Technical Guidance Manual for Puget Sound

Total Page:16

File Type:pdf, Size:1020Kb

Technical Guidance Manual for Puget Sound Technical Guidance Manual for Puget Sound December 2012 THIS PAGE INTENTIONALLY LEFT BLANK Low Impact Development Technical Guidance Manual for Puget Sound December 2012 WSU Puyallup Research 326 East D Street & Extension Center Tacoma, WA 98421 2606 West Pioneer 360.464.1232 Puyallup, WA 98371 [email protected] www.pierce.wsu.edu Author and project co-lead: Curtis Hinman, Washington State University Extension Faculty Project co-lead: Bruce Wulkan, Puget Sound Partnership Design and layout: AHBL Illustrations: AHBL (except where noted) Research, facilitation and external review: VEDA Consulting Publication No. PSP 2012-3 THIS PAGE INTENTIONALLY LEFT BLANK Acknowledgements Technical Advisory Committee Bruce Barker MGS Catherine Benotto Webber Thompson Mark Buehrer 2020 Engineers Art Castle Building Industry Association of WA Rich Geiger Mason Conservation District Kathy Gwilym SvR Design Kas Kinkead Cascade Design Collaborative Tim Kurtz City of Portland Alice Lancaster Herrera Chris May Kitsap County David McDonald City of Seattle Matt Miller Associated Earth Sciences Ed O’Brien Department of Ecology Tracy Tackett City of Seattle Bruce Wulkan Puget Sound Partnership Craig Young Snohomish County Contributors Michael Bledsoe Pervious Concrete Inc. Patrick Carey Hadj Designs Jeff Cox Triad Associates Drena Donofrio Seattle Public Utilities Rick Gagliano PIN Foundations Erica Guttman Washington State University Extension Robin Kirschbaum HDR Andy Marks Puget Sound Concrete Specification Council David McDonald Seattle Public Utilities Ed O’Brien Department of Ecology Robert Pine Pine and Swallow Environmental David Smith Interlocking Concrete Pavement Institute Paul Thompson Urban Forestry Services, Inc. Brian Taylor AMEC Funding Portions of this project were produced with support from the Puget Sound Partnership. Washington State University Extension contributed in-kind support for this project. THIS PAGE INTENTIONALLY LEFT BLANK Table of Contents Glossary........................................................................................................................................................................................................................................i 1. Introduction..............................................................................................................................................................................................................................1 1.1 Puget Sound Hydrology..................................................................................................................................................................................2 1.2 Impacts of Urbanization.................................................................................................................................................................................2 1.3 Current Stormwater Management.........................................................................................................................................................9 1.4 Low Impact Development..........................................................................................................................................................................10 2. Site Assessment.....................................................................................................................................................................................................................17 2.1 Stormwater Site Plans..................................................................................................................................................................................18 2.2 Soil and Subsurface Hydrology Characterization.....................................................................................................................22 2.3 Hydrologic Patterns and Features.........................................................................................................................................................27 2.4 Native Forest and Soil Protection Areas.......................................................................................................................................27 2.5 Wetlands.................................................................................................................................................................................28 2.6 Riparian Management Areas (RMA)...................................................................................................................................................29 2.7 Streams.....................................................................................................................................................................................30 2.8 Floodplains....................................................................................................................................................................................30 2.9 Sub-basin Delineation....................................................................................................................................................................................31 2.10 Site Mapping Process.............................................................................................................................................................................32 3. Site Planning & Layout.................................................................................................................................................................................................35 3.1 Urban Redevelopment and Infill..............................................................................................................................................................37 3.2 New Suburban Development...................................................................................................................................................................47 3.3 Commercial Development...........................................................................................................................................................................69 3.4 Road Crossings....................................................................................................................................................................................................72 4. Vegetation & Soil Protection & Reforestation.......................................................................................................................73 4.1 Native Vegetation and Soil Protection................................................................................................................................................75 4.2 Re-establishing Native Vegetation.......................................................................................................................................................80 4.3 Maintenance of Protected Areas.............................................................................................................................................................82 5. Precision Site Preparation, Construction & Inspection of LID Facilities......................................83 5.1 Precision Site Preparation...........................................................................................................................................................................84 5.2 Techniques to Minimize Site Disturbance..............................................................................................................................86 5.3 Inspection of LID Facilities...........................................................................................................................................................................86 5.4 Construction Sequencing of LID Facilities.........................................................................................................................................90 