Simon Fiorucci, Monica Pangilinan, and our annexed Brown- ies, Alastair Currie and Attila Dobi, for their support in everything from our collaborative analysis efforts to begrudging me the walk to Mike’s for lunch two to three times per week. I also owe great thanks to Samuel Chan and Dongqing Huang for enthusiastically taking up the reins as I receded into a cocoon in the days of final analyses and writing. My thanks and appreciation extend out fondly to the entire LUX collaboration, past and present, for creating an incredible community based around an incredible experiment. It has been an honor to be a part of it. I might have long ago drifted offof the planet if not for Alex “GS” Geringer-Sameth, Ryan Michney, Andy Blaeser, Indrit Alex Metaj and Mike Antosh. Thank you all for your camaraderie, and for prodding me to occasionally get physical exercise in these latter months. To GS, an additional great thanks for our late-night brainstorming sessions, which routinely sharpened my thoughts to the point at which solutions would seemingly drop out of thin air (and then would take until daybreak to get written up properly). I also gratefully thank Dina Lloyd for her love and support, and for allowing me to work as long and as hard as I was physically able, but no more than that. I finally wish to thank my parents Glenn and Judith Malling for allowing me to ramble on in my excitement about every detail of these last months. Their love and encouragement has done much more than allow me to complete this dissertation. Their hard work and sacrifices afforded me an environment in which I was encouraged in my passion for science, and then given the opportunity to pursue that passion both in and out of school.
Recommended publications
  • Arxiv:1904.10313V3 [Gr-Qc] 22 Oct 2020 PACS Numbers: Keywords: Entropy, Holographic Principle and CCDM Models
    Thermodynamic constraints on matter creation models R. Valentim∗ Departamento de F´ısica, Instituto de Ci^enciasAmbientais, Qu´ımicas e Farmac^euticas - ICAQF, Universidade Federal de S~aoPaulo (UNIFESP) Unidade Jos´eAlencar, Rua S~aoNicolau No. 210, 09913-030 { Diadema, SP, Brazil J. F. Jesusy Universidade Estadual Paulista (UNESP), C^ampusExperimental de Itapeva Rua Geraldo Alckmin 519, 18409-010, Vila N. Sra. de F´atima,Itapeva, SP, Brazil and Universidade Estadual Paulista (UNESP), Faculdade de Engenharia de Guaratinguet´a Departamento de F´ısica e Qu´ımica, Av. Dr. Ariberto Pereira da Cunha 333, 12516-410 - Guaratinguet´a,SP, Brazil Abstract Entropy is a fundamental concept from Thermodynamics and it can be used to study models on context of Creation Cold Dark Matter (CCDM). From conditions on the first (S_ 0)1 and ≥ second order (S¨ < 0) time derivatives of total entropy in the initial expansion of Sitter through the radiation and matter eras until the end of Sitter expansion, it is possible to estimate the intervals of parameters. The total entropy (St) is calculated as sum of the entropy at all eras (Sγ and Sm) plus the entropy of the event horizon (Sh). This term derives from the Holographic Principle where it suggests that all information is contained on the observable horizon. The main feature of this method for these models are that thermodynamic equilibrium is reached in a final de Sitter era. Total entropy of the universe is calculated with three terms: apparent horizon (Sh), entropy of matter (Sm) and entropy of radiation (Sγ). This analysis allows to estimate intervals of parameters of CCDM models.
    [Show full text]
  • European Astroparticle Physics Strategy 2017-2026 Astroparticle Physics European Consortium
    European Astroparticle Physics Strategy 2017-2026 Astroparticle Physics European Consortium August 2017 European Astroparticle Physics Strategy 2017-2026 www.appec.org Executive Summary Astroparticle physics is the fascinating field of research long-standing mysteries such as the true nature of Dark at the intersection of astronomy, particle physics and Matter and Dark Energy, the intricacies of neutrinos cosmology. It simultaneously addresses challenging and the occurrence (or non-occurrence) of proton questions relating to the micro-cosmos (the world decay. of elementary particles and their fundamental interactions) and the macro-cosmos (the world of The field of astroparticle physics has quickly celestial objects and their evolution) and, as a result, established itself as an extremely successful endeavour. is well-placed to advance our understanding of the Since 2001 four Nobel Prizes (2002, 2006, 2011 and Universe beyond the Standard Model of particle physics 2015) have been awarded to astroparticle physics and and the Big Bang Model of cosmology. the recent – revolutionary – first direct detections of gravitational waves is literally opening an entirely new One of its paths is targeted at a better understanding and exhilarating window onto our Universe. We look of cataclysmic events such as: supernovas – the titanic forward to an equally exciting and productive future. explosions marking the final evolutionary stage of massive stars; mergers of multi-solar-mass black-hole Many of the next generation of astroparticle physics or neutron-star binaries; and, most compelling of all, research infrastructures require substantial capital the violent birth and subsequent evolution of our infant investment and, for Europe to remain competitive Universe.
