I the RISK of HATCHLING LOSS to NEARSHORE

Total Page:16

File Type:pdf, Size:1020Kb

I the RISK of HATCHLING LOSS to NEARSHORE THE RISK OF HATCHLING LOSS TO NEARSHORE PREDATORS AT A HIGH- DENSITY LOGGERHEAD NESTING BEACH IN SOUTHEAST FLORIDA. by Kelly R. Stewart A Thesis Submitted to the Faculty of The Charles E. Schmidt College of Science In Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, Florida August 2001 i Copyright by Kelly R. Stewart ii iii ABSTRACT Author: Kelly R. Stewart Title: The risk of hatchling loss to nearshore predators at a high-density loggerhead nesting beach in southeast Florida. Institution: Florida Atlantic University Thesis Advisor: Dr. J. Wyneken Degree: Master of Science Year: 2001 It has been recognized that mortality is high for juvenile stages of long- lived vertebrates such as sea turtles, however few studies have quantified mortality rates. The objective of this study was to assess the relative risk that hatchlings face in their first few minutes in the water, at the commencement of their offshore migration from a natural high-density nesting beach (Juno/Jupiter, FL). I followed 217 hatchlings at night by kayak, as they left the beach and documented the proportion surviving the initial 15 minutes in the water. Of these, 206 survived for an empirical survival rate of 95%. Tarpon were the most common predator observed. This survival rate is much higher than that previously observed at a hatchery (72%); this may be due to temporal and spatial variation in nest location at the natural beach. Juno and Jupiter beaches are therefore highly productive sea turtle rookeries. iv TABLE OF CONTENTS List of Tables…………………………………………………….. vi List of Figures …………………………………………………… vii Introduction …………………………………………………… 1 Materials and Methods ……………………………………… 5 Results ……………………………………………………….. 12 Discussion ……………………………………………………. 17 Appendix 1 ……………………………………………………… 29 Appendix 2 …………………………………………………….. 31 Appendix 3 ……………………………………………………… 35 Literature Cited …………………………………………………. 36 v LIST OF TABLES Table 1. A summary of site descriptions. Bottom topography, distance from the Juno pier, Jupiter Inlet, and abundance of fish species is indicated for each site …………………………………………………………………. 8 Table 2. A summary of predatory fish caught, dates, site type, and stomach contents ………………………………………………………………………. 11 Table 3. A summary of predation events on hatchling loggerhead turtles. Water depth, and the hatchling’s last known compass heading were recorded upon being taken by fish. Hatchlings were taken at reef sites, but when they were taken, they had already crossed the reef and were over sand bottom ………………………………………………………………………. 12 Table 4. Orientation of hatchlings migrating from sites along Juno/Jupiter beaches during the summer of 2000. Sample size (n) for each site is given. R-vector is a measure of dispersion………………………………………….. 13 Table 5. A summary of catch-per-unit-effort (for predatory fish only) for each month of the study. Catch-per-unit-effort is in units of fish per hour ……….. 22 Table 6. Comparison of hatchery sites (Hillsboro hatchery) and natural high-density nesting beach sites (Juno and Jupiter beaches). * The effective density was ~6000 nests/km, however the actual length of the hatchery was only 0.1 km, and represented a nest density an order of magnitude higher than the natural site………………………………………………… 24 vi LIST OF FIGURES Figure 1. Location of the study site in Palm Beach County, Florida, USA. Six sampling sites are indicated by labels at right of the shoreline map of Palm Beach County. Three site-types were identified; sand, reef, and transitional categories were based on bottom substrate ………………………….. 6 Figure 2. A tracing of hatchling tracks as they left the beach and migrated to deeper water. The line at left represents the shoreline, and the terminal point of each hatchling track is the point where they were released from their tether. This particular set of tracks was taken from data that were recorded at a transitional site-type Other site-types had similar track lines. The average heading that hatchlings took on this offshore migration was 77.8°……… 14 Figure 3. Percentage of hatchling turtles surviving the first 15 minutes of offshore migration, at each site-type during the hatchling season of 2000……….. 