AMD(AMD.US)19Q1 点评 2019 年 05 月 04 日 作者 产品组合持续优化提升毛利率及市占率,稳健执行力 何翩翩 分析师 望带来股价突破;TP 上调至 33 美元,维持“增持” SAC 执业证书编号:S1110516080002 [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

AMD(AMD.US)19Q1 点评 2019 年 05 月 04 日 作者 产品组合持续优化提升毛利率及市占率,稳健执行力 何翩翩 分析师 望带来股价突破;TP 上调至 33 美元,维持“增持” SAC 执业证书编号:S1110516080002 Hepianpian@Tfzq.Com 海外公司报告 | 公司动态研究 证券研究报告 AMD(AMD.US)19Q1 点评 2019 年 05 月 04 日 作者 产品组合持续优化提升毛利率及市占率,稳健执行力 何翩翩 分析师 望带来股价突破;TP 上调至 33 美元,维持“增持” SAC 执业证书编号:S1110516080002 [email protected] 业绩超预期,指引向好,下半年有望逐步兑现 雷俊成 分析师 SAC 执业证书编号:S1110518060004 AMD 19Q1 营收虽同比跌 23%至 12.7 亿美元但好于市场预期的 12.66 亿美 [email protected] 元,non-GAAP EPS 0.06 美元与预期一致;产品组合优化带来毛利率同比 马赫 分析师 SAC 执业证书编号:S1110518070001 提升 5%至 41%。计算与图形业务同比跌 25.5%,EESC 同比跌 17%。由于 AMD [email protected] 上季度下调预期指引 Q1 为业绩底部,Q2 指引环比涨 19%符合市场预期, 维持全年高单位数营收增长。我们认为 AMD 在产品组合持续优化&市占率 持续提升的过程中证明执行力扎实,Intel 指引负面与 AMD 荣辱互现,市 相关报告 场反应正面,继续看好 7nm 产品下半年放量周期。 1 《AMD(AMD.US)点评:GPU 助力 1)服务器端 7nm 制程优势的时间窗口维持:AMD EPYC 服务器销售同比 云游戏打开空间,把握 7nm 时间窗口 翻倍,环比保持增长;7nm 服务器客户验证良好,公司预计 Q2 发货,Q3 有望进一步重塑估值,TP 上调至 30 美 正式发布放量,公司维持目标 4-6 个季度服务器市占率达到双位数。Intel 元,上调至“增持”》2019-03-29 明年才会推出 10nm 服务器,保证 AMD 2-3 个季度的时间窗口进行扩张。 2)PC 端受益于 Intel 供给紧张:AMD Ryzen CPU 销售同比翻倍,量价齐 2 《AMD(AMD.US)18Q4 点评:短 升。Intel 目前 14nm CPU 供应紧张情况仍会延续,年底消费季推出 10nm 期目标虽达成,但年内预期已充分反 PC,但整体上量规模有限。AMD 受益于 Intel 的供给紧张,获 OEM 更多机 映,目标价上调至 24 美元,维持“持 型适配;7nm Ryzen CPU 预计于 5 月发布,有望进一步抢占市场份额。 有”》2019-02-05 3)GPU 亦值得期待:GPU 在 CEO 带领下执行力亦值得期待,Q3 发布 7nm 3 《“失败者的游戏”未如预期,“十年 Navi 补全中端产品,谷歌云游戏为 AMD GPU 性能背书,并有望通过 7nm 翻身仗”仍需时日,下调至“持有”, GPU 切入云计算数据中心 AI 计算的高利润市场。 目标价下调至 18 美元》2018-10-27 7nm 产品维持时间窗口,Intel 供给短缺亦创造外部机会 4 《AMD(AMD.US)点评:AMD 的 AMD 今年的核心逻辑还是通过全面进入 7nm 产品上市周期,借由 Intel 的 7nm 制程反超与“10 年翻身仗”,重申 战略失误或执行力延误,把握好时间窗口实现进一步趁机抢占市场份额。 买 入 , 目 标 价 上 调 至 30 美元》 PC 端:Intel 预计到年底消费季推出 10nm PC,但据 Extremetech 报道 Intel 2018-09-04 产品路线图规划 10nm 即使推出也还是市场试水阶段,14nm 仍为 Intel 未 5 《AMD(AMD.US)18Q2 点评:AMD 来 1-2 年的主流制程。而 AMD 7nm Ryzen CPU 预计 5 月发布,有望加速 7 年最佳,10 年翻身,重申买入,TP 与 OEM 厂商的适配提升市占率,我们预测 AMD 整体 PC 市占率(台式机 上调至 23 美元》2018-07-30 +笔电)到 2020 年有望回到 20%的历史平均水平。 6 《AMD(AMD.US)点评:EPYC“从 服务器端:AMD 7nm 代号“Rome”的 EPYC 服务器维持 Q2 发货目标, 零到一”终实现,7nm 产品周期全方位 以配合 Q3 正式面市放量,Intel 10nm 服务器目标于 2020 年内上市,保证 回归“传奇”;TP 上调至 22 美元,重 AMD 留有至少 2-3 季度时间窗口。AMD 在 Q1 与头部 OEM 和云计算客户 申买入》2018-06-20 实现 Rome 的生产验证里程碑,为下半年大规模出货做好准备,希望通过 较第一代产品更快的客户采纳率,在 4-6 个季度后达到 10%市占率目标。 7 《AMD(AMD.US)点评:公布 7nm GPU 加入 AI 计算抢滩战,Ryzen+EPYC 此外 Intel 在 14nm 的供给紧张也为 AMD 进一步在 PC 和笔记本市场攻城 “双子星”仍是中流砥柱;TP 上调至 拔寨提供外部机会。DigiTimes Research 报道 18Q4 Intel CPU 供给缺口一 18 美元,重申买入》2018-06-08 度达到 10%,目前公司虽然通过投放 Capex 增加产能部分缓解缺口,但整 体供给紧张仍会延续到 Q3;而随着 Intel 投产 10nm,产线分配可能在下半 8 《AMD(AMD.US)18Q1 点评:2018 年重新带来供给缺口。AMD 则受益于 Intel 的供给紧张,获 OEM 更多机型 开门红,业绩指引均超预期,Ryzen 继 适配,尤其是通过打入 Chromebook 打开低端笔记本电脑市场。 