Analysis of a Novel RNA Virus in a Wild Northern White-Breasted Hedgehog

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of a Novel RNA Virus in a Wild Northern White-Breasted Hedgehog Archives of Virology (2019) 164:3065–3071 https://doi.org/10.1007/s00705-019-04414-7 BRIEF REPORT Analysis of a novel RNA virus in a wild northern white‑breasted hedgehog (Erinaceus roumanicus) Gábor Reuter1 · Éva Várallyay2 · Dániel Baráth2 · Gábor Földvári3,4 · Sándor Szekeres4 · Ákos Boros1 · Beatrix Kapusinszky5 · Eric Delwart5,6 · Péter Pankovics1 Received: 11 June 2019 / Accepted: 23 August 2019 / Published online: 23 September 2019 © The Author(s) 2019 Abstract Tombusviruses are generally considered plant viruses. A novel tombus-/carmotetravirus-like RNA virus was identifed in a faecal sample and blood and muscle tissues from a wild northern white-breasted hedgehog (Erinaceus roumanicus). The complete genome of the virus, called H14-hedgehog/2015/HUN (GenBank accession number MN044446), is 4,118 nucleo- tides in length with a readthrough stop codon of type/group 1 in ORF1 and lacks a poly(A) tract at the 3′ end. The predicted ORF1-RT (RdRp) and the capsid proteins had low (31-33%) amino acid sequence identity to unclassifed tombus-/noda-like viruses (Hubei tombus-like virus 12 and Beihai noda-like virus 10), respectively, discovered recently in invertebrate animals. An in vivo experimental plant inoculation study showed that an in vitro-transcribed H14-hedgehog/2015/HUN viral RNA did not replicate in Nicotiana benthamiana, Chenopodium quinoa, or Chenopodium murale, the most susceptible hosts for plant-origin tombusviruses. Recently, the discovery of novel viruses has been dramati- viruses are traditionally thought to have a narrow host range cally enhanced by the use of culture-free viral metagenomics but might actually have a much wider host range [2]. and next-generation sequencing techniques [1]. However, in For example, a recent study investigating the RNA virome many cases, this approach does not allow the host species of invertebrate animals identifed 1,445 novel viruses by of the novel virus to be identifed. In addition to the host viral metagenomics, including many tombus- and tombus- origin, dietary sources or other forms of contamination are like viruses [3]. Tombusviruses (family Tombusviridae) also possible sources of certain viruses, especially in faecal are positive-sense, single-stranded RNA viruses (genome specimens. The picture is complicated by the fact that some length, 3.7 to 4.8 kb) that are currently thought to be plant viruses with relatively narrow host range [4]. The origin and pathogenic roles (if any) of tombus-like viruses in inverte- brate specimens are presently uncertain. On the other hand, Handling Editor: Massimo Turina. a relative of the tombusviruses, Providence virus (the only Carmotetraviridae * Gábor Reuter member of the family ), a positive-sense, [email protected] single-stranded RNA virus, is thought to be an insect virus [5, 6] that replicates in lepidopteran species (Helicoverpa 1 Department of Medical Microbiology and Immunology, zea), although a recent study indicated that it was also able Medical Center, University of Pécs, Szigeti út 12, Pecs 7624, Hungary to replicate in the human HeLa cell line [7, 8]. These data show that the possible full spectrum of host and target cells 2 Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Gödöllő, Hungary infected by members of some viral families may be wider 3 than currently appreciated. Evolutionary Systems Research Group MTA Centre Erinaceus rou- for Ecological Research, Tihany, Hungary The northern white-breasted hedgehog ( 4 manicus) is a medium-sized mammal belonging to the genus Department of Parasitology and Zoology, University Erinaceus, of Veterinary Medicine, Budapest, Hungary family Erinaceidae (Mammalia: Eulipotyphla). It can be found in Central Europe, the Balkan Peninsula, 5 Vitalant Research Institute, San Francisco, CA, USA the Adriatic Islands, Ukraine and