Pharmacological and Clinical Evaluation Of

Total Page:16

File Type:pdf, Size:1020Kb

Pharmacological and Clinical Evaluation Of PHARMACOLOGICAL AND CLINICAL EVALUATION OF THE ANTHELMINTIC ACTIVITY OF ALBIZIA ANTHELMINTICA BROGN, MAERUA EDULIS DE WOLF AND MAERUA SUBCORD AT A DE WOLF PLANT EXTRACTS IN SHEEP AND MICE If DANIEL WAWERU GAKUYA, BVM, MSc. UNIVERSITY 5 F n\ ir#w gABEIL U1RAJLX A thesis submitted in fulfillment of the requirements of Doctor of Philosophy Degree in Veterinary Clinical Studies Faculty of Veterinary Medicine University of Nairobi 2001 DECLARATION This thesis is my original work and has not been presented for a degree in any other University. Signed T** NniAUJM- Date 4 ^ 2 ^ .1s>ol. DANIEL WAWERU GAKUYA, BVM, MSc I his thesis has been submitted for examination with our approval as University supervisors. _________ Date c 3 - C f l2* PROF. P.M.F. MBITH1, BVM, MSc., MVSc., PhD \ _______ Date L z t S ^ ■ i - e o l . PROF. T.E. MAITHO, BVM. MSc., PhD — U J t$ A A /V ) <o>*_________ Date__ PROF. N.K.R MUSIMBA, BSc., MSc., PhD Department of Clinical Studies, Faculty of Veterinary Medicine, College of Agriculture and Veterinary Sciences, University of Nairobi, KENYA. li DEDICATION TO MV LOVlNQ PARENTS, THE LATE JAMES QAKUVA AND MUM MARVtfANJIKU ill TABLE OF CONTENTS PAGE DECLARATION........................................................................................................ii DEDICATION...........................................................................................................iii TABLE OF CONTENTS?^.. C ..................................................................... iv LIST OF TABLES................................................................................................. viii LIST OF FIGURES................................................................................................ix LIST OF APPENDICES...........................................................................................x ACKNOW LEDGEM ENT.................................................................................... xii ABSTRACT............................................................................................................ xiv CHAPTER 1. INTRODUCTION AND OBJECTIVES....................................1 1.0. 1.TRODUCTION.............................................................................................. 1 1.1.OBJECTIVES....................................................................................................... 4 CHAPTER 2. LITERATURE REVIEW .............................................................. 5 2.0. Helminthoses in Kenya....................................................................................... 5 2.0. 1. Economic importance of helminthoses............................................5 2.0. 2. Helminth control methods................................................................ 6 2.0. 2.1..Anthelmintics.................................................................................. 6 2.0. 2.2. Nutrition..........................................................................................6 2.0. 2.3. Management practices................................................................... 6 2.0. 2.4. Grazing management..................................................................... 7 2.0. 2.5. Helminth resistant breeds.............................................................. 8 2.0. 2.6. Destruction of intermediate host...................................................8 2.0. 2.7.Helminth vaccines...........................................................................8 2.0. 3. Constraints to helminth control........................................................8 2.0. 3.1. Finance.............................................................................................8 2.0. 3.2. Anthelmintic resistance................................................................. 9 2.0. 3.2.1. Causes of anthelmintic resistance.............................................10 2.1. Background of the usage of medicinal plants..................................................11 2.1.1. Development of Ethnoveterinarymedicine..................................................11 2.1.2. Plant anthelmintics.........................................................................................13 2.1.2.1. Plant that have been used to treat livestock helminthoses.................... 13 2.2. Methods used to identify plants of medicinal value and pharmacological parameter............................................................................................................. 15 iv 2.2.1. Survey questionnaire......................................................................................15 2.2.2. Methods for extraction....................................................................................16 2.2.3. Detecting bioactivity in plant material using brine shrimp lethality test.....................................................................................................17 2.2.4. Toxicity tests and determination of LDso......................................................18 2.2.5. Determination of the percentage faecal egg counts reduction................. 20 2.2.6. Separation and identification of the pharmacological active ingredient in the plant anthelmintic..............................................................32 2.2.7. Limitation of plant anthelmintics..................................................................33 2.2.7.1. Ethnodiagnosis...............................................................................33 2.2.7.2. Toxicity...........................................................................................34 2.2.7.3. Availability..................................................................................... 