Dual Mechanism of Action of Nicorandil on Rabbit Corpus Cavernosal Smooth Muscle Tone

Total Page:16

File Type:pdf, Size:1020Kb

Dual Mechanism of Action of Nicorandil on Rabbit Corpus Cavernosal Smooth Muscle Tone International Journal of Impotence Research (2001) 13, 240±246 ß 2001 Nature Publishing Group All rights reserved 0955-9930/01 $15.00 www.nature.com/ijir Dual mechanism of action of nicorandil on rabbit corpus cavernosal smooth muscle tone GC Hsieh1*, T Kolasa1, JP Sullivan1 and JD Brioni1 1Neurological and Urological Diseases Research, Abbott Laboratories, Illinois, USA The potential of ATP-sensitive potassium channel openers (KCOs) for the treatment of male erectile dysfunction has recently been suggested based on positive clinical outcomes following intra-cavernosal administration of pinacidil. Agents that increase the levels of cGMP via elevation of nitric oxide (NO) nitroglycerin, for example, are also effective in improving erectile function preclinically and clinically. The aim of the present study was to determine the effects and mechanism of the action of nicorandil on rabbit corpus cavernosum. The in vitro regulation of smooth muscle tone was assessed in isolated cavernosal tissues pre-contracted with phenyl- ephrine. Nicorandil, but not its major metabolite, relaxed phenylephrine-precontracted caverno- sum smooth muscle with an EC50 of 15 mM. The effects of nicorandil were only partially reversed by the KATP channel blocker glyburide (10 mM) or by a soluble guanylate cyclase (sGC) inhibitor 1H-[1,2,4] oxadiazole [4,3-a] quinoxalin-1-one (ODQ, 3 mM). However, a combination of ODQ and glyburide completely blocked the relaxant effects of nicorandil. The results of the present study indicate that nicorandil can relax rabbit cavernosal tissue in vitro via a mechanism that involves activation of KATP channels and stimulation of soluble guanylate cyclase. International Journal of Impotence Research (2001) 13, 240±246. Keywords: nicorandil; erectile dysfunction; KATP channel; guanylate cyclase Introduction and NO donors) have shown limited ef®cacy in clinical trials for male erectile dysfunction.4 How- ever, since these agents relax the peripheral vascu- Corpus cavernosal smooth muscle tone is controlled lature via a similar mechanism and are prone to by a number of discrete signaling pathways co- systemic side-effects,5 they must be administered ordinated at the level of the peripheral and central locally by intracavernosal injection or topically. nervous system. This smooth muscle tone ulti- ATP-sensitive potassium channels (KATP) are an mately regulates penile ¯accidity and erection.1 important family of potassium channels that couple Contraction is primarily mediated by alpha- cellular energy metabolism to membrane electrical adrenoceptor stimulation1,2 while relaxation is 6,7 activity. At physiologic ATP levels, KATP chan- mediated by the interaction of several types of nels remain mostly in their closed state while at low neurotransmission, including nonadrenergic ± non- ATP levels, the channels open. Potassium channel cholinergic (NANC) neural input and the release of openers (KCOs) such as L-cromakalim, diazoxide, nitric oxide,1,3 Nitric oxide, released from NANC pinacidil and its analogue P1075 activate KATP nerve terminals and from cholinergically-activated channels producing hyperpolarization of vascular endothelial cells, diffuses into adjacent smooth and non-vascular smooth muscle membranes which muscle cells where it activates soluble guanylate reduce Ca2 in¯ux through voltage-activated L-type cyclase. This increases the intracellular levels of Ca2 channels, thus resulting in smooth muscle cyclic guanosine monophosphate (cGMP) that leads relaxation.6 Recently, the prototypic potassium to the relaxation of cavernosal smooth muscle. The channel openers such as L-cromakalim and pinaci- increased blood ¯ow and engorgement of the dil, when administered as intracavernosal injec- trabecular spaces results in veno-occlusion and tions, have been found effective in the initiation penile erection. Nitrovasodilators (organic nitrates and maintenance of penile erection in experi- mental animal models8±10 and in clinical study in humans.11 *Correspondence: G Hsieh, Neurological and Urological Nicorandil (N-(2-hydroxyethyl)nicotinamide ni- Diseases Research, D-4ND, AP-9, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064-6119, USA. trate ester) is an orally ef®cacious anti-anginal E-mail: [email protected] drug.12 While this agent has been shown to relax Received 21 November 2000; accepted 16 April 2001 human corpus cavernosum,13 the mechanism under- KATP and guanylate cyclase activation by nicorandil GC Hsieh et al 241 lying this effect remains to be fully elucidated. The dissected free of the tunica albuginea and surround- present study was designed to investigate the ing connective tissues). Each tissue strip was mechanism of action of nicorandil in rabbit corpus longitudinally cut into three strip preparations cavernosum. Speci®cally, the role of the KCO and measuring approximately 26267 mm (unstretched nitrate activities associated with this compound was length, mean weight 30 mg). investigated. Additionally, the possibility that the relaxant effects of nicorandil are mediated via its major metabolite was also assessed. Measurement of isometric tension Materials and methods The strips were transferred and mounted to organ baths (10 ml) containing Kreb ± Henseleit buffer solution (pH 7.4) maintained at 37C by a thermo- Drugs regulated water circuit. The buffer solution con- tained D-glucose 2.0 g=l, MgSO4 0.141 g=l, KH2PO4 Nicorandil (N-(2-hydroxyethyl) nicotinamide nitrate 0.16 g=l, KCl 0.35 g=l, NaCl 6.9 g=l (Sigma Chemical ester) and its metabolite N-(2-hydroxyethyl) nicotin- Co) plus CaCl2.2H2O 0.373 g=l and NaHCO3 2.1 g=l. The buffer was continuously aerated with a mixture amide (Figure 1), KATP channels openers L-croma- of 95% O =5% CO . The tissue strips were loaded kalim, P1075, and KATP channel blocker glyburide 2 2 were synthesized at Abbott Laboratories (Abbott with a resting tension of 2 g and equilibrated for Park, IL). Guanylate cyclase inhibitor ODQ (1H- 90 min. During equilibration, the bath solution was [1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), diazoxide, replaced every 10 ± 15 min. Changes in isometric sodium nitroprusside, and phenylephrine were tension of muscle tissues were measured using a purchased from Sigma Chemical Co. (St Louis, force-displacement transducer (Grass FT03 model, MO). Nicorandil was dissolved in dimethyl sulf- Grass Instruments Co., Quincy, MA) and recorded oxide (DMSO) to make a 100 mM stock solution. All on a Grass 7D model polygraph. Repeated adjust- drugs, unless indicated otherwise, were further ment of tension was performed if necessary. No diluted with ethanol before adding into the buffer changes in tension were made after the experiment solutions in tissue bath chamber so that the ®nal was started. total solvent (DMSO plus ethanol) concentrations in the assays was less than 0.5% (v=v) which itself did not alter the smooth muscle tone. Stock solutions of Drug treatment phenylephrine prepared in saline included 0.1% ascorbic acid as an antioxidant. The relaxation effects of nicorandil, nicorandil metabolite, L-cromakalim, P1075, diazoxide, and Tissue preparation sodium nitroprusside were assessed in rabbit corpus cavernosum preparations precontracted with phe- nylephrine (1.5 mM). At stable tension, compounds The in vitro regulation of smooth muscle tone was to be tested were added cumulatively at half log unit assessed using isolated rabbit cavernosum smooth increments, and a new concentration was not added muscle strips mounted in organ bath chamber and until the response to the previous one had attained a pre-contracted with phenylephrine. Corpus caver- steady state tension. nosum tissues were prepared from adult male New In another set of experiments, tissue preparations Zealand white rabbits (Covance Research Produc- were contracted with phenylephrine 1.5 mM and tion, Kalamazoo, MI), weighing 3.0 ± 3.5 kg, after subsequently treated with 3 ± 10 mM ODQ (a guany- euthanasia by intravenous pentobarbital sodium late cyclase inhibitor), 10 mM glyburide (for compe- injection. The two corpus cavernosum strips were titive blockade of ATP-dependent K channel), carefully dissected under a illuminated magni®er (a or combination of ODQ (3 mM) and glyburide slit was made in the proximal end of the tunica and (10 mM) for 15 min. The inhibitors were