Russia, extending to the 6 University of California, San Francisco, San Francisco, CA, Ob River in Siberia. These animals inhabit farmland, parks USA Vol.:(0123456789)1 3 3066 G. Reuter et al. and gardens in rural and urban areas, scrubby habitats at contig to identify the specifc viral RNA from the specimen the edge of forests, and shrubby vegetation [9]. They feed pool. Diferent sets of specifc primers were designed based on earthworms, insects (larvae, pupae and imagos), snails, on the metagenomic reads and contigs to obtain the com- slugs, small vertebrates (amphibians, lizards and occasion- plete viral genome sequence (H14-hedgehog/2015/HUN) ally young rodents), chicks, bird eggs, and even some berries and for verifcation of the full-length metagenomic contigs and fruits. by the primer-walking [13] and 5′/3′RACE methods [14]. Here, we report the complete genome sequence of a Primer sequences are available upon request. PCR products novel positive-sense, single-stranded RNA virus from a were sequenced directly using an automated sequencer (ABI wild northern white-breasted hedgehog; however, the host PRISM 310 Genetic Analyzer, Applied Biosystems, Staf- origin of the studied virus could not be determined in spite ford, USA). All faecal specimens (N = 20) from northern of in vivo experimental inoculation studies with the most white-breasted hedgehogs were tested by RT-PCR using the susceptible plants for tombusviruses. SCR-F/R primers. In addition, available coagulated blood, A total of 20 faecal specimens were collected from ear skin, abdominal muscle, spleen and liver tissues col- northern white-breasted hedgehogs [10]. Eight faecal sam- lected from animal H14 were also tested by RT-PCR using ples (H1, H2, H4, H9-H11, H13 and H14) were collected SCR-F/R primers. between April and June in 2015 from carcasses of road- Coding regions were identifed using NCBI Open Read- killed hedgehogs from urban environments, seven of which ing Frame Finder (https://www.ncbi.nlm.nih.gov/orf nder/ ). were from streets in the capital, Budapest, and one was from All evolutionary analyses were conducted in MEGA 6.06 the suburb of Szentendre, Hungary. Twelve faecal samples [15]. The non-structural (RNA-dependent RNA polymerase) (MR1-MR9 and MR11-MR13) were collected from wild- amino acid (aa) sequences of the study strain and the repre- living hedgehogs collected from April to July in 2015, from sentative reference viruses were aligned using MEGA 6.06 a natural wild area near the town of Pécs, Baranya County, and pre-tested using a best amino acid model (ML) search. Southwest Hungary. H10 and H11 were juvenile animals Dendrograms were constructed by the maximum-likelihood (< 1 year old), and the others were adults (> 1 year old), method based on the Poisson model with gamma distribution as judged based on their size and – when available – skull (+G) and invariable sites (+I). To assess the reliability of the bone ossifcation. Samples were collected by qualifed biol- trees, 1000 replicates of bootstrap analysis were performed. ogists with valid permission from the National Inspector- The genomic DNA of H14-hedgehog/2015/HUN was ate for Environment, Nature and Water (4018-4/2015). A cloned for in vitro transcription and in vivo plant inocu- specimen pool containing three faecal samples (H9, H13 lation studies. Briefly, primers were designed based on and H14) was randomly selected for viral metagenomics the sequence of the putative H14-hedgehog/2015/HUN analysis [10]. Briefy, the specimen was diluted in PBS, (H14_HedgehogT7_1F, TAA TAC GAC TCA CTATA passed through a 0.45-μm sterile flter (Millipore), and cen- GGG TAC ATT ATG GCC CAA AAT GAT G; H14_ trifuged at 6,000 × g for 5 min. The fltrate was then treated Hedgehog_4118RXbaI, TCT CTA GAC TCG AGCA CTT with a mixture of DNases and RNases to digest unprotected ATC TTG TAC TAG GTT ATC ; bold letters represent nucleic acids [11]. Viral-particle-protected nucleic acids sequences from the virus under study). cDNA was synthe- were extracted