续扎实闪耀,EPYC 仍待升级放量,重 申买入》2018-04-30 更确定的产品放量和业绩支撑带来股价突破 9 《2017 扭亏为盈业绩迎拐点,2018 Intel 的指引负面与 AMD 形成鲜明的荣辱互现,整体市场虽仍然存在疲软 厚积待薄发,Ryzen+EPYC 继续双星闪 迹象,但 AMD 也表示企业客户服务器认证适配周期要长于云计算厂商, 耀,重申买入》2018-02-01 带来数年的长成长逻辑。估值层面,英伟达、Intel、AMD 三家公司 19 年 加权平均 PS 为 5.2x;进入 5、6 月 Computex、E3 等大会伴随产品发布来 临,我们认为更确定的产品放量和业绩支撑下半年可逐步兑现,有望带来 公司股价前期高点的突破。且明年中索尼发布 PS 5 继续采用 AMD 定制芯 片,也将重新拉动 EESC 业务。我们坚持看好 AMD 估值有望进一步重塑, 逐渐向英伟达 9x 以上 PS 对标,目标价从 30 上调至 33 美元,对应 19 年 PS 4.8x,维持“增持”评级。风险提示:市场需求不及预期,研发能力影 响产品升级。 请务必阅读正文之后的信息披露和免责申明 1 海外公司报告 | 公司动态研究 图 1:AMD EPYC 能否重新 Opteron 的“传奇” 图 2:AMD 服务器业务收入测算 100% 2016E 2017E 2018E 2019E 2020E 80% 市场空间(百万美元) 15,906 17,497 21521 21951 22171 同比 10% 23% 2% 1% 60% 2003年4月发布的 但随着Intel Core架构的出现,以及AMD 2017年6月 Opteron服务器让 分心收购ATI事宜,AMD此后的Bulldozer EPYC发布 1% 2.0% 4.0% 6.0% AMD一度占得 架构以及拥抱ARM架构的服务器产品都丌 悲观估计 40% 140 430 878 1330 20%以上市场份额 被市场认可 7nm第二代 EPYC预计亍 AMD 1% 2.8% 5.0% 8.0% 20% 2019年中发布 数据中心处理器业务收入 中性估计 (百万美元) 175 603 1098 1774 0% 2.0% 5.0% 6.5% 10.0% 2003Q2 2005Q2 2005Q4 2006Q2 2008Q2 2008Q4 2009Q2 2011Q2 2011Q4 2014Q2 2014Q4 2017Q2 2017Q4 2003Q4 2004Q2 2004Q4 2006Q4 2007Q2 2007Q4 2009Q4 2010Q2 2010Q4 2012Q2 2012Q4 2013Q2 2013Q4 2015Q2 2015Q4 2016Q2 2016Q4 E 2018 E 2019 E 2020 乐观估计 350 1076 1427 2217 AMD Intel 资料来源:Mercury Research,天风证券研究所预测 资料来源:Intel 财报,AMD 官网,Gartn er,天风证券研究所预测 图 3:全球 PC 出货量和 AMD、Intel 份额变化 图 4:AMD PC 处理器市占率提升带来的显著营收提升 400 100% 350 80% 300 2016 2017 2018E 2019E 2020E 250 60% 出货量(百万) 270 263 258 255 255 200 AMD市占率 9% 9% 11% 14% 17% 150 40% ASP(美元) 52 63 71 73 75 100 20% 50 收入(百万美元) 1207 1508 2015 2592 3257 0 0% 2018E 2020E 2019E 2006 2009 2012 2015 2017 2008 2010 2011 2013 2014 2016 2007 同比 25% 34% 29% 26% 全球PC出货量(百万台) INTC AMD 资料来源:Gartner、IDC、Mercury Research、天风证券研究所预测 资料来源:Gartner、IDC、Mercury Research、天风证券研究所预测 图 5:Synergy Research 统计全球 Hyperscale 数据中心数量(单位:座) 600 118% 120% 132 500 100% 规划建设中 400 80% 300 60% ~440 440 200 ~400 40% ~312 100 28% 10% 20% 143 0 0% 2015Q2 2016 2017 2018 未来规划 资料来源:Synergy Research,天风证券研究所 请务必阅读正文之后的信息披露和免责申明 2 海外公司报告 | 公司动态研究 图 6:AMD Zen 核心“五年磨一剑”,今年全面进入 7nm 的 Zen 2 产品周期 资料来源:wccftech,天风证券研究所 图 7:AMD CPU 今年全面进入 7nm 的 Zen 2 产品周期 Zen架构 Ryzen 1000系列 Ryzen 2000系列 Ryzen 3000系列 Ryzen 4000系列 架构 第一代Zen 第一代Zen / Zen+ 第二代Zen 第三代Zen 制程 14nm 14nm / 12nm 7nm 7nm+ 服务器 EPYC 'Naples' EPYC 'Naples' EPYC 'Rome' EPYC 'Milan' 最大服务器核心/线 32/64 32/64 64/128 TBD 程数 Ryzen Threadripper Ryzen Threadripper Ryzen Threadripper Ryzen Threadripper 高端PC处理器 1000系列 2000系列 3000系列 4000系列 最大核心/线程数 16/32 32/64 32/64? TBD 主流台式机 Ryzen 1000系列 Ryzen 2000系列 Ryzen 3000系列 Ryzen 4000系列 最大核心/线程数 8/16 8/16 8/16 TBD Ryzen 3000 Series 笔电APU N/A Ryzen 2000 Series Ryzen 4000 Series (Picasso) Zen+? 发布年份 2017 2018 2019 2020 资料来源:wccftech,天风证券研究所 图 8:目前深度学习领域常用的四大芯片类型,“通用性和功耗的平衡” 训练端 推理端 GPU:以英伟达为主,AMD为辅标榜通用性,多维 GPU:英伟达Volta GPU也开始布局推理端。深度 计算及大规模幵行计算架构契合深度学习的需要 。 