34 2.2.7.4. Sustainability.................................................................................. 35 2.2.7.5. Traditional beliefs.......................................................................... 35 CHAPTER 3 IDENTIFICATION OF MEDICINAL PLANTS USING PARTICIPATORY RURAL APPRAISAL TOOLS........................................37 3.0 Introduction........................................................................................................37 3.1. Materials and methods...................................................................................... 39 3.2. Results...............................................................................................................41 3.3. Discussion.......................................................................................................... 47 CHAPTER 4 DETERMINATION OF THE EFFICACY OF CRUDE WATER EXTRACTS OF ALBIZIA ANTHELMINTICA BROGN AND MAERUA SPECIES ON GASTROINTESTINAL NEMATODES IN SHEEP....................................................................................................................... 49 4.0. Introduction........................................................................................................ 49 4.1. Materials and methods...................................................................................... 51 4.1.0. Plant material...................................................................................... 41 4.1.1. Animals............................................................................................... 52 4.1.2. Experimental design...........................................................................52 4.1.3. Statistical analysis.............................................................................53 4.2. Results and discusion.........................................................................................53 CHAPTER 5 DETERMINATION OF THE BIOACTIVITY OF PLANT EXTRACTS USING THE BRINE SHRIMP LETHALITY TEST.............. 57 5.0. Introduction.........................................................................................................57 5.1. Materials and methods.......................................................................................58 5.1.1. Acquisation and preparation of plant material............................... 58 5.1.2. Extraction of active ingredient from plant material........................58 5.1.3. Hatching of the brine shrimp............................................................. 60 5.1.4. Bioassay.............................................................................................. 61 5.2. Results and Discussion......................................................................................64 v CHAPTER 6 EVALUATION OF THE EFFICACY OF PLANTS EXTRACTS AGAINST NEMATODE HEL1GMOSOMOIDES POLYGYRUS INFECTIONS IN M ICE........................................................... 73 6.0. Introduction.........................................................................................................73 6.1. Materials and methods...................................................................................... 74 6.1.0. Experimental design........................................................................ 74 6.1.1 .Treatment regime................................................................................ 75 6.1.2. Parasitological techniques...............................................................77 6.1.2.1 .Faecal egg count concentration (EPG) determination................ 95 6.1.2.2. Accurate determination of total worm burden.............................78 6.1.3.Statistical analysis.............................................................................. 82 6.2. R esults...............................................................................................................
Recommended publications
  • Hybrid Ascaris Suum/Lumbricoides (Ascarididae) Infestation in a Pig
    Cent Eur J Public Health 2013; 21 (4): 224–226 HYBRID ASCARIS SUUM/LUMBRICOIDES (ASCARIDIDAE) INFESTATION IN A PIG FARMER: A RARE CASE OF ZOONOTIC ASCARIASIS Moreno Dutto1, Nicola Petrosillo2 1Department of Prevention, Local Health Unit, ASL CN1, Saluzzo (CN), Italy 2National Institute for Infectious Diseases “Lazzaro Spallanzani”, Rome, Italy SUMMARY We present a case of the 42 year old pig farmer from the province of Cuneo in Northwest Italy who was infected by the soil-transmitted nema- tode Ascaris sp. In November 2010 the patient found one worm in his stool, subsequently identified as female specimen of Ascaris sp. After a first anthelmintic treatment, another worm was found in his stool, that was later identified as male Ascaris sp. Blood tests prescribed by the patient’s family physician, as suggested by a parasitologist, found nothing abnormal. A chest x-ray was negative for Loeffler’s syndrome and an ultrasound of the abdomen was normal with no evidence of hepatic problems. The nematode collected from the patient was genetically characterized using the ribosomal nuclear marker ITS. The PCR-RFLP analysis showed a hybrid genotype, intermediate between A. suum/lumbricoides. It was subsequently ascertained that some pigs on the patient’s farm had A. suum infection; no other family member was infected. A cross- infestation from the pigs as source was the likely way of transmission. This conclusion is further warranted by the fact, that the patient is a confirmed nail-biter, a habit which facilitates oral-fecal transmission of parasites and pathogens. Key words: ascariasis, Ascaris suum, cross infection, pigs, zoonosis, hybrid genotype Address for correspondence: M.