using the QIAamp spin-column technique sized using a RevertAid First Strand cDNA Kit (Thermo (QIAGEN) and subjected to a viral metagenomic analysis Fisher Scientifc) according to the manufacturer’s instruc- using sequence-independent random amplifcation [12]. A tions from RNA extracted from hedgehog faeces using the viral cDNA library was constructed using a Nextera XT primer H14_Hedgehog_4118RXbaI. The virus-specific DNA Library Preparation Kit (Illumina) sequenced on a cDNA was then used as a template for PCR amplifcation HiSeq Illumina platform according to the manufacturer’s with Q5 High-Fidelity DNA Polymerase (New England instructions as described previously [11]. The reads were Biolabs) (initial denaturation for 30 s at 98 °C, 40 cycles of then trimmed; assembled de novo, and analyzed using denaturation for 10 s at 98 °C, annealing for 30 s at 70 °C, an in-house pipeline [11]. The reads and contigs greater extension for 3 min at 72 °C, and a fnal extension for 2 min than 100 bp were compared to the GenBank protein data- at 72 °C) using the primers H14_HedgehogT7_1F and base (BLASTx). Virus-family-level categorization of viral H14_Hedgehog_4118RXbaI. The PCR-product was iso- metagenomic reads was based on the best BLASTx-scores lated from a 1.2% agarose gel using a GeneJet Gel Extrac- (E-value ≤ 10−10). Sequence-specifc screening primer pairs tion Kit (Thermo Fisher Scientifc), and it was then ligated (SCR-F, 5′-AAT TCA ATT ACC TAC TGG CCT CAT -3′, cor- into pJET1.2/blunt Cloning Vector (CloneJET PCR Clon- responding to nt positions 2169-2192 and SCR-R: 5′, TCC ing Kit, Thermo Fisher Scientifc), introduced into E. coli TAG CGC GGT GTT CAT GTC TCC -3′, corresponding to nt (DH5alpha) by transformation. The plasmid DNA was puri- positions 2536-2513 of the study strain) were designed based fed from an overnight bacterial culture using a Nucleospin on the RNA-dependent RNA polymerase (RdRp) sequence Plasmid Purifcation Kit (Macherey Nagel). Using restriction 1 3 Novel RNA virus in a hedgehog 3067 endonuclease sites for NotI (site on the pJET1.2 vector) and 23,004,466 reads, 315,105 sequence reads were obtained XbaI, the entire virus genome was excised from pJET1.2 showing translated protein similarity to viral sequences from and then cloned into a pUC18 vector digested with SmaI this sample pool.
Recommended publications
  • Viral Diversity in Tree Species
    Universidade de Brasília Instituto de Ciências Biológicas Departamento de Fitopatologia Programa de Pós-Graduação em Biologia Microbiana Doctoral Thesis Viral diversity in tree species FLÁVIA MILENE BARROS NERY Brasília - DF, 2020 FLÁVIA MILENE BARROS NERY Viral diversity in tree species Thesis presented to the University of Brasília as a partial requirement for obtaining the title of Doctor in Microbiology by the Post - Graduate Program in Microbiology. Advisor Dra. Rita de Cássia Pereira Carvalho Co-advisor Dr. Fernando Lucas Melo BRASÍLIA, DF - BRAZIL FICHA CATALOGRÁFICA NERY, F.M.B Viral diversity in tree species Flávia Milene Barros Nery Brasília, 2025 Pages number: 126 Doctoral Thesis - Programa de Pós-Graduação em Biologia Microbiana, Universidade de Brasília, DF. I - Virus, tree species, metagenomics, High-throughput sequencing II - Universidade de Brasília, PPBM/ IB III - Viral diversity in tree species A minha mãe Ruth Ao meu noivo Neil Dedico Agradecimentos A Deus, gratidão por tudo e por ter me dado uma família e amigos que me amam e me apoiam em todas as minhas escolhas. Minha mãe Ruth e meu noivo Neil por todo o apoio e cuidado durante os momentos mais difíceis que enfrentei durante minha jornada. Aos meus irmãos André, Diego e meu sobrinho Bruno Kawai, gratidão. Aos meus amigos de longa data Rafaelle, Evanessa, Chênia, Tati, Leo, Suzi, Camilets, Ricardito, Jorgito e Diego, saudade da nossa amizade e dos bons tempos. Amo vocês com todo o meu coração! Minha orientadora e grande amiga Profa Rita de Cássia Pereira Carvalho, a quem escolhi e fui escolhida para amar e fazer parte da família.