added after extended distally and the corpus cavernosum was the phenylephrine-induced contraction reached O O O OH N N NO2 H H N N Figure 1 Structure of nicorandil and its metabolite N-(2-hydroxyethyl) nicotinamide. International Journal of Impotence Research KATP and guanylate cyclase activation by nicorandil GC Hsieh et al 242 steady-state. A cumulative concentration ± response Effects of KATP channel openers P1075, curve was then constructed for the relaxant agents L-cromakalim, and diazoxide on phenylephrine above described. contracted corpus cavernosal strips In order to determine the effect of other KCOs Data analysis lacking nitrate activity on rabbit corpus cavernosal smooth muscle tone, three reference openers, P1075, Sigmoid curves were ®tted to concentration- L-cromakalim, and diazoxide, were evaluated. All response data by nonlinear regression analysis three KCOs relaxed the tissue preparation in a concentration-dependent manner. The EC values (GraphPAD, San Diego, CA) to obtain EC50 values 50 as appropriate. Data are expressed as the mean for P1075, L-cromakalim and diazoxide were 0.064, Æ s.e.m. 0.75, and 85 mM, respectively (Figure 3). The rank order of potency of these compounds in this tissue
Recommended publications
  • Use of Gasotransmitters for the Controlled Release of Polymer
    Journal of Controlled Release 279 (2018) 157–170 Contents lists available at ScienceDirect Journal of Controlled Release journal homepage: www.elsevier.com/locate/jconrel Review article Use of gasotransmitters for the controlled release of polymer-based nitric T oxide carriers in medical applications ⁎ ⁎⁎ Chungmo Yanga,1, Soohyun Jeonga,1, Seul Kub, Kangwon Leea,c, , Min Hee Parka, a Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea b School of Medicine, Stanford University, 291 Campus Drive, Stanford, CA 94305, USA c Advanced Institutes of Convergence Technology, Gyeonggi-do 16229, Republic of Korea ARTICLE INFO ABSTRACT Keywords: Nitric Oxide (NO) is a small molecule gasotransmitter synthesized by nitric oxide synthase in almost all types of Nitric oxide mammalian cells. NO is synthesized by NO synthase by conversion of L-arginine to L-citrulline in the human Polymeric carrier body. NO then stimulates soluble guanylate cyclase, from which various physiological functions are mediated in fi Hydrogen sul de a concentration-dependent manner. High concentrations of NO induce apoptosis or antibacterial responses Carbon monoxide whereas low NO circulation leads to angiogenesis. The bidirectional effect of NO has attracted considerable Crosstalk of gasotransmitters attention, and efforts to deliver NO in a controlled manner, especially through polymeric carriers, has been the Stimuli-responsive topic of much research. This naturally produced signaling molecule has stood out as a potentially more potent therapeutic agent compared to exogenously synthesized drugs. In this review, we will focus on past efforts of using the controlled release of NO via polymer-based materials to derive specific therapeutic results.
    [Show full text]
  • Response to Inhaled Nitric Oxide, but Neither Sodium Nitroprusside Nor Sildenafil, Predicts Survival in Patients With
    Jachec et al., J Clin Exp Cardiolog 2015, 6:6 Clinical & Experimental Cardiology http://dx.doi.org/10.4172/2155-9880.1000376 Research Article Open Access Response to Inhaled Nitric Oxide, But neither Sodium Nitroprusside nor Sildenafil, Predicts Survival in Patients with Dilated Cardiomyopathy Complicated with Pulmonary Hypertension Wojciech Jacheć1*, Celina Wojciechowska2, Andrzej Tomasik2, Damian Kawecki2, Ewa Nowalany-Kozielska2 and Jan Wodniecki2 1II Katedra i Oddział Kliniczny Kardiologii w Zabrzu Śląskiego Uniwersytetu Medycznego w Katowicach, ul. Skłodowskiej 10, 41-800 Zabrze, Polska 2Department of Cardiology in Zabrze, Medical University of Silesia in Katowice, Poland *Corresponding author: Wojciech Jacheć, II Katedra i Oddział Kliniczny Kardiologii w Zabrzu Śląskiego Uniwersytetu Medycznego w Katowicach, ul. Skłodowskiej 10, 41-800 Zabrze, Polska, Tel: +48 32 373 23 72; Fax: +48 32 271 10 10; E-mail: [email protected] Received date: May 26, 2015, Accepted date: Jun 25, 2015, Published date: Jun 29, 2015 Copyright: ©2015 Jacheć W. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Introduction: Pulmonary hypertension in patients with dilated cardiomyopathy is associated with higher mortality. Objectives: The aim of the study was to assess the predictive value of the vasodilator response to three different drugs, sodium nitroprusside,