    [Show full text]
  • Investigation of Antidiarrheal and Hypoglycemic Activities of Clerodendrum Viscosum Root Extract in Mice
    Investigation of antidiarrheal and hypoglycemic activities of Clerodendrum viscosum root extract in mice A project submitted by Sadia Masood Saara ID: 13146056 Session: Spring 2013 to The department of pharmacy in partial fulfillment of the requirements for the degree of Bachelor of Pharmacy (Hons.) Dhaka, Bangladesh July, 2017 This work is dedicated to my parents and brother for their love and support Certification Statement This is to certify that this project titled ‘Investigation of antidiarrheal and hypoglycemic activities of Clerodendrum viscosum vent. root extract in mice’ submitted for the partial fulfillment of the requirements for the degree of Bachelor of Pharmacy (Hons.) from the Department of Pharmacy, BRAC University, constitutes my own work under the supervision of Dr. Hasina Yasmin, Associate Professor, Department of Pharmacy, BRAC University and this project is the result of the author’s original research and has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, the project contains no material previously published or written by another person except where due reference is made in the project paper itself. Signed, __________________________________ Countersigned by the supervisor ____________________________________ Page | i Acknowledgement I would like to thank Dr. Hasina Yasmin madam, Associate Professor of Pharmacy Department, BRAC University for giving me direction and persistent support since the first day of this project work. As a person, she has motivated me with her insight on phytochemistry, which made me more enthusiastic about the project work when it started. In addition, I would like to express my gratitude toward her for her unwavering tolerance at all the stages of work.
    [Show full text]
  • Ascaris Lumbricoides"
    Effect of levamisol on tissues of "Ascaris lumbricoides" Autor(en): El Boulaqi, H.A. / Dar, F.K. / Hamdy, E.I. Objekttyp: Article Zeitschrift: Acta Tropica Band (Jahr): 36 (1979) Heft 1 PDF erstellt am: 29.09.2021 Persistenter Link: http://doi.org/10.5169/seals-312510 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch Acta Tropica 36. 85-90 (1979) 1 Faculty of Medicine. University of Garyounis. Benghazi. Libya 2 Department of Parasitology. Faculty of Medicine. Cairo University Effect of levamisol on tissues of Ascaris lumbrieoides H. A. El Boulaqi1, F. K. Dar1, E. I. Hamdy2, E. G.
    [Show full text]
  • ANTIPARASITAIRES Mécanismes D’Action
    ANTIPARASITAIRES Mécanismes d’action Pr Ag Anis KLOUZ Service de Pharmacologie Clinique, Centre National de Pharmacovigilance & Faculté de Médecine de Tunis DDÉÉFINITIONSFINITIONS Antiparasitaires : substances d’origine naturelle ou de synthèse capables de détruire différents organismes ayant un développement parasite Regroupe des médicaments et des pesticides : insecticides, anthelminthiques, antifongiques, protozoocides Critères d’efficacité 1- Agir sur le parasite 2- Atteindre des localisations parfois profondes 3- Etre actif sur différents stades Critères de sélectivité 1- Mécanisme d’action spécifique 2- Pharmacocinétique particulière Facteurs liés à l’hôte • Anatomie, physiologie –mammifères – oiseaux (reptiles …) • Diversité des espèces atteintes – animaux de compagnie – animaux de production • Diversité de localisation • Impératifs économiques • Protection de l’environnement • Absence de toxicité Facteurs liés aux parasites • Anatomie, physiologie • Diversité des espèces pathogènes – Insectes, acariens – Nématodes, trématodes, cestodes • Diversité de localisation – Ex des gales: invasion variable de l’épiderme – Ex des nématodes: digestifs, respiratoires, sanguins … • Diversité des stades d’évolution – œufs, larves, adultes – contamination de l’hôte et de l’environnement • Difficulté des études in vitro Anatomie Organe de prédation, fixation TD, organe de reproduction Cuticule CT Helminthe Structure de la cuticule Perméabilité de la cuticule • Perméabilité : – Aux composés lipophiles (diffusion des acides gras volatils à travers
    [Show full text]
  • High Heritability for Ascaris and Trichuris Infection Levels in Pigs
    Heredity (2009) 102, 357–364 & 2009 Macmillan Publishers Limited All rights reserved 0018-067X/09 $32.00 www.nature.com/hdy ORIGINAL ARTICLE High heritability for Ascaris and Trichuris infection levels in pigs P Nejsum1,2, A Roepstorff1,CBJrgensen2, M Fredholm2, HHH Go¨ring3, TJC Anderson3 and SM Thamsborg1 1Danish Centre for Experimental Parasitology, Department of Veterinary Pathobiology, Faculty of Life Sciences, University of Copenhagen, Copenhagen, Denmark; 2Genetics and Bioinformatics, Department of Animal and Veterinary Basic Sciences, Faculty of Life Sciences, University of Copenhagen, Copenhagen, Denmark and 3Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX, USA Aggregated distributions of macroparasites within their host 0.32–0.73 of the phenotypic variation for T. suis could be populations are characteristic of most natural and experi- attributed to genetic factors. For A. suum, heritabilities of mental infections. We designed this study to measure the 0.29–0.31 were estimated for log (FEC þ 1) at weeks 7–14 amount of variation that is attributable to host genetic factors p.i., whereas the heritability of log worm counts was 0.45. in a pig–helminth system. In total, 195 piglets were produced Strong positive genetic correlations (0.75–0.89) between after artificial insemination of 19 sows (Danish Landrace– T. suis and A. suum FECs suggest that resistance to both Yorkshire crossbreds) with semen selected from 13 indivi- infections involves regulation by overlapping genes. Our data dual Duroc boars (1 or 2 sows per boar; mean litter size: demonstrate that there is a strong genetic component in 10.3; 5–14 piglets per litter).