学习下游推理端虽可容纳CPU/FPGA/ASIC等芯片, 在深度学习上游训练端(主要用在于计算数据中心 但竞争态势中英伟达依然占主导。 里),GPU是当仁丌让的第一选择 。 ASIC:以谷歌的TPU、英特尔的Nervana Engine ASIC:下游推理端更接近终端应用,需求也更加绅 为代表,针对特定框架进行深度优化定制。但开发 分,英伟达的DLA,寒武纪的NPU等逐步面市,将 周期较长,通用性较低。比特币挖矿目前使用ASIC 依靠特定优化和效能优势,未来在深度学习领域分 专门定制化矿机。 一杯羹。 FPGA:依靠可编程性及电路级别的通用性,适用 CPU:通用性强,但难以适应亍人工智能时代大数 亍开发周期较短的 IoT产品、传感器数据预处理工作 据幵行计算工作。 以及小型开发试错升级迭代阶段等。但较成熟的量 产设备多采用ASIC。 资料来源:微软 Build,谷歌官网,天风证券研究所整理 请务必阅读正文之后的信息披露和免责申明 3 海外公司报告 | 公司动态研究 图 9:AMD 与英伟达历史桌面独立显卡市场市占率,英伟达随着 RTX 2000 系列显卡的面世和适配,在高端显卡市场重拾市场份额 NVDA% AMD% 90 80 RTX RTX 2000 GeForce 900 GeForce GeForce 1000 GeForce 70 GeForce400 GeForce 700 GeForce GeFroce 9 & 9 200 GeFroce GeForce 500 GeForce GeForce600 60 RadeonX800 GeForce 8 GeForce 50 40 30 Radeon X100 Radeon GeForce 7 GeForce Rx 200 Rx GeForce 6 GeForce RadeonHD5000 RX 300 300 RXFury & RX 500 RX 20 400 RX RadeonHD6000 Radeon HD4000 Radeon RadeonHD3000 RX VegaRX RadeonHD7000 10 RadeonHD2000 Radeon9000 0 0203030303040404040505050506060606070707070808080809090909101010101111111112121212131313131414141415151515161616161717171718181818 Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4 NVDA% 6564646250613842474741515253525754596462636361596369595665655459615959586362596466646265656562727677828179777071717370736665647481 AMD% 2628283245375855525156464645484346403438373638413731414435354541394040403638403634363836353538282423181921233029302830273435362619 资料来源:Jon Peddie,天风证券研究所整理 图 10:Steam 平台 PC 显卡使用各品牌占比 图 11:全球独显出货量和 AMD、英伟达份额变化 100% 百万 英伟达出货量 AMD出货量 英伟达市占率 AMD市占率 80 90% 80% 70 80% 60% 75.0% 60 70% 60% 50 40% 50% 40 40% 20% 30 14.7% 30% 20 0% 20% Jan-17 May-17 Jul-17 Jan-18 Mar-18 Sep-18 Nov-18 Mar-17 Sep-17 Nov-17 May-18 Jul-18 Jan-19 10 10% 0 0% OTHER INTEL AMD NVIDIA 2010 2011 2012 2013 2014 2015 2016 2017E 2018E 2019E 2020E 资料来源:Steam,天风证券研究所整理 资料来源:Jon Peddie,天风证券研究所预测 图 12:AMD 各项业务营收比较(百万美元) 图 13:AMD 各季营收(百万美元)及毛利率 百万美元 2,000 45% 2000 41% 1,600 40% 37% 41% 36% 36% 40% 1500 532 670 34% 34% 715 1,200 35% 749 433 32% 432 441 1000 1756 605 490 800 1584 1647 1653 30% 1419 1340 1272 1115 1178 1151 500 1086 986 835 908 938 831 400 25% 573 661 0 0 20% 17Q1 17Q2 17Q3 17Q4 18Q1 18Q2 18Q3 18Q4 19Q1 17Q1 17Q2 17Q3 17Q4 18Q1 18Q2 18Q3 18Q4 19Q1 计算和图像 企业、嵌入式和半定制 总营收 毛利率 资料来源:公司财报,天风证券研究所整理 资料来源:公司官网,天风证券研究所整理 请务必阅读正文之后的信息披露和免责申明 4 海外公司报告 | 公司动态研究 图 14:Google Stadia 的 GPU 算力比较 图 15:Google Stadia 的服务器网络布局 资料来源:Google Stadia 发布会,天风证券研究所 资料来源:Google Stadia 发布会,天风证券研究所 图 16:AMD Pro V340 GPU 很可能用于支持 Google Stadia 图 17:V340 的双 GPU 支持最多 32 个客户的虚拟机 资料来源:AMD 官网,天风证券研究所 资料来源:AMD 官网,天风证券研究所 图 18:AMD GPU 线今年将迎来 Vega+Navi 双头并进 图 19:AMD 此前发布的首款 7nm GPU Radeon VII 资料来源:AMD 官网,天风证券研究所 资料来源:AMD 官网,天风证券研究所 请务必阅读正文之后的信息披露和免责申明 5 海外公司报告 | 公司动态研究 图 20:AMD 与 Intel、英伟达可比估值 最新价格 当前市值 2019 2020 2019 P/S 2020 P/S 2019 