    [Show full text]
  • Tically Expands Our Understanding on Virosphere in Temperate Forest Ecosystems
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2021 doi:10.20944/preprints202106.0526.v1 Review Towards the forest virome: next-generation-sequencing dras- tically expands our understanding on virosphere in temperate forest ecosystems Artemis Rumbou 1,*, Eeva J. Vainio 2 and Carmen Büttner 1 1 Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Ber- lin, Germany; [email protected], [email protected] 2 Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland; [email protected] * Correspondence: [email protected] Abstract: Forest health is dependent on the variability of microorganisms interacting with the host tree/holobiont. Symbiotic mi- crobiota and pathogens engage in a permanent interplay, which influences the host. Thanks to the development of NGS technol- ogies, a vast amount of genetic information on the virosphere of temperate forests has been gained the last seven years. To estimate the qualitative/quantitative impact of NGS in forest virology, we have summarized viruses affecting major tree/shrub species and their fungal associates, including fungal plant pathogens, mutualists and saprotrophs. The contribution of NGS methods is ex- tremely significant for forest virology. Reviewed data about viral presence in holobionts, allowed us to address the role of the virome in the holobionts. Genetic variation is a crucial aspect in hologenome, significantly reinforced by horizontal gene transfer among all interacting actors. Through virus-virus interplays synergistic or antagonistic relations may evolve, which may drasti- cally affect the health of the holobiont. Novel insights of these interplays may allow practical applications for forest plant protec- tion based on endophytes and mycovirus biocontrol agents.
    [Show full text]
  • Soybean Thrips (Thysanoptera: Thripidae) Harbor Highly Diverse Populations of Arthropod, Fungal and Plant Viruses
    viruses Article Soybean Thrips (Thysanoptera: Thripidae) Harbor Highly Diverse Populations of Arthropod, Fungal and Plant Viruses Thanuja Thekke-Veetil 1, Doris Lagos-Kutz 2 , Nancy K. McCoppin 2, Glen L. Hartman 2 , Hye-Kyoung Ju 3, Hyoun-Sub Lim 3 and Leslie. L. Domier 2,* 1 Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA; [email protected] 2 Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801, USA; [email protected] (D.L.-K.); [email protected] (N.K.M.); [email protected] (G.L.H.) 3 Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 300-010, Korea; [email protected] (H.-K.J.); [email protected] (H.-S.L.) * Correspondence: [email protected]; Tel.: +1-217-333-0510 Academic Editor: Eugene V. Ryabov and Robert L. Harrison Received: 5 November 2020; Accepted: 29 November 2020; Published: 1 December 2020 Abstract: Soybean thrips (Neohydatothrips variabilis) are one of the most efficient vectors of soybean vein necrosis virus, which can cause severe necrotic symptoms in sensitive soybean plants. To determine which other viruses are associated with soybean thrips, the metatranscriptome of soybean thrips, collected by the Midwest Suction Trap Network during 2018, was analyzed. Contigs assembled from the data revealed a remarkable diversity of virus-like sequences. Of the 181 virus-like sequences identified, 155 were novel and associated primarily with taxa of arthropod-infecting viruses, but sequences similar to plant and fungus-infecting viruses were also identified.
    [Show full text]
  • Noncanonical Translation Initiation in Eukaryotes
    Downloaded from http://cshperspectives.cshlp.org/ on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Noncanonical Translation Initiation in Eukaryotes Thaddaeus Kwan and Sunnie R. Thompson Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294 Correspondence: [email protected] The vast majority of eukaryotic messenger RNAs (mRNAs) initiate translation through a canonical, cap-dependent mechanism requiring a free 50 end and 50 cap and several initiation factors to form a translationally active ribosome. Stresses such as hypoxia, apoptosis, starva- tion, and viral infection down-regulate cap-dependent translation during which alternative mechanisms of translation initiation prevail to express proteins required to cope with the stress, or to produce viral proteins. The diversity of noncanonical initiation mechanisms encompasses a broad range of strategies and cellular cofactors. Herein, we provide an over- view and, whenever possible, a mechanistic understanding of the various noncanonical mechanisms of initiation used by cells and viruses. Despite many unanswered questions, recent advances have propelled our understanding of the scope, diversity, and mechanisms of alternative initiation. ap-dependent translation relies on recogni- Noncanonical mechanisms of initiation vary Ction of the 50 cap by the eukaryotic initia- with respect to which eIFs are required, whether tion factor (eIF)4F complex (eIF4E, eIF4G, and ribosome scanning and cap recognition are used, eIF4A), which recruits the 43S preinitiation and the conditions in which they are favored. complex ([PIC], 40S, eIF3, eIF1, eIF1A, eIF5, For example, ribosomal shunting requires a and ternary complex [eIF2•Met-tRNAi•GTP]) 50 cap and all of the canonical initiation factors to the 50 end of the messenger RNA (mRNA).