    [Show full text]
  • An Overview of Anthelmintic Drugs in Ascaris Suum Intestine
    Iowa State University Capstones, Theses and Creative Components Dissertations Spring 2019 An Overview of Anthelmintic Drugs in Ascaris suum Intestine Katie Tharaldson Follow this and additional works at: https://lib.dr.iastate.edu/creativecomponents Part of the Chemicals and Drugs Commons Recommended Citation Tharaldson, Katie, "An Overview of Anthelmintic Drugs in Ascaris suum Intestine" (2019). Creative Components. 262. https://lib.dr.iastate.edu/creativecomponents/262 This Creative Component is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Creative Components by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Tharaldson Overview of anthelmintic drugs and their receptors Part 1 Abstract In part 1 of this paper, I will discuss Ascaris suum and Ascaris lumbricoides. Ascaris suum acts as a model organism for Ascaris lumbricoides, a parasitic nematode that impacts roughly 1.2 billion people worldwide (de Silva et al. 2003). I will then go into the anthelmintic drugs currently being used to treat these infection, as well as the receptors they act on. In part 2 of this paper, I will discuss the research I did with levamisole, an anthelmintic drug, on nicotinic acetylcholine receptors (nAChRs) in the intestine of Ascaris suum. There were 5 control worms, as well as 5 levamisole treated worms. In the past, the nAChRs have been studied predominantly on the muscle in all nematode species. However, in previous work in the lab, although unpublished, there was promising expression of nAChRs in Ascaris suum intestine.
    [Show full text]
  • Parasites 1: Trematodes and Cestodes
    Learning Objectives • Be familiar with general prevalence of nematodes and life stages • Know most important soil-borne transmitted nematodes • Know basic attributes of intestinal nematodes and be able to distinguish these nematodes from each other and also from other Lecture 4: Emerging Parasitic types of nematodes • Understand life cycles of nematodes, noting similarities and significant differences Helminths part 2: Intestinal • Know infective stages, various hosts involved in a particular cycle • Be familiar with diagnostic criteria, epidemiology, pathogenicity, Nematodes &treatment • Identify locations in world where certain parasites exist Presented by Matt Tucker, M.S, MSPH • Note common drugs that are used to treat parasites • Describe factors of intestinal nematodes that can make them emerging [email protected] infectious diseases HSC4933 Emerging Infectious Diseases HSC4933. Emerging Infectious Diseases 2 Readings-Nematodes Monsters Inside Me • Ch. 11 (pp. 288-289, 289-90, 295 • Just for fun: • Baylisascariasis (Baylisascaris procyonis, raccoon zoonosis): Background: http://animal.discovery.com/invertebrates/monsters-inside-me/baylisascaris- [box 11.1], 298-99, 299-301, 304 raccoon-roundworm/ Video: http://animal.discovery.com/videos/monsters-inside-me-the-baylisascaris- [box 11.2]) parasite.html Strongyloidiasis (Strongyloides stercoralis, the threadworm): Background: http://animal.discovery.com/invertebrates/monsters-inside-me/strongyloides- • Ch. 14 (p. 365, 367 [table 14.1]) stercoralis-threadworm/ Videos: http://animal.discovery.com/videos/monsters-inside-me-the-threadworm.html http://animal.discovery.com/videos/monsters-inside-me-strongyloides-threadworm.html Angiostrongyliasis (Angiostrongylus cantonensis, the rat lungworm): Background: http://animal.discovery.com/invertebrates/monsters-inside- me/angiostrongyliasis-rat-lungworm/ Video: http://animal.discovery.com/videos/monsters-inside-me-the-rat-lungworm.html HSC4933.