P/E 2020 P/E (美元) (十亿美元) EV/EBITDA EV/EBITDA AMD US Equity 26.81 29.00 4.2 3.5 40.9 26.9 26.8 19.6 INTC US Equity 50.76 227.25 3.3 3.2 11.7 11.0 7.6 7.1 NVDA US Equity 180.47 109.81 9.4 9.8 33.7 25.1 28.1 21.7 资料来源:Bloomberg,天风证券研究所 图 21:AMD、Intel、英伟达历史 Forward PS(按月) 18 16 14 12 10 9.85 8 6 4.22 4 2 3.28 0 Jan-00 Jul-07 Apr-08 Jan-09 Oct-09 Jul-10 Apr-17 Jan-18 Oct-18 Oct-00 Jul-01 Apr-02 Jan-03 Oct-03 Jul-04 Apr-05 Jan-06 Oct-06 Apr-11 Jan-12 Oct-12 Jul-13 Apr-14 Jan-15 Oct-15 Jul-16 AMD Intel 英伟达 资料来源:Bloomberg,天风证券研究所 请务必阅读正文之后的信息披露和免责申明 6 海外公司报告 | 公司动态研究 图 22:AMD 整体盈利预测 百万美元 2016 2017Q1 2017Q2 2017Q3 2017Q4 2017 2018Q1 2018Q2 2018Q3 2018Q4 2018 2019Q1 2019E 2020E 主营业务收入 4,319.0 1,178.0 1,151.0 1,584.0 1,340.0 5,253.0 1,647.0 1,756.0 1,653.0 1,419.0 6,475.0 1,272.0 6,962.2 8,499.7 同比% 8.2% 21.6% 39.8% 52.6% 4.4% 5.9% 23.3% -22.8% 7.5% 22.1% 计算与图形 1,988.0 573.0 661.0 835.0 908.0 2,977.0 1,115.0 1,086.0 938.0 986.0 4,125.0 831.0 4,554.1 5,218.9 同比% 10.1% 49.7% 94.6% 64.3% 12.3% 8.6% 38.6% -25.5% 10.4% 14.6% PC处理器收入E(Ryzen等) 1,207.4 1,507.8 2,015.0 2,591.7 3,256.6 同比% 24.9% 33.6% 28.6% 25.7% GPU收入E(Vega、挖矿等) 780.6 1,469.2 2,110.0 1,962.3 1,962.3 同比% 88.2% 43.6% -7.0% 0.0% 企业、嵌入和半定制 2,331.0 605.0 490.0 749.0 432.0 2,276.0 532.0 670.0 715.0 433.0 2,350.0 441.0 2,408.1 3,280.8 同比% 6.6% -2.4% -12.1% 36.7% -4.5% 0.2% 10.0% -17.1% 2.5% 36.2% 服务器处理器收入E(EPYC等) 31.8 175.0 602.6 1,097.6 1,773.7 同比% 450.0% 244.4% 82.1% 61.6% 其他收入E 2,299.2 2,101.0 1,747.4 1,310.6 1,507.1 同比% -8.6% -16.8% -25.0% 15.0% GAAP主营业务成本 3,316.0 800.0 765.0 1,013.0 888.0 3,466.0 1,050.0 1,104.0
Recommended publications
  • Owner's Manual
    Dell Latitude 3330 Owner's Manual Regulatory Model: P18S Regulatory Type: P18S002 Notes, Cautions, and Warnings NOTE: A NOTE indicates important information that helps you make better use of your computer. CAUTION: A CAUTION indicates either potential damage to hardware or loss of data and tells you how to avoid the problem. WARNING: A WARNING indicates a potential for property damage, personal injury, or death. © 2013 Dell Inc. Trademarks used in this text: Dell™, the Dell logo, Dell Boomi™, Dell Precision™ , OptiPlex™, Latitude™, PowerEdge™, PowerVault™, PowerConnect™, OpenManage™, EqualLogic™, Compellent™, KACE™, FlexAddress™, Force10™ and Vostro™ are trademarks of Dell Inc. Intel®, Pentium®, Xeon®, Core® and Celeron® are registered trademarks of Intel Corporation in the U.S. and other countries. AMD® is a registered trademark and AMD Opteron™, AMD Phenom™ and AMD Sempron™ are trademarks of Advanced Micro Devices, Inc. Microsoft®, Windows®, Windows Server®, Internet Explorer®, MS-DOS®, Windows Vista® and Active Directory® are either trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries. Red Hat® and