    [Show full text]
  • Untersuchungen Zum Nachweis Von Pflanzenviren Mit Peptiden Und Antibody Mimics Aus Phagenbibliotheken
    Untersuchungen zum Nachweis von Pflanzenviren mit Peptiden und Antibody Mimics aus Phagenbibliotheken Von der Naturwissenschaftlichen Fakultät der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des Grades DOKTOR DER NATURWISSENSCHAFTEN Dr. rer. nat. genehmigte Dissertation von M. Sc. Dominik Lars Klinkenbuß geboren am 08.06.1986 in Dorsten 2016 Referent: Prof. Dr. Edgar Maiß Korreferent: Prof. Dr. Bernhard Huchzermeyer Tag der Promotion: 09.03.2016 KURZFASSUNG III KURZFASSUNG Trotz der kontinuierlichen Entwicklung neuerer und scheinbar fortschrittlicherer Methoden und Techniken für die Erkennung und Identifizierung von Pflanzenviren, eignen sich nur wenige dieser Methoden für Routinetests in Laboratorien. Aufgrund einzigartiger Merkmale, wie zum Beispiel die robuste Funktionalität bei einer genauen Reproduzierbarkeit, sind bis heute der enzyme-linked immunosorbent assay (ELISA) und die real-time polymerase chain reaction (qPCR) zwei der meist genutzten Diagnosetools. Das Ziel dieser Studie war die Identifikation von sogenannten „antibody mimics“ aus einer Phagenbibliothek gegen das Calibrachoa mottle virus (CbMV), Cucumber mosaic virus (CMV), Plum pox virus (PPV), Potato virus Y (PVY), Tobacco mosaic virus (TMV) und Tomato spotted wilt virus (TSWV). Im Bestfall sollen diese „antibody mimics“ die Vorteile von Antikörpern in einem ELISA besitzen und mögliche Nachteile, wie zum Beispiel die Abhängigkeit der begrenzten Ressourcen, da die benötigten Antikörper ständig nachproduziert und validiert werden müssen, vermieden werden. Dies kann durch die Produktion und Lagerung der „antibody mimics“ in Bakterienzellen erreicht werden. In einem Screeningverfahren, dem sogenannten „Biopanning“, werden Phagen selektiert, die fest an das Zielmolekül binden. In dieser Arbeit wurden diese Biopannings mit den kommerziell erhältlichen Phagenbibliotheken Ph.D.™- 12, Ph.D.™-C7C und den scFv-Bibliotheken Tomlinson I/J ausgeführt.
    [Show full text]
  • Meta-Transcriptomic Detection of Diverse and Divergent RNA Viruses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.08.141184; this version posted June 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Meta-transcriptomic detection of diverse and divergent 2 RNA viruses in green and chlorarachniophyte algae 3 4 5 Justine Charon1, Vanessa Rossetto Marcelino1,2, Richard Wetherbee3, Heroen Verbruggen3, 6 Edward C. Holmes1* 7 8 9 1Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and 10 Environmental Sciences and School of Medical Sciences, The University of Sydney, 11 Sydney, Australia. 12 2Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical 13 Research, Westmead, NSW 2145, Australia. 14 3School of BioSciences, University of Melbourne, VIC 3010, Australia. 15 16 17 *Corresponding author: 18 Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and 19 Environmental Sciences and School of Medical Sciences, 20 The University of Sydney, 21 Sydney, NSW 2006, Australia. 22 Tel: +61 2 9351 5591 23 Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.08.141184; this version posted June 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Small Hydrophobic Viral Proteins Involved in Intercellular Movement of Diverse Plant Virus Genomes Sergey Y
    AIMS Microbiology, 6(3): 305–329. DOI: 10.3934/microbiol.2020019 Received: 23 July 2020 Accepted: 13 September 2020 Published: 21 September 2020 http://www.aimspress.com/journal/microbiology Review Small hydrophobic viral proteins involved in intercellular movement of diverse plant virus genomes Sergey Y. Morozov1,2,* and Andrey G. Solovyev1,2,3 1 A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia 2 Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia 3 Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia * Correspondence: E-mail: [email protected]; Tel: +74959393198. Abstract: Most plant viruses code for movement proteins (MPs) targeting plasmodesmata to enable cell-to-cell and systemic spread in infected plants. Small membrane-embedded MPs have been first identified in two viral transport gene modules, triple gene block (TGB) coding for an RNA-binding helicase TGB1 and two small hydrophobic proteins TGB2 and TGB3 and double gene block (DGB) encoding two small polypeptides representing an RNA-binding protein and a membrane protein. These findings indicated that movement gene modules composed of two or more cistrons may encode the nucleic acid-binding protein and at least one membrane-bound movement protein. The same rule was revealed for small DNA-containing plant viruses, namely, viruses belonging to genus Mastrevirus (family Geminiviridae) and the family Nanoviridae. In multi-component transport modules the nucleic acid-binding MP can be viral capsid protein(s), as in RNA-containing viruses of the families Closteroviridae and Potyviridae. However, membrane proteins are always found among MPs of these multicomponent viral transport systems.