    [Show full text]
  • Tolerance and Resistance to Organic Nitrates in Human Blood Vessels
    \ö-\2- Tolerance and Resistance to Organic Nitrates in Human Blood Vessels Peter Radford Sage MBBS, FRACP Thesis submit.ted for the degree of Doctor of Philosuphy Department of Medicine University of Adelaide and Cardiology Unit The Queen Elizabeth Hospital I Table of Gontents Summary vii Declaration x Acknowledgments xi Abbreviations xil Publications xtil. l.INTRODUCTION l.L Historical Perspective I i.2 Chemical Structure and Available Preparations I 1.3 Cellular/biochemical mechanism of action 2 1.3.1 What is the pharmacologically active moiety? 3 1.3.2 How i.s the active moiety formed? i 4 1.3.3 Which enzyme system(s) is involved in nitrate bioconversi<¡n? 5 1.3.4 What is the role of sulphydryl groups in nitrate action? 9 1.3.5 Cellular mechanism of action after release of the active moiety 11 1.4 Pharmacokinetics t2 1.5 Pharmacological Effects r5 1.5.1 Vascular effects 15 l.5.2Platelet Effects t7 1.5.3 Myocardial effects 18 1.6 Clinical Efhcacy 18 1.6.1 Stable angina pectoris 18 1.6.2 Unstable angina pectoris 2t 1.6.3 Acute myocardial infarction 2l 1.6.4 Congestive Heart Failure 23 ll 1.6.5 Other 24 1.7 Relationship with the endothelium and EDRF 24 1.7.1 EDRF and the endothelium 24 1.7.2 Nitrate-endothelium interactions 2l 1.8 Factors limiting nitrate efficacy' Nitrate tolerance 28 1.8.1 Historical notes 28 1.8.2 Clinical evidence for nitrate tolerance 29 1.8.3 True/cellular nitrate tolerance 31 1.8.3.1 Previous studies 31 | .8.3.2 Postulated mechanisms of true/cellular tolerance JJ 1.8.3.2.1 The "sulphydryl depletion" hypothesis JJ 1.8.3.2.2 Desensitization of guanylate cyclase 35 1 8.i.?..3 Impaired nitrate bioconversion 36 1.8.3.2.4'Ihe "superoxide hypothesis" 38 I.8.3.2.5 Other possible mechanisms 42 1.8.4 Pseudotolerance ; 42 1.8.4.
    [Show full text]
  • Current Status of Local Penile Therapy
    International Journal of Impotence Research (2002) 14, Suppl 1, S70–S81 ß 2002 Nature Publishing Group All rights reserved 0955-9930/02 $25.00 www.nature.com/ijir Current status of local penile therapy F Montorsi1*, A Salonia1, M Zanoni1, P Pompa1, A Cestari1, G Guazzoni1, L Barbieri1 and P Rigatti1 1Department of Urology, University Vita e Salute – San Raffaele, Milan, Italy Guidelines for management of patients with erectile dysfunction indicate that intraurethral and intracavernosal injection therapies represent the second-line treatment available. Efficacy of intracavernosal injections seems superior to that of the intraurethral delivery of drugs, and this may explain the current larger diffusion of the former modality. Safety of these two therapeutic options is well established; however, the attrition rate with these approaches is significant and most patients eventually drop out of treatment. Newer agents with better efficacy-safety profiles and using user-friendly devices for drug administration may potentially increase the long-term satisfaction rate achieved with these therapies. Topical therapy has the potential to become a first- line treatment for erectile dysfunction because it acts locally and is easy to use. At this time, however, the crossing of the barrier caused by the penile skin and tunica albuginea has limited the efficacy of the drugs used. International Journal of Impotence Research (2002) 14, Suppl 1, S70–S81. DOI: 10.1038= sj=ijir=3900808 Keywords: erectile dysfunction; local penile therapy; topical therapy; alprostadil Introduction second patient category might be represented by those requesting a fast response, which cannot be obtained by sildenafil; however, sublingual apomor- Management of patients with erectile dysfunction phine is characterized by a fast onset of action and has been recently grouped into three different may represent an effective solution for these 1 levels.
    [Show full text]
  • Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
    Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany).