Red Hat® Enterprise Linux® are registered trademarks of Red Hat, Inc. in the United States and/or other countries. Novell® and SUSE® are registered trademarks of Novell Inc. in the United States and other countries. Oracle® is a registered trademark of Oracle Corporation and/or its affiliates. Citrix®, Xen®, XenServer® and XenMotion® are either registered trademarks or trademarks of Citrix Systems, Inc. in the United States and/or other countries. VMware®, Virtual SMP®, vMotion®, vCenter® and vSphere® are registered trademarks or trademarks of VMware, Inc. in the United States or other countries.
    [Show full text]
  • Evaluation of AMD EPYC
    Evaluation of AMD EPYC Chris Hollowell <[email protected]> HEPiX Fall 2018, PIC Spain What is EPYC? EPYC is a new line of x86_64 server CPUs from AMD based on their Zen microarchitecture Same microarchitecture used in their Ryzen desktop processors Released June 2017 First new high performance series of server CPUs offered by AMD since 2012 Last were Piledriver-based Opterons Steamroller Opteron products cancelled AMD had focused on low power server CPUs instead x86_64 Jaguar APUs ARM-based Opteron A CPUs Many vendors are now offering EPYC-based servers, including Dell, HP and Supermicro 2 How Does EPYC Differ From Skylake-SP? Intel’s Skylake-SP Xeon x86_64 server CPU line also released in 2017 Both Skylake-SP and EPYC CPU dies manufactured using 14 nm process Skylake-SP introduced AVX512 vector instruction support in Xeon AVX512 not available in EPYC HS06 official GCC compilation options exclude autovectorization Stock SL6/7 GCC doesn’t support AVX512 Support added in GCC 4.9+ Not heavily used (yet) in HEP/NP offline computing Both have models supporting 2666 MHz DDR4 memory Skylake-SP 6 memory channels per processor 3 TB (2-socket system, extended memory models) EPYC 8 memory channels per processor 4 TB (2-socket system) 3 How Does EPYC Differ From Skylake (Cont)? Some Skylake-SP processors include built in Omnipath networking, or FPGA coprocessors Not available in EPYC Both Skylake-SP and EPYC have SMT (HT) support 2 logical cores per physical core (absent in some Xeon Bronze models) Maximum core count (per socket) Skylake-SP – 28 physical / 56 logical (Xeon Platinum 8180M) EPYC – 32 physical / 64 logical (EPYC 7601) Maximum socket count Skylake-SP – 8 (Xeon Platinum) EPYC – 2 Processor Inteconnect Skylake-SP – UltraPath Interconnect (UPI) EYPC – Infinity Fabric (IF) PCIe lanes (2-socket system) Skylake-SP – 96 EPYC – 128 (some used by SoC functionality) Same number available in single socket configuration 4 EPYC: MCM/SoC Design EPYC utilizes an SoC design Many functions normally found in motherboard chipset on the CPU SATA controllers USB controllers etc.