15 Figure 4. Percentage of hatchling turtles surviving the first 15 minutes of offshore migration, across the hatchling season of 2000…………………………… 16 vii Introduction Sea turtles, like other long-lived vertebrates are iteroparous (Heppell et al. 1999). Females with large body size produce numerous small offspring in several clutches. These characteristics indicate that, over time, evolutionary pressures have selected for a life history strategy in which investment in individual offspring is minimal and survival of young is generally very low. Many authors have recognized that mortality prior to maturation is probably extremely high in sea turtles (Stancyk 1982; Richardson and Richardson 1982; Heppell et al. 1996). Egg loss and nest predation are well documented (Stancyk 1982; Witzell and Banner 1980; Gyuris 1994). Since sea turtles have high fecundity, some laying approximately 200-600 eggs per season (Hirth 1980; Van Buskirk and Crowder 1994; Miller 1997), it is estimated that perhaps one in 10,000 hatchlings will survive to maturity (Frazer 1986). Marine turtles are logistically difficult to study in the ocean and, as a result, very few baseline data exist to describe vital rates of the aquatic stages. While much important information has been gathered on the nesting beach about the reproductive cycles, fecundity, and parameters that impact nest success of sea turtles, disproportionately little is known about life in the water. Life for hatchling sea turtles is inherently risky. Besides being very small, hatchlings have few defense mechanisms against predators. Some of the threats to reaching adulthood include predation during the earliest life stages, 1 e.g. as hatchlings crawling from the nest to the ocean, swimming in nearshore waters, and as pelagic-stage juveniles. Other sources of mortality include: incidental capture in fishing gear; ingestion of foreign materials such as tar and plastics; collisions with boats; and in some places, harvesting of eggs, subadults and adults (Lutcavage et al. 1997). Baseline population sizes (e.g. hatchling, juvenile, adult), recruitment levels, and mortality/survival values are described by estimates or arithmetically derived guesses and limited empirical data (Crouse et al. 1987; Heppell 1998; Heppell et al. 1999). In addition, very few studies have attempted to quantify and partition mortality at various life stages. To date, no demographic baselines have been established for the pelagic stage. The pelagic stage of loggerheads may last for 6.5-11.5 years (Bjorndal et al. 2000), and begins when hatchlings enter the water after having traversed the beach from the nest. Hatchlings typically emerge at night. Along Florida’s east coast, most hatchlings enter the water between the hours of 1930 and 0630, with peak emergences occurring from 2300 - 0000 h (Witherington et al. 1990). Several investigators suggested that this pattern of nocturnal hatchling emergence is both a predator avoidance mechanism as well as a behavior reflecting the hatchlings’ limits in thermal tolerance (Mrosovsky 1968; Lohmann et al. 1997). Hatchlings usually emerge en masse, orientate seaward, crawl vigorously down the beach and then proceed offshore, distancing themselves from the beach and its perils. Offshore 2 migration (after Dingle 1996) is characterized by hyperactive, oriented swimming (frenzy), which lasts about 24 hours (Salmon and Wyneken 1987), followed by less vigorous oriented swimming (post-frenzy) until turtles reach cover provided by flotsam such as Sargassum (Witham 1980; Carr 1986). The frenzy is believed to rapidly distance hatchlings from predator-rich nearshore waters (Salmon and Wyneken 1987). In one study of hatchling survival focusing on the early pelagic stage, Gyuris (1994) estimated that most of the first year mortality of green turtles could be attributed to aquatic predation within the first hour after entering the ocean off Australian beaches at the Great Barrier Reef. Gyuris (1994) followed 1740 hatchlings offshore over 3 seasons and found that predation rates in the water ranged between 0-85%, with a mean predation rate of 31%. Witherington and Salmon (1992) found that aquatic predators took 6.8% (5 of 74) of loggerhead hatchlings during daytime and nighttime swimming trials in turbid waters off the east-central coast of Florida. Most other studies simply reported predation or documented predators. Caldwell (1959), Witham (1974) and Fletemeyer (1978) reported seeing predation on loggerhead and green turtle hatchlings in Florida waters. Booth and Peters (1972) documented green turtle hatchlings in Australian waters being taken by crabs, black-tipped sharks and other species of fish. None of these studies attempted a quantification of the hatchling survival rate in the water. 