    [Show full text]
  • Acute Effect of Sodium Nitroprusside on Microvascular Dysfunction In
    Clinical Studies Acute Effect of Sodium Nitroprusside on Microvascular Dysfunction in Patients Who Underwent Percutaneous Coronary Intervention for Acute ST-segment Elevation Myocardial Infarction Kotaro Morimoto,1, 2 MD, Shigenori Ito,2 MD, Kosuke Nakasuka,2 MD, Satoru Sekimoto,2 MD, Kazuyuki Miyata,2 MD, Masahiko Inomata,2 MD, Takayuki Yoshida,2 MD, Nozomu Tamai,2 MD, Tomoaki Saeki,2 MD, Shin Suzuki,2 MD, Yoshimasa Murakami,2 MD, Koichi Sato,2 MD, Akihiro Morino,3 CE, and Yoshiyuki Shimizu,3 CE Summary Even in the era of thrombus aspiration and distal protection for ST-segment elevation acute myocardial infarction (STEMI), microvascular dysfunction does exist and improvement of microvascular dysfunction can improve the progno- sis and/or left ventricular dysfunction. We evaluated the acute effects of nitroprusside (NTP) on coronary microvascular injury that occurred after primary percutaneous coronary intervention (PCI) for STEMI in 18 patients. The final Throm- bolysis in Myocardial Infarction trial (TIMI) flow grade after PCI was 3 in 17 patients and 2 in 1 patient. The index of microcirculatory resistance (IMR) was improved significantly from 76 ± 42 to 45 ± 37 (P = 0.0006) by intracoronary NTP administration. IMR improved to the normal range (IMR < 30) in 9 patients (50%). Higher TIMI flow grade and lower IMR at baseline were observed more frequently in patients whose IMR recovered to normal range after NTP ad- ministration. NTP improved the microcirculatory dysfunction at the acute phase in patients who underwent PCI for STEMI and
    [Show full text]
  • Regulation of Extracellular Arginine Levels in the Hippocampus in Vivo
    Regulation of Extracellular Arginine Levels in the Hippocampus In Vivo by Joanne Watts B.Sc. (Hons) r Thesis submitted for the degree of Doctor of Philosophy in the Faculty of Science, University of London The School of Pharmacy University of London ProQuest Number: 10105113 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10105113 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract Nitric oxide (NO) has emerged as an ubiquitous signaling molecule in the central nervous system (CNS). NO is synthesised from molecular oxygen and the amino acid L-arginine (L- ARG) by the enzyme NO synthase (NOS), and the availability of L-ARG has been implicated as the limiting factor for NOS activity. Previous studies have indicated that L- ARG is localised in astrocytes in vitro and that the in vitro activation of non-N-methyl-D- aspartate (NMDA) receptors, as well as the presence of peroxynitrite (ONOO ), led to the release of L-ARG. Microdialysis was therefore used in this study to investigate whether this held true in vivo.
    [Show full text]
  • SUMMARY of PRODUCT CHARACTERISTICS 1. NAME of the MEDICINAL PRODUCT XATRAL 2.5 Mg Film-Coated Tablets. XATRAL SR 5 Mg Sustained
    SUMMARY OF PRODUCT CHARACTERISTICS 1. NAME OF THE MEDICINAL PRODUCT XATRAL 2.5 mg film-coated tablets. XATRAL SR 5 mg sustained-release tablets 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each Xatral 2.5 mg tablet contains 2.5mg alfuzosin hydrochloride. Each Xatral SR 5 mg tablet contains 5mg alfuzosin hydrochloride. 3. PHARMACEUTICAL FORM Xatral 2.5 mg is a white round film coated tablet for oral administration. Xatral SR 5 mg is a pale yellow biconvex film coated sustained release tablet for oral administration. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Xatral 2.5mg: Treatment of certain functional symptoms of benign prostatic hypertrophy, notably when surgery has to be delayed for whatever reason and during episodes of severe symptoms of adenoma, especially in elderly patients. Xatral SR 5 mg: Treatment of certain functional symptoms of benign prostatic hypertrophy, particularly if surgery has to be delayed for some reason. 4.2 Posology and method of administration Oral use Xatral SR 5mg tablet must be swallowed whole with a glass of water (see Section 4.4). The first dose of Xatral SR 5mg or Xatral 2.5 mg tablets should be given just before bedtime. Adults: Xatral 2.5mg: The recommended dosage is one tablet Xatral® 2.5mg three times daily. The dose may be increased to a maximum of 4 tablets (10mg) per day depending on the clinical response. ® Xatral SR 5mg: The usual dose is one Xatral SR 5 mg tablet morning and evening. Elderly patients (over 65 years) or patients treated for hypertension: Xatral 2.5mg: as a routine precaution, it is recommended that treatment be started with one Xatral 2.5 mg tablet morning and evening and that the dosage then be increased on the basis of the patient's individual response, without exceeding the maximum dosage of 4 Xatral 2.5 mg tablets daily.