    [Show full text]
  • Multiprocessing Contents
    Multiprocessing Contents 1 Multiprocessing 1 1.1 Pre-history .............................................. 1 1.2 Key topics ............................................... 1 1.2.1 Processor symmetry ...................................... 1 1.2.2 Instruction and data streams ................................. 1 1.2.3 Processor coupling ...................................... 2 1.2.4 Multiprocessor Communication Architecture ......................... 2 1.3 Flynn’s taxonomy ........................................... 2 1.3.1 SISD multiprocessing ..................................... 2 1.3.2 SIMD multiprocessing .................................... 2 1.3.3 MISD multiprocessing .................................... 3 1.3.4 MIMD multiprocessing .................................... 3 1.4 See also ................................................ 3 1.5 References ............................................... 3 2 Computer multitasking 5 2.1 Multiprogramming .......................................... 5 2.2 Cooperative multitasking ....................................... 6 2.3 Preemptive multitasking ....................................... 6 2.4 Real time ............................................... 7 2.5 Multithreading ............................................ 7 2.6 Memory protection .......................................... 7 2.7 Memory swapping .......................................... 7 2.8 Programming ............................................. 7 2.9 See also ................................................ 8 2.10 References .............................................
    [Show full text]
  • The Wysiwyg and Vivien Hardware Guide
    The wysiwyg and Vivien Hardware Guide [Updated June 5, 2019] This guide describes the principles of selecting hardware components for a wysiwyg or Vivien workstation, and it is meant to be a guideline for choosing the right hardware for your intended use of the software. As such, actual hardware models are not specified for most components, but based on the information provided below, you will be able to decide on these yourself. Once you have, if you wish to confirm the components you selected, our Technical Support Department will be happy to look over your list; please see the end of this article for information on how to get in touch with us. Before discussing the various components and the criteria for selecting them, there are four important things to note. It strongly recommended that you read all this information and follow the advice before considering the purchase of new hardware. 1. Geometry must always be properly optimized, in all files, regardless of their complexity. Even the best/fastest/most expensive hardware will not be able to properly- handle a file that is not optimized and therefore contains inefficient geometry. If you haven’t done so already, please read through this thread on our Forum, in order to learn how to optimize your files. The key to understanding the optimization principles described here lies with the articles mentioned in the first paragraph of the first message, “Part 1” and “Part 2”; please ensure that you also click those links and read the information they reveal. 2. Even in an optimized file performance can be poor if your video card driver is out-of-date and/or your video card’s settings and/or Shaded View options are inappropriate.
    [Show full text]
  • Solaris 10 OS on AMD Opteron Processor-Based Systems
    Solaris™ 10 OS on AMD Opteron™ Processor-based Systems < A powerful combination for your business Sun and AMD take x64 computing to a new level with the breakthrough performance of AMD Opteron™ processor-based systems combined with the Solaris™ 10 OS — the most advanced operating system on the planet. By combining the best of free and open source software with the most powerful industry-standard platforms, customers can take advantage of the most robust and secure, yet economical Web, database, and application servers. A unique partnership Price/performance Coengineering and technology collaboration World-record performance Sun and AMD software engineers work jointly Leveraging more than 20 years of Symmetric on a range of codevelopment efforts including Multiprocessing (SMP) expertise, Sun has future development of HyperTransport, virtu- tuned and optimized Solaris 10 for the AMD alization, fault management, compiler perform- Opteron platform to deliver exceptional ance, and other ways Solaris may take advantage performance and near-linear scalability. For Highlights of the AMD Opteron architecture. Solaris 10 enterprises with demanding compute, net- • Supports the latest generation 5/08 also includes support for the latest gener- work, and Web applications, the combination of AMD x64 processors ation of AMD x64 processors and UltraSPARC of Solaris 10 and AMD Opteron processor-based • PowerNow! enhancements CMT systems. systems is often an ideal fit. Dozens of perform- provide additional power man- ance and price/performance world record agement capabilities Growing the Solaris™ OS ecosystem for AMD64 benchmarks demonstrate this exceptional • Remote client display virtualiztion Sun and AMD are working together with key combination. Solaris 10 has set more than • Solaris Trusted Extensions optimi- target ISVs, system builders, and independent 50 world records, employing various industry- zations for better interoperability hardware vendors (IHVs) to fuel growth of the standard benchmarks or workload scenarios and security Solaris 10 ecosystem around AMD64.
    [Show full text]
  • AMD's Early Processor Lines, up to the Hammer Family (Families K8
    AMD’s early processor lines, up to the Hammer Family (Families K8 - K10.5h) Dezső Sima October 2018 (Ver. 1.1) Sima Dezső, 2018 AMD’s early processor lines, up to the Hammer Family (Families K8 - K10.5h) • 1. Introduction to AMD’s processor families • 2. AMD’s 32-bit x86 families • 3. Migration of 32-bit ISAs and microarchitectures to 64-bit • 4. Overview of AMD’s K8 – K10.5 (Hammer-based) families • 5. The K8 (Hammer) family • 6. The K10 Barcelona family • 7. The K10.5 Shanghai family • 8. The K10.5 Istambul family • 9. The K10.5-based Magny-Course/Lisbon family • 10. References 1. Introduction to AMD’s processor families 1. Introduction to AMD’s processor families (1) 1. Introduction to AMD’s processor families AMD’s early x86 processor history [1] AMD’s own processors Second sourced processors 1. Introduction to AMD’s processor families (2) Evolution of AMD’s early processors [2] 1. Introduction to AMD’s processor families (3) Historical remarks 1) Beyond x86 processors AMD also designed and marketed two embedded processor families; • the 2900 family of bipolar, 4-bit slice microprocessors (1975-?) used in a number of processors, such as particular DEC 11 family models, and • the 29000 family (29K family) of CMOS, 32-bit embedded microcontrollers (1987-95). In late 1995 AMD cancelled their 29K family development and transferred the related design team to the firm’s K5 effort, in order to focus on x86 processors [3]. 2) Initially, AMD designed the Am386/486 processors that were clones of Intel’s processors.