    [Show full text]
  • Desenvolvimento E Avaliação De Uma Plataforma De Diagnóstico Para Meningoencefalites Virais Por Pcr Em Tempo Real
    DANILO BRETAS DE OLIVEIRA DESENVOLVIMENTO E AVALIAÇÃO DE UMA PLATAFORMA DE DIAGNÓSTICO PARA MENINGOENCEFALITES VIRAIS POR PCR EM TEMPO REAL Orientadora: Profa. Dra. Erna Geessien Kroon Co-orientador: Dr. Gabriel Magno de Freitas Almeida Co-orientador: Prof. Dr. Jônatas Santos Abrahão Belo Horizonte Janeiro de 2015 DANILO BRETAS DE OLIVEIRA DESENVOLVIMENTO E AVALIAÇÃO DE UMA PLATAFORMA DE DIAGNÓSTICO PARA MENINGOENCEFALITES VIRAIS POR PCR EM TEMPO REAL Tese de doutorado apresentada ao Programa de Pós-Graduação em Microbiologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, como requisito à obtenção do título de doutor em Microbiologia. Orientadora: Profa. Dra. Erna Geessien Kroon Co-orientador: Dr. Gabriel Magno de Freitas Almeida Co-orientador: Prof. Dr. Jônatas Santos Abrahão Belo Horizonte Janeiro de 2015 SUMÁRIO LISTA DE FIGURAS .......................................................................................... 7 LISTA DE TABELAS ........................................................................................ 10 LISTA DE ABREVIATURAS ............................................................................. 11 I. INTRODUÇÃO .............................................................................................. 17 1.1. INFECÇÕES VIRAIS NO SISTEMA NERVOSO CENTRAL (SNC) ....... 18 1.2. AGENTES VIRAIS CAUSADORES DE MENINGOENCEFALITES .......... 22 1.2.1. VÍRUS DA FAMÍLIA Picornaviridae ........................................................ 22 1.2.1.1.VÍRUS DO GÊNERO Enterovirus .......................................................
    [Show full text]
  • Identification and Genome Characterization of the First Sicinivirus Isolate from Chickens in Mainland China by Using Viral Metagenomics
    RESEARCH ARTICLE Identification and Genome Characterization of the First Sicinivirus Isolate from Chickens in Mainland China by Using Viral Metagenomics Hongzhuan Zhou1, Shanshan Zhu1, Rong Quan1, Jing Wang1, Li Wei1, Bing Yang1, Fuzhou Xu1, Jinluo Wang1, Fuyong Chen2, Jue Liu1* 1 Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People’s Republic of China, 2 College of a11111 Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100197, People’s Republic of China * [email protected] Abstract OPEN ACCESS Unlike traditional virus isolation and sequencing approaches, sequence-independent ampli- Citation: Zhou H, Zhu S, Quan R, Wang J, Wei L, Yang B, et al. (2015) Identification and Genome fication based viral metagenomics technique allows one to discover unexpected or novel Characterization of the First Sicinivirus Isolate from viruses efficiently while bypassing culturing step. Here we report the discovery of the first Chickens in Mainland China by Using Viral Sicinivirus isolate (designated as strain JSY) of picornaviruses from commercial layer chick- Metagenomics. PLoS ONE 10(10): e0139668. ens in mainland China by using a viral metagenomics technique. This Sicinivirus isolate, doi:10.1371/journal.pone.0139668 which contains a whole genome of 9,797 nucleotides (nt) excluding the poly(A) tail, pos- Editor: Luis Menéndez-Arias, Centro de Biología sesses one of the largest picornavirus genome so far reported, but only shares 88.83% and Molecular Severo Ochoa (CSIC-UAM), SPAIN 82.78% of amino acid sequence identity to that of ChPV1 100C (KF979332) and Sicinivirus Received: March 26, 2015 1 strain UCC001 (NC_023861), respectively.