    [Show full text]
  • Soluble Guanylate Cyclase B1-Subunit Expression Is Increased in Mononuclear Cells from Patients with Erectile Dysfunction
    International Journal of Impotence Research (2006) 18, 432–437 & 2006 Nature Publishing Group All rights reserved 0955-9930/06 $30.00 www.nature.com/ijir ORIGINAL ARTICLE Soluble guanylate cyclase b1-subunit expression is increased in mononuclear cells from patients with erectile dysfunction PJ Mateos-Ca´ceres1, J Garcia-Cardoso2, L Lapuente1, JJ Zamorano-Leo´n1, D Sacrista´n1, TP de Prada1, J Calahorra2, C Macaya1, R Vela-Navarrete2 and AJ Lo´pez-Farre´1 1Cardiovascular Research Unit, Cardiovascular Institute, Hospital Clı´nico San Carlos, Madrid, Spain and 2Urology Department, Fundacio´n Jime´nez Diaz, Madrid, Spain The aim was to determine in circulating mononuclear cells from patients with erectile dysfunction (ED), the level of expression of endothelial nitric oxide synthase (eNOS), soluble guanylate cyclase (sGC) b1-subunit and phosphodiesterase type-V (PDE-V). Peripheral mononuclear cells from nine patients with ED of vascular origin and nine patients with ED of neurological origin were obtained. Fourteen age-matched volunteers with normal erectile function were used as control. Reduction in eNOS protein was observed in the mononuclear cells from patients with ED of vascular origin but not in those from neurological origin. Although sGC b1-subunit expression was increased in mononuclear cells from patients with ED, the sGC activity was reduced. However, only the patients with ED of vascular origin showed an increased expression of PDE-V. This work shows for the first time that, independently of the aetiology of ED, the expression of sGC b1-subunit was increased in circulating mononuclear cells; however, the expression of both eNOS and PDE-V was only modified in the circulating mononuclear cells from patients with ED of vascular origin.
    [Show full text]
  • Neurochemical Mechanisms Underlying Alcohol Withdrawal
    Neurochemical Mechanisms Underlying Alcohol Withdrawal John Littleton, MD, Ph.D. More than 50 years ago, C.K. Himmelsbach first suggested that physiological mechanisms responsible for maintaining a stable state of equilibrium (i.e., homeostasis) in the patient’s body and brain are responsible for drug tolerance and the drug withdrawal syndrome. In the latter case, he suggested that the absence of the drug leaves these same homeostatic mechanisms exposed, leading to the withdrawal syndrome. This theory provides the framework for a majority of neurochemical investigations of the adaptations that occur in alcohol dependence and how these adaptations may precipitate withdrawal. This article examines the Himmelsbach theory and its application to alcohol withdrawal; reviews the animal models being used to study withdrawal; and looks at the postulated neuroadaptations in three systems—the gamma-aminobutyric acid (GABA) neurotransmitter system, the glutamate neurotransmitter system, and the calcium channel system that regulates various processes inside neurons. The role of these neuroadaptations in withdrawal and the clinical implications of this research also are considered. KEY WORDS: AOD withdrawal syndrome; neurochemistry; biochemical mechanism; AOD tolerance; brain; homeostasis; biological AOD dependence; biological AOD use; disorder theory; biological adaptation; animal model; GABA receptors; glutamate receptors; calcium channel; proteins; detoxification; brain damage; disease severity; AODD (alcohol and other drug dependence) relapse; literature review uring the past 25 years research- science models used to study with- of the reasons why advances in basic ers have made rapid progress drawal neurochemistry as well as a research have not yet been translated Din understanding the chemi- reluctance on the part of clinicians to into therapeutic gains and suggests cal activities that occur in the nervous consider new treatments.