    [Show full text]
  • Diagnostic Notes
    DIAGNOSTIC NOTES Pig parasite diagnosis Robert M. Corwin, DVM, PhD arasites in swine have an impact on performance, with effects and the persistence or life span of the parasite. ranging from impaired growth and wasteful feed consumption Postmortem examination should reveal adult worms in their principal to clinical disease, debilitation, and perhaps even death. It is sites of infection, e.g., ascarids in the small intestine. Lesions associ- particularly important to diagnose subclinical parasitism, which can ated with larval infection, such as nodules of Oesophagostomum in have serious economic consequences and which should be treated the colon may not have larvae present or apparent. Lungworms also with ongoing preventive measures. have rather specific sites at least in young worm populations, viz., the Internal parasitism is caused by nematode roundworms and coccidia bronchioles of the diaphragmatic lobes of the lungs. in the gastrointestinal tract, lungworms in the respiratory tract, and by All of these parasites are directly transmissible from the environment ectoparasites. The most commonly encountered gastrointestinal para- with ingestion of eggs or larvae. Strongyloides may also be passed in sites are the large roundworm Ascaris suum, the threadworm Stron- the colostrum or penetrate skin, and transmission of the lung worm gyloides ransomi, the whipworm Trichuris suis, the nodular worm and the kidney worm may involve earthworms. Oesophagostomum dentatum, and the coccidia, especially lsospora suis and Cryptosporidium parvum in neonates and Eimeria spp at Ascaris suum --”large roundworm” weaning. (Figure 1A) Diagnosis of internal parasites is best accomplished by fecal examina- egg: 45-60 µm, yellowish brown, spherical, mammillated (Figure 1B) tion using a flotation technique and/or by necropsy.
    [Show full text]
  • Ascaris Suum Eggs from Naturally Infected Sows
    Original research Peer reviewed Effect of fenbendazole on shedding and embryonation of Ascaris suum eggs from naturally infected sows Jeremy S. Pittman, DVM, MS, Diplomate ABVP; Gil H. Myers, PhD; Kenneth J. Stalder, PhD; Locke A. Karriker, DVM, MS, Diplomate ACVPM Summary were isolated and incubated (embryonation controls (P < .05), but not from each other. Objectives: To determine reduction of study) to determine embryonation rates. Embryonation rates were lower for treat- Ascaris suum egg shedding and ovicidal Groups were compared for time-to-negative ments than controls at 6 and 8 DPT effects in naturally infected commercial (Kaplan-Meier survival analysis); percent (P < .001). negative (chi-square analysis); environ- female breeding swine treated with fenben- Implications: Fenbendazole at various dos- mental burden (analysis of variance); and dazole. ages is effective againstA suum infections in embryonation rates (analysis of variance). Materials and methods: Five shedding sows. Treatment should begin 14 days prior and three embryonation experiments across Results: Time-to-negative ranges were 9.3- to movement into clean farrowing facilities. three commercial sow farms were conducted. 13.1, 8.9-13.1, and 9.8 days post treatment Under the conditions of this study, fenben- Ascaris suum-infected sows were allocated to (DPT) for treatments 1, 2, and 3, respec- dazole demonstrates ovicidal activity against four treatments: untreated controls; 545.5 mg tively; control ranges were 13.4-28.2 DPT. A suum at 4-8 DPT. Treatment sows were 90%-100% negative, fenbendazole, 1 day (Treatment 1); 545.5 mg Received: July 2, 2014 compared to 0.0%-28.6% of controls.