3 It is well documented that coastal land use in Florida has degraded nesting habitats in many areas, and may be responsible for the spatial distribution of turtle nesting beaches that we now see (Salmon et al. 2000). For example in southeast Florida, habitat alteration has perhaps artificially concentrated nesting in areas that are physically most acceptable to nesting sea turtles – those beaches adjacent to appropriate oceanographic features (currents for dispersal, sufficient water temperature, etc.), having sufficient sand, being relatively
Recommended publications
  • Educators' Resource Guide
    EDUCATORS' RESOURCE GUIDE Produced and published by 3D Entertainment Distribution Written by Dr. Elisabeth Mantello In collaboration with Jean-Michel Cousteau’s Ocean Futures Society TABLE OF CONTENTS TO EDUCATORS .................................................................................................p 3 III. PART 3. ACTIVITIES FOR STUDENTS INTRODUCTION .................................................................................................p 4 ACTIVITY 1. DO YOU Know ME? ................................................................. p 20 PLANKton, SOURCE OF LIFE .....................................................................p 4 ACTIVITY 2. discoVER THE ANIMALS OF "SECRET OCEAN" ......... p 21-24 ACTIVITY 3. A. SECRET OCEAN word FIND ......................................... p 25 PART 1. SCENES FROM "SECRET OCEAN" ACTIVITY 3. B. ADD color to THE octoPUS! .................................... p 25 1. CHristmas TREE WORMS .........................................................................p 5 ACTIVITY 4. A. WHERE IS MY MOUTH? ..................................................... p 26 2. GIANT BasKET Star ..................................................................................p 6 ACTIVITY 4. B. WHat DO I USE to eat? .................................................. p 26 3. SEA ANEMONE AND Clown FISH ......................................................p 6 ACTIVITY 5. A. WHO eats WHat? .............................................................. p 27 4. GIANT CLAM AND ZOOXANTHELLAE ................................................p
    [Show full text]
  • Bolbometopon Muricatum) in North Maluku Waters Muhammad J
    DNA barcode and phylogenetics of green humphead parrotfish (Bolbometopon muricatum) in North Maluku waters Muhammad J. Achmad, Riyadi Subur, Supyan, Nebuchadnezzar Akbar Faculty of Fisheries and Marine Sciences, Khairun University, Ternate, North Maluku, Indonesia. Corresponding author: N. Akbar, [email protected] Abstract. The green humphead parrotfish (Bolbometopon muricatum) is one of the large species inhabiting coral reefs in North Maluku waters, Indonesia. The declining fish populations due to excessive fishing has caused the green humphead parrotfish to be listed in the Red List of IUCN in the vulnerable category since 2012. The species could be highly endangered, bordering extinction in the future. Studies on the genetic identification of green humphead parrotfish could be considered critical in the policy of sustainable conservation and fish culture. This research is designed for the identification and analysis of the genetic relationship of green humphead parrotfish based on the COI (cytochrome-c-oxidase subunit I) gene. DNA samples were collected from 4 locations in North Maluku, Ternate Island, Morotai Island, Bacan Island and Sanan Island. The DNA from samples was extracted and the COI gene was amplified using PCR (Polymerase Chain Reaction). Furthermore, the amplicon was sequenced to observe the similarities with the NCBI GenBank database. The results of this study showed that the green humphead parrotfish from this study had high similarities (98-100%) with the green humphead parrotfish with the reference access no. KY235362.1. Based on the phylogenetic tree, the green humphead parrotfish originating from North Maluku has a genetic relationship with the green humphead parrotfish from the database, but with different molecular characters.