    [Show full text]
  • FRW Type Cosmologies with Adiabatic Matter Creation
    Brown-HET-991 March 1995 FRW Type Cosmologies with Adiabatic Matter Creation J. A. S. Lima1,2, A. S. M. Germano2 and L. R. W. Abramo1 1 Physics Department, Brown University, Providence, RI 02912,USA. 2 Departamento de F´ısica Te´orica e Experimental, Universidade Federal do Rio Grande do Norte, 59072 - 970, Natal, RN, Brazil. Abstract Some properties of cosmological models with matter creation are inves- tigated in the framework of the Friedman-Robertson-Walker (FRW) line element. For adiabatic matter creation, as developed by Prigogine arXiv:gr-qc/9511006v1 2 Nov 1995 and coworkers, we derive a simple expression relating the particle num- ber density n and energy density ρ which holds regardless of the mat- ter creation rate. The conditions to generate inflation are discussed and by considering the natural phenomenological matter creation rate ψ = 3βnH, where β is a pure number of the order of unity and H is the Hubble parameter, a minimally modified hot big-bang model is proposed. The dynamic properties of such models can be deduced from the standard ones simply by replacing the adiabatic index γ of the equation of state by an effective parameter γ∗ = γ(1 β). The − thermodynamic behavior is determined and it is also shown that ages large enough to agree with observations are obtained even given the high values of H suggested by recent measurements. 1 Introduction The origin of the material content (matter plus radiation) filling the presently observed universe remains one of the most fascinating unsolved mysteries in cosmology even though many authors worked out to understand the matter creation process and its effects on the evolution of the universe [1-27].
    [Show full text]
  • A Statistical Framework for the Characterisation of WIMP Dark Matter with the LUX-ZEPLIN Experiment
    A statistical framework for the characterisation of WIMP dark matter with the LUX-ZEPLIN experiment Ibles Olcina Samblas Department of Physics A thesis submitted for the degree of Doctor of Philosophy November 2019 Abstract Several pieces of astrophysical evidence, from galactic to cosmological scales, indicate that most of the mass in the universe is composed of an invisible and essentially collisionless substance known as dark matter. A leading particle candidate that could provide the role of dark matter is the Weakly Interacting Massive Particle (WIMP), which can be searched for directly on Earth via its scattering off atomic nuclei. The LUX-ZEPLIN (LZ) experiment, currently under construction, employs a multi-tonne dual-phase xenon time projection chamber to search for WIMPs in the low background environment of the Davis Campus at the Sanford Underground Research Facility (South Dakota, USA). LZ will probe WIMP interactions with unprecedented sensitivity, starting to explore regions of the WIMP parameter space where new backgrounds are expected to arise from the elastic scattering of neutrinos off xenon nuclei. In this work the theoretical and computational framework underlying the calculation of the sensitivity of the LZ experiment to WIMP-nucleus scattering interactions is presented. After its planned 1000 live days of exposure, LZ will be able to achieve a 3σ discovery for spin independent cross sections above 3.0 10 48 cm2 at 40 GeV/c2 WIMP mass or exclude at × − 90% CL a cross section of 1.3 10 48 cm2 in the absence of signal. The sensitivity of LZ × − to spin-dependent WIMP-neutron and WIMP-proton interactions is also presented.