    [Show full text]
  • Ascaris Lumbricoides/Ascaris Suum Genesig Standard
    Primerdesign TM Ltd Ascaris lumbricoides/Ascaris suum NADH dehydrogenase subunit 5 (nad5) gene genesig® Standard Kit 150 tests For general laboratory and research use only Quantification of Ascaris lumbricoides/Ascaris suum genomes. 1 genesig Standard kit handbook HB10.04.10 Published Date: 09/11/2018 Introduction to Ascaris lumbricoides/Ascaris suum Ascaris suum, also known as large roundworm of pigs, is a parasitic nematode that causes ascariasis in pigs. While roundworms in pigs and humans are today considered as two species, A. suum and A. lumbricoides, with different hosts, cross infection between humans and pigs is possible, so researchers have argued they are the same species, e.g.; Ascaris lumbricoides is the largest nematode (roundworm) parasitizing the human intestine. (Adult females: 20 to 35 cm; adult male: 15 to 30 cm.) The A.suum genome is estimated to be 272.8Mbp long and has a GCcontent of 37.9%. This genome has low repeat content (4.4%) and encodes about 18,500 protein-coding genes. Adult worms live in the lumen of the small intestine. A female may produce approximately 200,000 eggs per day, which are passed with the faeces . Unfertilized eggs may be ingested but are not infective. The female produces as many as 200,000 eggs per day for a year. These fertilized eggs become infectious after two weeks in soil; they can persist in soil for 10 years or more. The eggs have a lipid layer which makes them resistant to the effects of acids and alkalis, as well as other chemicals. Fertile eggs begin developing and become infective after 18 days to several weeks depending on the environmental conditions (e.g.
    [Show full text]
  • Anthelmintic Properties of Traditional African and Caribbean
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Copenhagen University Research Information System Anthelmintic properties of traditional African and Caribbean medicinal plants identification of extracts with potent activity against Ascaris suum in vitro Williams, Andrew R.; Soelberg, Jens; Jäger, Anna Published in: Parasite DOI: 10.1051/parasite/2016024 Publication date: 2016 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Williams, A. R., Soelberg, J., & Jäger, A. (2016). Anthelmintic properties of traditional African and Caribbean medicinal plants: identification of extracts with potent activity against Ascaris suum in vitro. Parasite, 23, [24]. https://doi.org/10.1051/parasite/2016024 Download date: 08. Apr. 2020 Parasite 2016, 23,24 Ó A.R. Williams et al., published by EDP Sciences, 2016 DOI: 10.1051/parasite/2016024 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Anthelmintic properties of traditional African and Caribbean medicinal plants: identification of extracts with potent activity against Ascaris suum in vitro Andrew R. Williams1,*, Jens Soelberg2, and Anna K. Jäger2 1 Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Copenhagen, Denmark 2 Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark Received 6 April 2016, Accepted 2 June 2016, Published online 14 June 2016 Abstract – Ascariasis affects more than 1 billion people worldwide, mainly in developing countries, causing sub- stantial morbidity. Current treatments for Ascaris infection are based on mass drug administration (MDA) with syn- thetic anthelmintic drugs such as albendazole, however continual re-infection and the threat of drug resistance mean that complementary treatment options would be highly valuable.
    [Show full text]
  • So the Butcher Won't Let You Keep Your Pig Livers…Here's
    So the Butcher won’t let you keep your pig livers…here’s why Your Animals are Infected with Large roundworms (Ascaris) Most hogs have Ascaris infections during their lifetimes. These roundworms are usually found in greatest numbers in pigs up to 2 to 3 months of age with a few in older pigs. Sows usually are not clinically affected, but serve as carriers. Roundworms are long (6 to 12 inches), stout, pinkish worms, sometimes with curved tails. The adults live in the small intestine, grazing on the gut lining and ingesting particulate and liquid materials from digesting food. The adult females deposit round, microscopic eggs. Each female lays thousands per day beginning about two months after the pig becomes infected. Eggs may survive for 10 or more years and are quite resistant to cold and disinfectants. They can be destroyed by high-pressure steam heat and sunlight. Because they are sticky, eggs are easily transported by cockroaches, beetles, flies, birds and workers' boots and clothing. Eggs become infective after being outside the pig for one month. When another pig swallows them, they hatch in the stomach or small intestine. The tiny larva that emerges penetrates the gut wall and is carried to the liver through the bloodstream. In the liver, larvae migrate for one-half to one week and then are swept through the bloodstream to the lungs. From there, the larvae are coughed up, swallowed and returned to the small intestine, where they grow and mature within two months. Thus pigs may be 1-1/2 to 2 months of age before eggs can be detected in fecal samples, but immature adult worms may be passed earlier.
    [Show full text]