    [Show full text]
  • First Record of Acanthurus Chirurgus (Bloch, 1787) from the Central Mediterranean, with Notes on Other Acanthuridae Recorded in the Region
    BioInvasions Records (2017) Volume 6, Issue 2: 105–109 Open Access DOI: https://doi.org/10.3391/bir.2017.6.2.03 © 2017 The Author(s). Journal compilation © 2017 REABIC Rapid Communication A bevy of surgeons: first record of Acanthurus chirurgus (Bloch, 1787) from the central Mediterranean, with notes on other Acanthuridae recorded in the region Julian Evans1,*, Reno Tonna2 and Patrick J. Schembri1 1Department of Biology, University of Malta, Msida MSD2080, Malta 2Namaste Flat 5, Triq il-Merzuq, Birzebbuga, Malta Author e-mails: [email protected] (JE), [email protected] (RT), [email protected] (PJS) *Corresponding author Received: 16 November 2016 / Accepted: 13 December 2016 / Published online: 24 January 2017 Handling editor: Ernesto Azzurro Abstract The doctorfish Acanthurus chirurgus (Bloch, 1787) is reported for the first time from the central Mediterranean, based on a specimen caught in Maltese waters during August 2016. Since the only previous Mediterranean record of this species was based on a single individual observed in the Tyrrhenian Sea, the present record likely represents an independent introduction that may have occurred through the aquarium trade or via shipping. Two other surgeonfish species, Acanthurus coeruleus Bloch and Schneider, 1801 and Acanthurus monroviae Steindachner, 1876, were previously recorded from the central Mediterranean. While A. coeruleus may have established a population in the Levantine Sea, like A. chirurgus it has only been reported once from Malta (and from the central Mediterranean in general); both A. coeruleus and A. chirurgus are, therefore, considered to be casual species in Maltese waters. In contrast, A. monroviae was reported from several Mediterranean countries including Tunisia and Malta in the central Mediterranean.
    [Show full text]
  • First Records of the Fish Abudefduf Sexfasciatus (Lacepède, 1801) and Acanthurus Sohal (Forsskål, 1775) in the Mediterranean Sea
    BioInvasions Records (2018) Volume 7, Issue 2: 205–210 Open Access DOI: https://doi.org/10.3391/bir.2018.7.2.14 © 2018 The Author(s). Journal compilation © 2018 REABIC Rapid Communication First records of the fish Abudefduf sexfasciatus (Lacepède, 1801) and Acanthurus sohal (Forsskål, 1775) in the Mediterranean Sea Ioannis Giovos1,*, Giacomo Bernardi2, Georgios Romanidis-Kyriakidis1, Dimitra Marmara1 and Periklis Kleitou1,3 1iSea, Environmental Organization for the Preservation of the Aquatic Ecosystems, Thessaloniki, Greece 2Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, USA 3Marine and Environmental Research (MER) Lab Ltd., Limassol, Cyprus *Corresponding author E-mail: [email protected] Received: 26 October 2017 / Accepted: 16 January 2018 / Published online: 14 March 2018 Handling editor: Ernesto Azzurro Abstract To date, the Mediterranean Sea has been subjected to numerous non-indigenous species’ introductions raising the attention of scientists, managers, and media. Several introduction pathways contribute to these introduction, including Lessepsian migration via the Suez Canal, accounting for approximately 100 fish species, and intentional or non-intentional aquarium releases, accounting for at least 18 species introductions. In the context of the citizen science project of iSea “Is it alien to you?… Share it”, several citizens are engaged and regularly report observations of alien, rare or unknown marine species. The project aims to monitor the establishment and expansion of alien species in Greece. In this study, we present the first records of two popular high-valued aquarium species, the scissortail sergeant, Abudefduf sexfasciatus and the sohal surgeonfish, Acanthurus sohal, in along the Mediterranean coastline of Greece. The aggressive behaviour of the two species when in captivity, and the absence of records from areas close to the Suez Canal suggest that both observations are the result of aquarium intentional releases, rather than a Lessepsian migration.