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
    [Show full text]
  • Viroze Biljaka 2010
    VIROZE BILJAKA Ferenc Bagi Stevan Jasnić Dragana Budakov Univerzitet u Novom Sadu, Poljoprivredni fakultet Novi Sad, 2016 EDICIJA OSNOVNI UDŽBENIK Osnivač i izdavač edicije Univerzitet u Novom Sadu, Poljoprivredni fakultet Trg Dositeja Obradovića 8, 21000 Novi Sad Godina osnivanja 1954. Glavni i odgovorni urednik edicije Dr Nedeljko Tica, redovni profesor Dekan Poljoprivrednog fakulteta Članovi komisije za izdavačku delatnost Dr Ljiljana Nešić, vanredni profesor – predsednik Dr Branislav Vlahović, redovni profesor – član Dr Milica Rajić, redovni profesor – član Dr Nada Plavša, vanredni profesor – član Autori dr Ferenc Bagi, vanredni profesor dr Stevan Jasnić, redovni profesor dr Dragana Budakov, docent Glavni i odgovorni urednik Dr Nedeljko Tica, redovni profesor Dekan Poljoprivrednog fakulteta u Novom Sadu Urednik Dr Vera Stojšin, redovni profesor Direktor departmana za fitomedicinu i zaštitu životne sredine Recenzenti Dr Vera Stojšin, redovni profesor, Univerzitet u Novom Sadu, Poljoprivredni fakultet Dr Mira Starović, naučni savetnik, Institut za zaštitu bilja i životnu sredinu, Beograd Grafički dizajn korice Lea Bagi Izdavač Univerzitet u Novom Sadu, Poljoprivredni fakultet, Novi Sad Zabranjeno preštampavanje i fotokopiranje. Sva prava zadržava izdavač. ISBN 978-86-7520-372-8 Štampanje ovog udžbenika odobrilo je Nastavno-naučno veće Poljoprivrednog fakulteta u Novom Sadu na sednici od 11. 07. 2016.godine. Broj odluke 1000/0102-797/9/1 Tiraž: 20 Mesto i godina štampanja: Novi Sad, 2016. CIP - Ʉɚɬɚɥɨɝɢɡɚɰɢʁɚɭɩɭɛɥɢɤɚɰɢʁɢ ȻɢɛɥɢɨɬɟɤɚɆɚɬɢɰɟɫɪɩɫɤɟɇɨɜɢɋɚɞ
    [Show full text]
  • Identification of Novel Rosavirus Species That Infects Diverse Rodent Species and Causes Multisystemic Dissemination in Mouse Model
    RESEARCH ARTICLE Identification of Novel Rosavirus Species That Infects Diverse Rodent Species and Causes Multisystemic Dissemination in Mouse Model Susanna K. P. Lau1,2,3,4☯, Patrick C. Y. Woo1,2,3,4☯, Kenneth S. M. Li4☯, Hao-Ji Zhang5☯, Rachel Y. Y. Fan4, Anna J. X. Zhang4, Brandon C. C. Chan4, Carol S. F. Lam4, Cyril C. Y. Yip4, Ming-Chi Yuen6, Kwok-Hung Chan4, Zhi-Wei Chen1,2,3,4, Kwok-Yung Yuen1,2,3,4* a11111 1 State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China, 2 Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China, 3 Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China, 4 Department of Microbiology, The University of Hong Kong, Hong Kong, China, 5 Department of Veterinary Medicine, Foshan University, Foshan, China, 6 Food and Environmental Hygiene Department, Hong Kong, China ☯ These authors contributed equally to this work. * [email protected] OPEN ACCESS Citation: Lau SKP, Woo PCY, Li KSM, Zhang H-J, Fan RYY, Zhang AJX, et al. (2016) Identification of Novel Rosavirus Species That Infects Diverse Abstract Rodent Species and Causes Multisystemic Dissemination in Mouse Model. PLoS Pathog 12 While novel picornaviruses are being discovered in rodents, their host range and pathoge- (10): e1005911. doi:10.1371/journal.ppat.1005911 nicity are largely unknown. We identified two novel picornaviruses, rosavirus B from the Editor: Eric L Delwart, Blood Systems Research street rat, Norway rat, and rosavirus C from five different wild rat species (chestnut spiny Institute, UNITED STATES rat, greater bandicoot rat, Indochinese forest rat, roof rat and Coxing's white-bellied rat) in Received: May 19, 2016 China.
    [Show full text]