    [Show full text]
  • Universe Model Multicomponent
    We can’t solve problems by using the same kind of thinking we used when we created them. Albert Einstein WORLD – UNIVERSE MODEL MULTICOMPONENT DARK MATTER COSMIC GAMMA-RAY BACKGROUND Vladimir S. Netchitailo Biolase Inc., 4 Cromwell, Irvine CA 92618, USA. [email protected] ABSTRACT World – Universe Model is based on two fundamental parameters in various rational exponents: Fine-structure constant α, and dimensionless quantity Q. While α is constant, Q increases with time, and is in fact a measure of the size and the age of the World. The Model makes predictions pertaining to masses of dark matter (DM) particles and explains the diffuse cosmic gamma-ray background radiation as the sum of contributions of multicomponent self-interacting dark matter annihilation. The signatures of DM particles annihilation with predicted masses of 1.3 TeV, 9.6 GeV, 70 MeV, 340 keV, and 3.7 keV, which are calculated independently of astrophysical uncertainties, are found in spectra of the diffuse gamma-ray background and the emission of various macroobjects in the World. The correlation between different emission lines in spectra of macroobjects is connected to their structure, which depends on the composition of the core and surrounding shells made up of DM particles. Thus the diversity of Very High Energy (VHE) gamma-ray sources in the World has a clear explanation. 1 1. INTRODUCTION In 1937, Paul Dirac proposed a new basis for cosmology: the hypothesis of a time varying gravitational “constant” [1]. In 1974, Dirac added a mechanism of continuous creation of matter in the World [2]: One might assume that nucleons are created uniformly throughout space, and thus mainly in intergalactic space.
    [Show full text]
  • Book of Abstracts Ii Contents
    DMSS: A Dark Matter Summer School Monday, 16 July 2018 - Friday, 20 July 2018 Other Institute Book of Abstracts ii Contents Introduction to Dark Matter .................................. 1 Supersymmetry ......................................... 1 Large Scale Structure Formation ................................ 1 Roundtable Discussions ..................................... 1 Dark Matter in the Milky Way ................................. 1 Neutrinos ............................................ 1 Direct Detection of Dark Matter ................................ 1 Roundtable Discussions ..................................... 1 Indirect Dark Matter Searches ................................. 2 Statistical Methods used in Dark Matter ............................ 2 Axions .............................................. 2 Cosmic Microwave Background ................................ 2 Non-SUSY Dark Matter ..................................... 2 Roundtable Discussions ..................................... 2 Dark Matter at the LHC ..................................... 2 Dark Energy ........................................... 2 Roundtable Discussions ..................................... 3 Roundtable Discussions ..................................... 3 Dark Matter search activity at the University of Montreal .................. 3 Extra Dimensions in High-Mass Diphoton Spectrum at 13 TeV ............... 3 The XENONnT Time Projection Chamber .......................... 4 Calibration of the XENON1T experiment at low energies using a Kr83m source . 4 Gravitational-wave
    [Show full text]
  • Searches for Leptophilic Dark Matter with Astrophysical Experiments
    . Searches for leptophilic dark matter with astrophysical experiments . Von der Fakult¨atf¨urMathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades einer Doktorin der Naturwissenschaften genehmigte Dissertation vorgelegt von M. Sc. Leila Ali Cavasonza aus Finale Ligure, Savona, Italien Berichter: Universit¨atsprofessorDr. rer. nat. Michael Kr¨amer Universit¨atsprofessorDr. rer. nat. Stefan Schael Tag der m¨undlichen Pr¨ufung: 13.05.16 Diese Dissertation ist auf den Internetseiten der Universit¨atsbibliothekonline verf¨ugbar RWTH Aachen University Leila Ali Cavasonza Institut f¨urTheoretische Teilchenphysik und Kosmologie Searches for leptophilic dark matter with astrophysical experiments PhD Thesis February 2016 Supervisors: Prof. Dr. Michael Kr¨amer Prof. Dr. Stefan Schael Zusammenfassung Suche nach leptophilischer dunkler Materie mit astrophysikalischen Experimenten Die Natur der dunklen Materie (DM) zu verstehen ist eines der wichtigsten Ziele der Teilchen- und Astroteilchenphysik. Große experimentelle Anstrengungen werden un- ternommen, um die dunkle Materie nachzuweisen, in der Annahme, dass sie neben der Gravitationswechselwirkung eine weitere Wechselwirkung mit gew¨ohnlicher Materie hat. Die dunkle Materie in unserer Galaxie k¨onnte gew¨ohnliche Teilchen durch An- nihilationsprozesse erzeugen und der kosmischen Strahlung einen zus¨atzlichen Beitrag hinzuf¨ugen.Deswegen sind pr¨aziseMessungen der Fl¨ussekosmischer Strahlung ¨außerst wichtig. Das AMS-02 Experiment misst die