    [Show full text]
  • Echidna Catenata (Chain Moray)
    UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Echidna catenata (Chain Moray) Family: Muraenidae (Morays) Order: Anguilliformes (True Eels and Morays) Class: Actinopterygii (Ray-Finned Fish) Fig. 1. Chain moray, Echidna catenata. [http://claycoleman.tripod.com/id130.htm, downloaded 2 March 2016] TRAITS. Chain morays, also commonly called little banded eels (Fig. 1), typically range from a few centimetres to a maximum of 70cm (Böhlke, 2013). Their physical appearance is a long, stout, snake-like body (Fig. 2), without ventral and pectoral fins. Beginning behind the head is a continuous fin, formed from the anal, dorsal and tail fins, which includes the tail and expands midway to the belly (Humann, 1989). Its head is short with a steep profile comprising of a short and rounded snout and its eyes are either above or just at the back of its mid jaw (Böhlke, 2013). The entire body lacks scales, but is covered by a protective layer of clear mucus. With regard to colouring, chain morays have yellow eyes and bodies that are dark brown to black with asymmetrical, chain like patterns. These chain-like markings are bright yellow and can be interconnected (Humann, 1989). Since they are carnivorous, they have short, powerful jaws, but unlike other eels, their teeth are short and blunt (Fig. 3) with some being molariform (Randall, 2004). UWI The Online Guide to the Animals of Trinidad and Tobago Ecology DISTRIBUTION. It is widely distributed and occurs in areas ranging from Florida to the Gulf of Mexico and the Florida Keys, the western Atlantic from Bermuda and throughout the Caribbean Sea, inclusive of the Bahamas.
    [Show full text]
  • Bhead Parrotfish Listing Petition
    PETITION TO LIST THE Bumphead Parrotfish (Bolbometopon muricatum) UNDER THE U.S. ENDANGERED SPECIES ACT Photo: J.E. Maragos, USFWS Petition Submitted to the U.S. Secretary of Commerce, Acting Through the National Oceanic and Atmospheric Administration Fisheries Service & the U.S. Secretary of Interior, Acting through the U.S. Fish and Wildlife Service Petitioner: WildEarth Guardians 312 Montezuma Ave. Santa Fe, New Mexico 87501 (505) 988-9126 December 31, 2009 WildEarth Guardians Petition to List 1 the Bumphead Parrotfish Under the ESA Executive Summary The Bumphead Parrotfish (Bolbometopon muricatum) is a marine fish that feeds primarily on coral. It occurs in many countries in the Pacific and Indo-Pacific, including islands governed by the United States. While wide-ranging, scientists describe it as declining across its range and nearly eliminated from many areas. The primary threat has been overfishing, to which this fish is especially vulnerable due to its behavior of sleeping in large groups at night near reefs. Growing threats are coral bleaching and ocean acidification, both due to climate change. The Bumphead Parrotfish’s fate is tied to coral, as each fish consumes over 5 tons of coral every year. Coral consumed by the Parrotfish is excreted as coral sand, which is important to sustain the coral ecosystem, as well as providing beautiful white sand beaches enjoyed by tourists. Given the economic importance of tourism in the range of the Parrotfish, this species provides an invaluable ecosystem service to humans. An even more important way in which Parrotfish benefit humans is by protecting coral reef ecosystems, which are vital to safeguarding human coastal populations from impacts of extreme weather events.