    [Show full text]
  • AMD Opteron™ 4000 Series Platform
    AMD Opteron™ 4000 Series Platform The world’s lowest power x86 cloud processor1 just got more efficient The AMD Opteron™ 4200 Series processor — the world’s lowest power processor1,3 at fewer than 5 watts per core — while designed for challenging workloads still delivers a performance punch. AMD Opteron™ 4000 Series Platform Product Comparison ™ AMD Opteron 4100 ™ Series Processor AMD Opteron 4200 Series Processor Features Features Benefits 33% increase in core count packed with plenty of processing Processor Cores 4 and 6 core options 6 and 8 core options performance in a smaller2, more efficient3 8-core design while maintaining the same power/thermal ranges L2: 512 K/core L2: 2 MB shared by 2 cores Processor Cache L3: 6 MB L3: 8 MB Twice the L2 cache per core over the previous generation 2 memory channels supporting R/U 2 memory channels supporting ULV- 20% faster memory and new 1.25V ULV memory offering; Memory DDR3 and LV R/U DDR3 up to 1333MHz DIMM, UDIMM, RDIMM up to 1600MHz high memory bandwidth EE/Std/HE EE/Std/HE HE/Std/SE power options to match workload performance Power and power requirements HyperTransport™ Technology 2X HT3 Links (between CPUs) 2X HT3 Links (between CPUs) Helps improve overall system balance and scalability for scale-out (HT) Up to 25.6 GB/s per link @ 6.4 GT/s Up to 25.6 GB/s per link @ 6.4 GT/s computing environments like HPC, database and web serving Up to 8 cores, new features include Up to 20% greater throughput4 expected, 33% more cores5; FMAC in the Performance Up to 6 cores AMD Turbo CORE technology, FMAC, Flex FP help drive more performance by executing FMA4 instructions that Flex FP and an all new architecture execute complex calculations in half the cycles as the competition Features include enhanced APML (in APML-enabled platforms), AMD New power-saving features like C6 C6 Power State shuts down power to idle cores.
    [Show full text]
  • Cache Hierarchy and Memory Subsystem of the Amd Opteron Processor
    [3B2-14] mmi2010020016.3d 30/3/010 12:7 Page 16 .......................................................................................................................................................................................................................... CACHE HIERARCHY AND MEMORY SUBSYSTEM OF THE AMD OPTERON PROCESSOR .......................................................................................................................................................................................................................... THE 12-CORE AMD OPTERON PROCESSOR, CODE-NAMED ‘‘MAGNY COURS,’’ COMBINES ADVANCES IN SILICON, PACKAGING, INTERCONNECT, CACHE COHERENCE PROTOCOL, AND SERVER ARCHITECTURE TO INCREASE THE COMPUTE DENSITY OF HIGH-VOLUME COMMODITY 2P/4P BLADE SERVERS WHILE OPERATING WITHIN THE SAME POWER ENVELOPE AS EARLIER-GENERATION AMD OPTERON PROCESSORS.AKEY ENABLING FEATURE, THE PROBE FILTER, REDUCES BOTH THE BANDWIDTH OVERHEAD OF TRADITIONAL BROADCAST-BASED COHERENCE AND MEMORY LATENCY. ......Recent trends point to high and and latency sensitive, which favors the use growing demand for increased compute den- of high-performance cores. In fact, a com- sity in large-scale data centers. Many popular mon use of chip multiprocessor (CMP) serv- server workloads exhibit abundant process- ers is simply running multiple independent and thread-level parallelism, so benefit di- instances of single-threaded applications in rectly from additional cores. One approach multiprogrammed mode. In addition, for Pat Conway to exploiting
    [Show full text]
  • The AMD Opteron™ Processor Is the Ideal Solution for High Performance Computing
    The AMD Opteron™ processor is the ideal solution for High Performance Computing AMD Opteron™ processors = More For Your IT Dollar Reasons to Recommend AMD Opteron™ processors for HPC: • AMD Opteron™ 6200 Series processors offer up to 34% lower processor price/theoretical GFLOP than Intel Xeon E5-2600 Series processors. Making it an ideal solution for public sector and university research opportunities.1 • AMD has been helping to build the highest performing supercomputers in the world for many years, including 24 of the 100 most powerful systems in the most recent Top 500 list.2 • Consistency across the AMD Opteron™ 6000 series processors for easy upgradeability and backwards compatibility How to Sell/Position: • AMD dedicated cores deliver consistent thread performance for highly scalable workloads. • 4 memory channels per AMD Opteron™ 6200 Series processor results in outstanding memory bandwidth. Positioning Guidance The table below is sorted by descending SPECint®_rate2006 performance. For example, a server using 2 x AMD Opteron™ processors Model 6274 provides higher SPECint®_rate2006 performance than a server using 2 x Intel Xeon™ processor Model E5-2640 AND has a lower total processor 1kU price. ® 3 ® ® Total Processor 1kU Model SPECint _ rate2006 SPECfp _ rate2006 SPECint _ rate_base2006 GFLOPs (Theoretical) Price - 2P* Intel Xeon™ processor Model E5-2690 705 510 671 371 $4,114 Intel Xeon™ processor Model E5-2680 666 494 640 346 $3,446 Intel Xeon™ processor Model E5-2670 647 486 622 333 $3,104 Intel Xeon™ processor Model E5-2665