    [Show full text]
  • LUX Detector
    LUX results and LZ sensitivity to dark matter WIMPs Vitaly A. Kudryavtsev University of Sheffield for the LUX and LZ Collaborations Outline n Dark matter direct detection with two-phase noble element instruments. n LUX detector. n LUX results: o WIMPs – spin-independent interactions; o WIMPs – spin-dependent interactions; o Axions and axion-like particles (ALPs). o Modulation search. n LZ detector. n Backgrounds n Sensitivity to WIMPs. n Conclusions. ICNFP2018, 6 July 2018 Vitaly Kudryavtsev 2 Principle of WIMP detection in LXe TPC n Liquid xenon time projection chamber – LXe TPC. n S1 – primary scintillation. n S2 –secondary scintillation, proportional to ionisation. n Position reconstruction based on the light pattern in the PMTs and delay between S2 and S1. ICNFP2018, 6 July 2018 Vitaly Kudryavtsev 3 Advantages of LXe n Good scintillator. n Two-phase -> TPC with good position resolution. n Self-shielding. n Good discrimination between electron recoils (ERs) and nuclear recoils (NRs). n High atomic mass: spin-independent cross- section ∝ A2 n Presence of even-odd isotopes (odd number of neutrons) for spin-dependent studies. n Other physics: o Axion search, o Neutrinoless double-beta decay. LZ Collaboration, LZ TDR, 1703.09144v1 [physics.ins-det] ICNFP2018, 6 July 2018 Vitaly Kudryavtsev 4 LUX Collaboration ² Brown University ² University at Albany, SUNY ² Imperial College London ² University College London ² LIP Coimbra, Portugal ² University of California, Berkeley ² Lawrence Berkley National Laboratory ² University of California, Davis
    [Show full text]
  • AST4220: Cosmology I
    AST4220: Cosmology I Øystein Elgarøy 2 Contents 1 Cosmological models 1 1.1 Special relativity: space and time as a unity . 1 1.2 Curvedspacetime......................... 3 1.3 Curved spaces: the surface of a sphere . 4 1.4 The Robertson-Walker line element . 6 1.5 Redshifts and cosmological distances . 9 1.5.1 Thecosmicredshift . 9 1.5.2 Properdistance. 11 1.5.3 The luminosity distance . 13 1.5.4 The angular diameter distance . 14 1.5.5 The comoving coordinate r ............... 15 1.6 TheFriedmannequations . 15 1.6.1 Timetomemorize! . 20 1.7 Equationsofstate ........................ 21 1.7.1 Dust: non-relativistic matter . 21 1.7.2 Radiation: relativistic matter . 22 1.8 The evolution of the energy density . 22 1.9 The cosmological constant . 24 1.10 Some classic cosmological models . 26 1.10.1 Spatially flat, dust- or radiation-only models . 27 1.10.2 Spatially flat, empty universe with a cosmological con- stant............................ 29 1.10.3 Open and closed dust models with no cosmological constant.......................... 31 1.10.4 Models with more than one component . 34 1.10.5 Models with matter and radiation . 35 1.10.6 TheflatΛCDMmodel. 37 1.10.7 Models with matter, curvature and a cosmological con- stant............................ 40 1.11Horizons.............................. 42 1.11.1 Theeventhorizon . 44 1.11.2 Theparticlehorizon . 45 1.11.3 Examples ......................... 46 I II CONTENTS 1.12 The Steady State model . 48 1.13 Some observable quantities and how to calculate them . 50 1.14 Closingcomments . 52 1.15Exercises ............................. 53 2 The early, hot universe 61 2.1 Radiation temperature in the early universe .
    [Show full text]
  • Dark Matter Vienna University of Technology V2.1
    Dark Matter Vienna University of Technology V2.1 Jochen Schieck and Holger Kluck Institut f¨urHochenergiephysik Nikolsdorfer Gasse 18 1050 Wien Atominstitut derTechnischen Universit¨atWien Stadionallee 2 1020 Wien Wintersemester 2017/18 18.12.2017 2 Contents 1 Introduction 7 1.1 What is "Dark Matter" . .7 1.1.1 Dark . .7 1.1.2 Matter . .7 1.1.3 Cosmology . .7 1.1.4 Massive particles as origin of "Dark Matter" . .7 1.1.5 "Dark Matter" as contribution to the energy density of the universe in Cosmology . .7 1.2 First Indication of observing "Dark Matter" . 13 1.3 Brief Introduction to Cosmology . 15 1.3.1 Special Relativity . 16 1.3.2 Differential geometry . 16 1.3.3 General Relativity . 16 1.3.4 Cosmology . 17 1.3.5 Decoupling of matter and radiation . 18 1.4 The Standard Model of Particle Physics . 19 1.4.1 The matter content of the Standard Model . 19 1.4.2 Forces within the Standard Model . 19 1.4.3 Shortcoming of the Standard Model . 20 1.4.4 Microscopic Behaviour of Gravity . 21 2 Evidence 23 2.1 Dynamics of Galaxies . 23 2.2 Gravitational Lensing . 24 2.2.1 Bullet Cluster . 31 2.3 Cosmic Microwave Background . 33 2.4 Primordial Nucleosynthesis (Big Bang Nucleosynthesis - BBN) . 35 3 Structure Evolution 39 3.1 Structure Formation . 39 3.1.1 The Classic Picture . 39 3.1.2 Structure Formation and Cosmology . 41 3.2 Model of the Dark Matter Halo in our Galaxy . 45 3 4 Unsolved Questions and Open Issues 49 4.1 Core-Cusp Problem .