    [Show full text]
  • Life on the Coral Reef
    Coral Reef Teacher’s Guide Life on the Coral Reef Life on the Coral Reef THE CORAL REEF ECOSYSTEM The muddy silt drifts out to sea, covering the nearby Coral reefs provide the basis for the most productive coral reefs. Some corals can remove the silt, but many shallow water ecosystem in the world. An ecosystem cannot. If the silt is not washed off within a short pe- is a group of living things, such as coral, algae and riod of time by the current, the polyps suffocate and fishes, along with their non-living environment, such die. Not only the rainforest is destroyed, but also the as rocks, water, and sand. Each influences the other, neighboring coral reef. and both are necessary for the successful maintenance of life. If one is thrown out of balance by either natural Reef Zones or human-made causes, then the survival of the other Coral reefs are not uniform, but are shaped by the is seriously threatened. forces of the sea and the structure of the sea floor into DID YOU KNOW? All of the Earth’s ecosystems are a series of different parts or reef zones. Understand- interrelated, forming a shell of life that covers the ing these zones is useful in understanding the ecol- entire planet – the biosphere. For instance, if too many ogy of coral reefs. Keep in mind that these zones can trees are cut down in the rainforest, soil from the for- blend gradually into one another, and that sometimes est is washed by rain into rivers that run to the ocean.
    [Show full text]
  • Portent Or Accident? Two New Records of Thermophilic Fish from the Central Mediterranean
    BioInvasions Records (2015) Volume 4, Issue 4: 299–304 Open Access doi: http://dx.doi.org/10.3391/bir.2015.4.4.12 © 2015 The Author(s). Journal compilation © 2015 REABIC Rapid Communication Portent or accident? Two new records of thermophilic fish from the central Mediterranean 1 2 1 Julian Evans *, Reno Tonna and Patrick J. Schembri 1Department of Biology, University of Malta, Msida MSD2080, Malta 2Namaste Flat 5, Triq il-Merzuq, Birzebbuga, Malta E-mail: [email protected] (JE), [email protected] (RT), [email protected] (PJS) *Corresponding author Received: 19 April 2015 / Accepted: 10 August 2015 / Published online: 14 September 2015 Handling editor: John Mark Hanson Abstract The blue tang Acanthurus coeruleus Bloch and Schneider, 1801 and the Red Sea bannerfish Heniochus intermedius Steindachner, 1893 are reported for the first time from the Maltese Islands, which also represents the first central Mediterranean record for both species. The new records are based on an individual of A. coeruleus observed in October 2013 and a specimen of H. intermedius caught in November 2014; no individuals of either species have been found since. The occurrence of these species in Malta may be due to a westwards range expansion in the Mediterranean, given that both species were previously recorded from the Levantine Sea, but they could also have been introduced directly in Maltese waters through the aquarium trade or by shipping, particularly since evidence for established populations in the eastern Mediterranean is lacking. The relevance of these new additions of thermophilic fishes to the central Mediterranean ichthyofauna is discussed in relation to ongoing biotic changes in this sea.
    [Show full text]
  • Hawaiian Parrotfishes (And a Few Wrasse Too!) Fishinar 11/15/2017 Questions? Feel Free to Contact Me at [email protected] Dr
    Hawaiian Parrotfishes (and a few Wrasse too!) Fishinar 11/15/2017 Questions? Feel free to contact me at [email protected] Dr. Christy Pattengill-Semmens, Ph.D.– Instructor Director of Science- REEF Bullethead Parrotfish (Chlorurus sordidus) Symmetrical, bullet-shaped head profile. IP is reddish-brown to gray, double row of 4-5 white spots may mark the side and a broad white bar (which may contain a dark spot) often at the base of the tail. TP is variable in color but generally greenish with pale area on cheeks, typically has broad white saddle at tail base. Juveniles are b&w striped. Feed on both coral polyps and algae. Photo by: Bill Stohler Distribution/Size: Widespread throughout central and western Pacific. Up to 15” REEF Expert Sighting Frequency in Hawaii – 85% Photo by: Joyce Burek Palenose Parrotfish (Scarus psittacus) IP often found in schools, very drab in color (light gray to dark brownish gray) without distinctive markings. TP is green/blue, sometimes with large yellow patch on side. Dark blue patch on their nose. Juveniles look like tiny IP. Photo by: Ralph Turre Distribution/Size: Widespread throughout central and western Pacific. Up to 12” REEF Expert Sighting Frequency in Hawaii – 85% Photo by: Ralph Turre © 2017 Reef Environmental Education Foundation (REEF). All rights reserved. Redlip Parrotfish (Scarus rubroviolaceus) AKA Ember IPs often distinctly bi-colored with dark brownish-red front and paler in back, or overall reddish “textured” with white. IP often have algal mustache. TP are blue and green, often darker on front half, with blue mustache. TP and IP have squared-off head.