    [Show full text]
  • Modern Computer Architecture and Organization
    Modern Computer Architecture Ledin Jim Organization and Architecture Computer Modern and Organization Modern Computer Are you a software developer, systems designer, The book will teach you the fundamentals or computer architecture student looking for of computer systems including transistors, a methodical introduction to digital device logic gates, sequential logic, and instruction Architecture and architectures but overwhelmed by their operations. You will learn details of modern complexity? This book will help you to learn processor architectures and instruction sets how modern computer systems work, from the including x86, x64, ARM, and RISC-V. You will lowest level of transistor switching to the macro see how to implement a RISC-V processor in view of collaborating multiprocessor servers. a low-cost FPGA board and how to write a Organization You'll gain unique insights into the internal quantum computing program and run it on an behavior of processors that execute the code actual quantum computer. By the end of this developed in high-level languages and enable book, you will have a thorough understanding you to design more effi cient and scalable of modern processor and computer software systems. architectures and the future directions these architectures are likely to take. Learn x86, ARM, and RISC-V architectures and the design of smartphones, PCs, and cloud servers Things you will learn: • Get to grips with transistor technology • Understand the purpose and operation and digital circuit principles of the supervisor mode • Discover
    [Show full text]
  • CPU History [Tualatin] [Banias] [Dothan] [Yonah (Jonah)] [Conroe] [Allendale] [Yorkfield XE] Intel Created Pentium (From Quad-Core CPU
    2nd Generation 4th Generation 5th Generation 6th Generation 7th Generation 3rd Generation Intel Pentium III-S Intel Pentium-M (Centrino) Intel Pentium-M (Centrino) Intel Core Duo (Viiv) Intel Core 2 Duo (Viiv)/Xeon Intel Core 2 Duo (Viiv) Intel Core 2 Extreme (Viiv) Intel had the first consumer CPU History [Tualatin] [Banias] [Dothan] [Yonah (Jonah)] [Conroe] [Allendale] [Yorkfield XE] Intel created Pentium (from quad-core CPU. x86/CISC Microprocessors Greek penta which means (2001) (2003) (2004) (2006) (2006) (2007) (2007) 1st Generation Intel Pentium II Xeon Intel Pentium III Xeon Centrino is not a CPU; it is Begin Core five) to distinguish the Intel [P6] [Tanner] a mobile Intel CPU paired nomeclature brand from clones. Names (1998) (1999) Intel Celeron with an Intel Wi-Fi adapter. Intel Celeron Intel Core Solo can be copyrighted, product [Tualeron] [Dothan-1024] Intel Xeon LV Intel Celeron Intel Celeron [Yonah] ID's cannot. (2001) (2004) [Sossaman] [Banias-512] [Shelton (Banias-0)] (2006) (2006) Intel Core 2 Duo Intel Core 2 Extreme Intel Celeron Intel 80386 DX Intel 80486 DX Intel Pentium Intel Pentium Pro Intel Pentium II Intel Pentium II Intel Pentium III Intel Pentium III Intel Pentium 4 Intel Pentium 4 (2004) (2004) Intel Pentium 4 Intel Pentium 4 Intel 4004 Intel 8008 Intel 8086 Intel 80286 [Conroe XE] [Conroe-L] [P3] [P4] [P5/P54/P54C] [P6] [Klamath] [Deuschutes] [Katmai] [Coppermine] [Williamette] [Northwood] [Prescott] [Cedar Mill] END-OF-LINE (Centrino Duo) (1971) (1972) (1978) (1982) (2006) (2007) (1985) (1989) (1993) (1995) (1997) (1998) (1999) (1999) (2000) (2002) (2004) (2006) [Merom] (2006) Yonah is Hebrew for Jonah.
    [Show full text]
  • AMD Opteron™ and Intel® Xeon® X86 Processors in Industry-Standard Servers
    AMD Opteron™ and Intel® Xeon® x86 processors in industry-standard servers Technology brief, 2nd edition Introduction ......................................................................................................................................... 2 Processor naming conventions ............................................................................................................... 2 AMD Opteron processors ................................................................................................................. 2 Intel Xeon processors ........................................................................................................................ 2 Microarchitecture ................................................................................................................................. 3 Intel Microarchitecture Nehalem ........................................................................................................ 3 AMD Opteron microarchitecture ........................................................................................................ 6 Instruction set architecture ..................................................................................................................... 7 32-bit operations.............................................................................................................................. 7 64-bit extensions .............................................................................................................................. 8 I/O architecture
    [Show full text]