    [Show full text]
  • Thermodynamics of Cosmological Matter Creation I
    Proc. Nati. Acad. Sci. USA Vol. 85, pp. 7428-7432, October 1988 Physics Thermodynamics of cosmological matter creation I. PRIGOGINE*t, J. GEHENIAUt, E. GUNZIGt, AND P. NARDONEt *Center for Statistical Mechanics, University of Texas, Austin, TX 78712; and tFree University of Brussels, Brussels, Belgium Contributed by I. Prigogine, June 3, 1988 ABSTRACT A type of cosmological history that includes ergy of these produced particles is then extracted from that large-scale entropy production is proposed. These cosmologies of the (classical) gravitational field (1-4). But these semiclas- are based on reinterpretation of the matter-energy stress ten- sical Einstein equations are adiabatic and reversible as well, sor in Einstein's equations. This modifies the usual adiabatic and consequently they are unable to provide the entropy energy conservation laws, thereby including irreversible mat- burst accompanying the production of matter. Moreover, the ter creation. This creation corresponds to an irreversible ener- quantum nature of these equations renders the various re- gy flow from the gravitational field to the created matter con- sults highly sensitive to quantum subtleties in curved space- stituents. This point of view results from consideration of the times such as the inevitable subtraction procedures. thermodynamics ofopen systems in the framework ofcosmolo- The aim of the present work is to overcome these prob- gy. It is shown that the second law of thermodynamics requires lems and present a phenomenological model of the origin of that space-time transforms into matter, while the inverse the instability leading from the Minkowskian vacuum to the transformation is forbidden. It appears that the usual initial present universe.
    [Show full text]
  • The Matter-Antimatter Asymmetry Problem
    Journal of High Energy Physics, Gravitation and Cosmology, 2018, 4, 166-178 http://www.scirp.org/journal/jhepgc ISSN Online: 2380-4335 ISSN Print: 2380-4327 The Matter-Antimatter Asymmetry Problem Brian Albert Robson Department of Theoretical Physics, Research School of Physics and Engineering, The Australian National University, Canberra, Australia How to cite this paper: Robson, B.A. Abstract (2018) The Matter-Antimatter Asymmetry Problem. Journal of High Energy Physics, The matter-antimatter asymmetry problem, corresponding to the virtual non- Gravitation and Cosmology, 4, 166-178. existence of antimatter in the universe, is one of the greatest mysteries of cos- https://doi.org/10.4236/jhepgc.2018.41015 mology. According to the prevailing cosmological model, the universe was created Received: December 21, 2017 in the so-called “Big Bang” from pure energy and it is generally considered Accepted: January 28, 2018 that the Big Bang and its aftermath produced equal numbers of particles and Published: January 31, 2018 antiparticles, although the universe today appears to consist almost entirely of matter rather than antimatter. This constitutes the matter-antimatter asym- Copyright © 2018 by author and Scientific Research Publishing Inc. metry problem: where have all the antiparticles gone? Within the framework This work is licensed under the Creative of the Generation Model (GM) of particle physics, it is demonstrated that the Commons Attribution International asymmetry problem may be understood in terms of the composite leptons and License (CC BY 4.0). quarks of the GM. It is concluded that there is essentially no matter-antimatter http://creativecommons.org/licenses/by/4.0/ asymmetry in the present universe and that the observed hydrogen-antihydrogen Open Access asymmetry may be understood in terms of statistical fluctuations associated with the complex many-body processes involved in the formation of either a hydrogen atom or an antihydrogen atom.
    [Show full text]