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • A Review of the Muraenid Eels (Family Muraenidae) from Taiwan with Descriptions of Twelve New Records1
    Zoological Studies 33(1) 44-64 (1994) A Review of the Muraenid Eels (Family Muraenidae) from Taiwan with Descriptions of Twelve New Records1 2 2 Hong-Ming Chen ,3 , Kwang-Tsao Shao ,4 and Che-Tsung Chen" 21nstitute of Zoology, Academia Sinica, Nankang, Taipei, Taiwan 115, R.O.C_ 31nstitute of Fisheries, National Taiwan Ocean University, Keelung, Taiwan 202, R.O.C. 41nstitute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan 202, R.O.C. (Accepted June 3, 1993) Hong-Ming Chen, Kwang-Tsao Shao and Che-Tsung Chen (1994) A review of the muraenid eels (Family Muraenidae) from Taiwan with descriptions of twelve new records. Zoological Studies 33(1): 44-64. A total of 42 species belonging to 9 genera and 2 subfamilies of the family Muraenidae are indigenous to Taiwan. The 12 species: Enchelycore bikiniensis, Gymnothorax brunneus, G. javanicus, G_ margaritophorus, G. melatremus, G. nudivomer, G. reevesii, G. zonipectis, Strophidon sathete, Uropterygius macrocephalus, U. micropterus, and U. tigrinus are first reported in this paper. The 7 species: Enchelycore lichenosa, E. schismatorhynchus, Gymnothorax buroensis, G. hepaticus, G. meleagris, G. richardsoni and Siderea thyrsoidea whose Taiwan existence was doubted or lacked specimens in the past are also recorded. Additionly, many species misidentifications or improper use of junior synonyms in previously literature stand corrected in this paper. Two previously recorded species Gymnothorax monostigmus and G. polyuranodon are, lacking Taiwan specimens, excluded. Color photographs, dentition patterns, synopsis, key, diagnosis, and remarks for all 42 species are provided in this paper. Key words: Moray eels, Fish taxonomy, Fish fauna, Anguilliformes. The Muraenidae fishes, commonly called the Gymnothorax /eucostigma species.
    [Show full text]
  • Sea Urchins, Parrotfish and Coral Reefs in Grand Cayman, BWI: Exemplar Or Outlier?
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.11.421867; this version posted December 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Sea urchins, parrotfish and coral reefs in Grand Cayman, BWI: exemplar or outlier? 2 Elizabeth Sherman1 3 1 Natural Sciences, Bennington College, Bennington, Vermont, 05201, USA 4 5 Corresponding Author: 6 Elizabeth Sherman1 7 2448 Main St., Manchester Ctr., VT, 05255, USA 8 Email address: [email protected] 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.11.421867; this version posted December 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 24 ABSTRACT 25 The change in state of Caribbean coral reefs over the last 40 years has been characterized by 26 phase shifts from scleractinian coral cover to macroalgal cover, the loss of structural complexity 27 and a decline in biodiversity. Not only do scientists want to understand these changes, but also 28 predict the future of coral reefs and their capacity for resilience. In particular, the loss of 29 herbivory, due to declines in parrotfish and the sea urchin Diadema antillarum, has been 30 implicated in many studies as a proximate cause of the coral to macroalgal phase shift. However, 31 reports of the particular role of these putative herbivores have varied, with some studies claiming 32 a causal role for parrotfish, others for Diadema and still others suggesting no such relationships.
    [Show full text]