    [Show full text]
  • Nitric Oxide Activates Guanylate Cyclase and Increases Guanosine 3':5'
    Proc. Natl. Acad. Sci. USA Vol. 74, No. 8, pp. 3203-3207, August 1977 Biochemistry Nitric oxide activates guanylate cyclase and increases guanosine 3':5'-cyclic monophosphate levels in various tissue preparations (nitro compounds/adenosine 3':5'-cyclic monophosphate/sodium nitroprusside/sodium azide/nitrogen oxides) WILLIAM P. ARNOLD, CHANDRA K. MITTAL, SHOJI KATSUKI, AND FERID MURAD Division of Clinical Pharmacology, Departments of Medicine, Pharmacology, and Anesthesiology, University of Virginia, Charlottesville, Virginia 22903 Communicated by Alfred Gilman, May 16, 1977 ABSTRACT Nitric oxide gas (NO) increased guanylate cy- tigation of this activation. NO activated all crude and partially clase [GTP pyrophosphate-yase (cyclizing), EC 4.6.1.21 activity purified guanylate cyclase preparations examined. It also in- in soluble and particulate preparations from various tissues. The effect was dose-dependent and was observed with all tissue creased cyclic GMP but not adenosine 3':5'-cyclic monophos- preparations examined. The extent of activation was variable phate (cyclic AMP) levels in incubations of minces from various among different tissue preparations and was greatest (19- to rat tissues. 33-fold) with supernatant fractions of homogenates from liver, lung, tracheal smooth muscle, heart, kidney, cerebral cortex, and MATERIALS AND METHODS cerebellum. Smaller effects (5- to 14-fold) were observed with supernatant fractions from skeletal muscle, spleen, intestinal Male Sprague-Dawley rats weighing 150-250 g were decapi- muscle, adrenal, and epididymal fat. Activation was also ob- tated. Tissues were rapidly removed, placed in cold 0.-25 M served with partially purified preparations of guanylate cyclase. sucrose/10 mM Tris-HCl buffer (pH 7.6), and homogenized Activation of rat liver supernatant preparations was augmented in nine volumes of this solution by using a glass homogenizer slightly with reducing agents, decreased with some oxidizing and Teflon pestle at 2-4°.
    [Show full text]
  • Calcium Current Block by (-)-Pentobarbital, Phenobarbital
    The Journal of Neuroscience, August 1993, 13(E): 321 l-3221 Calcium Current Block by (-)-Pentobarbital, Phenobarbital, and CHEB but not (+)-Pentobarbital in Acutely Isolated Hippocampal CA1 Neurons: Comparison with Effects on GABA-activated Cl- Current Jarlath M. H. ffrench-Mullen,’ Jeffery L. Barker,* and Michael A. Rogawski3 ‘Department of Pharmacology, Zeneca Pharmaceuticals Group, Zeneca Inc., Wilmington, Delaware 19897 and *Laboratory of Neurophysiology, and 3Neuronal Excitability Section, Epilepsy Research Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892 Block of a voltage-activated Ca*+ channel current by pheno- Ca*+ current, whereas the sedative effects that occur at high- barbital (PHB), 5-(2-cyclohexylideneethyl)-5-ethyl barbituric er concentrations could reflect stronger Ca2+ current block- acid (CHEB), and the optical R(-)- and S(+)-enantiomers of ade. The powerful sedative-hypnotic action of (-)-PB may pentobarbital (PB) was examined in freshly dissociated adult reflect greater maximal enhancement of GABA responses guinea pig hippocampal CA1 neurons; the effects of the in conjunction with strong inhibition of Ca2+ current. The barbiturates on GABA-activated Cl- current were also char- convulsant action of CHEB is unlikely to be related to its acterized in the same preparation. (-)-PB, PHB, and CHEB effects on the Ca*+ current. produced a reversible, concentration-dependent block of the [Key words: calcium channel, GABA receptor, (-)-pen- peak Ca*+ channel current (3 mM Ba2+ as the charge carrier) tobarbital, (+)-pentobarbital, phenobarbital, CHEB [S-(2-cy- evoked by depolarization from -80 to - 10 mV (I&,, values, clohexylideneethyl)-S-ethyl barbituric acid], CA 1 hippocam- 3.5, 72, and 118 PM, respectively).
    [Show full text]