Table of Contents, cont. 6. Integrated Management Practices......................................................................................................................................................97 6.1 Bioretention...........................................................................................................................................................................98 6.2 Amending Construction Site Soils....................................................................................................................................................149 6.3 Permeable Pavement..................................................................................................................................................................................161 6.4 Urban and Suburban Trees....................................................................................................................................................................203 6.5 Vegetated Roofs..............................................................................................................................................................................................217 6.6 Minimal Excavation Foundation Systems......................................................................................................................................227 6.7 Roof Rainwater Collection Systems...................................................................................................................................................233
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0263516 A1 CYR (43) Pub
    US 20090263516A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0263516 A1 CYR (43) Pub. Date: Oct. 22, 2009 (54) PLANT EXTRACT COMPOSITION AND Publication Classification THEIR USE TO MODULATE CELLULAR (51) Int. Cl. ACTIVITY A636/8962 (2006.01) A636/00 (2006.01) (75) Inventor: Benoit CYR, St. Augustin de A6IP35/00 (2006.01) Desmaures (CA) CI2N 5/06 (2006.01) Correspondence Address: A6IR 36/3 (2006.01) SHEPPARD, MULLIN, RICHTER & HAMPTON A 6LX 36/899 (2006.01) LLP (52) U.S. Cl. ......... 424/754; 424/725; 435/375; 424/774; 990 Marsh Road 424/779; 424/755; 424/750; 424/777 Menlo Park, CA 94025 (US) (57) ABSTRACT (73) Assignee: Biopharmacopae Design Extracts from plant material, or semi-purified/purified mol International Inc., Saint-Foy (CA) ecules or compounds prepared from the extracts that demon strate the ability to modulate one or more cellular activities (21) Appl. No.: 12/263,114 are provided. The extracts are capable of slowing down, inhibiting or preventing cell migration, for example, the (22) Filed: Oct. 31, 2008 migration of endothelial cells or neoplastic cells and thus, the use of the extracts to slow down, inhibit or prevent abnormal Related U.S. Application Data cell migration in an animal is also provided. Methods of selecting and preparing the plant extracts and methods of (63) Continuation of application No. 10/526,387, filed on screening the extracts to determine their ability to modulate Oct. 6, 2005, now abandoned, filed as application No. one or more cellular activity are described. The purification or PCT/CA03/01284 on Sep.
    [Show full text]
  • Global Survey of Ex Situ Betulaceae Collections Global Survey of Ex Situ Betulaceae Collections
    Global Survey of Ex situ Betulaceae Collections Global Survey of Ex situ Betulaceae Collections By Emily Beech, Kirsty Shaw and Meirion Jones June 2015 Recommended citation: Beech, E., Shaw, K., & Jones, M. 2015. Global Survey of Ex situ Betulaceae Collections. BGCI. Acknowledgements BGCI gratefully acknowledges the many botanic gardens around the world that have contributed data to this survey (a full list of contributing gardens is provided in Annex 2). BGCI would also like to acknowledge the assistance of the following organisations in the promotion of the survey and the collection of data, including the Royal Botanic Gardens Edinburgh, Yorkshire Arboretum, University of Liverpool Ness Botanic Gardens, and Stone Lane Gardens & Arboretum (U.K.), and the Morton Arboretum (U.S.A). We would also like to thank contributors to The Red List of Betulaceae, which was a precursor to this ex situ survey. BOTANIC GARDENS CONSERVATION INTERNATIONAL (BGCI) BGCI is a membership organization linking botanic gardens is over 100 countries in a shared commitment to biodiversity conservation, sustainable use and environmental education. BGCI aims to mobilize botanic gardens and work with partners to secure plant diversity for the well-being of people and the planet. BGCI provides the Secretariat for the IUCN/SSC Global Tree Specialist Group. www.bgci.org FAUNA & FLORA INTERNATIONAL (FFI) FFI, founded in 1903 and the world’s oldest international conservation organization, acts to conserve threatened species and ecosystems worldwide, choosing solutions that are sustainable, based on sound science and take account of human needs. www.fauna-flora.org GLOBAL TREES CAMPAIGN (GTC) GTC is undertaken through a partnership between BGCI and FFI, working with a wide range of other organisations around the world, to save the world’s most threated trees and the habitats which they grow through the provision of information, delivery of conservation action and support for sustainable use.
    [Show full text]
  • Topographic Patterns in the Phylogenetic Structure of Temperate Forests on Steep Mountainous Terrain
    Research Article Topographic patterns in the phylogenetic structure of temperate forests on steep mountainous terrain Ryo Kitagawa1*, Makiko Mimura2, Akira S. Mori3 and Akiko Sakai3 1 Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan 2 Department of BioEnvironmental Sciences, Tamagawa University, 6-1-1 Tamagawa gakuen, Machida, Tokyo 194-8610, Japan 3 Environment and Information Sciences, Yokohama National University, 79-1 Tokiwadai, Hodogaya Ward, Yokohama 240-8501, Japan Received: 30 March 2015; Accepted: 20 October 2015; Published: 24 November 2015 Associate Editor: Keping Ma Citation: Kitagawa R, Mimura M, Mori AS, Sakai A. 2015. Topographic patterns in the phylogenetic structure of temperate forests on steep mountainous terrain. AoB PLANTS 7: plv134; doi:10.1093/aobpla/plv134 Abstract. In rugged terrain subject to active geomorphological processes, the species composition of forest com- munities changes along topographic gradients over short distances. However, the phylogenetic structure of forests on rugged terrain has rarely been examined. Understanding such structures provides insight into community assembly rules dependent on local environmental conditions. To this end, we tested the topographic trends of measurements of phylogenetic community structure [net relatedness index (NRI) and nearest taxon index] in a catchment covered by temperate forests with complex relief in Japan. We found that phylogenetic structure changed from over-dispersion to clustering with increasing slope inclination, change of slope aspect from south to north and decreasing soil depth. This result suggested that environmental filtering tended to restrict community composition at relatively stressful sites, whereas species interaction functioned more strongly at relatively stress-free sites. Relatively stressful sites were char- acterized by early-successional species that tended to assemble in certain phylogenetic clades, whereas highly com- petitive late-successional species associated with lower NRI at relatively stress-free sites.
    [Show full text]
  • A Legacy of Plants N His Short Life, Douglas Created a Tremendous Legacy in the Plants That He Intro­ (P Coulteri) Pines
    The American lIorHcullural Sociely inviles you Io Celehrate tbe American Gardener al our 1999 Annual Conference Roston" Massachusetts June 9 - June 12~ 1999 Celebrate Ute accompHsbenls of American gardeners in Ute hlsloric "Cay Upon lhe 1Iill." Join wah avid gardeners from. across Ute counlrg lo learn new ideas for gardening excellence. Attend informa-Hve ledures and demonslraHons by naHonally-known garden experts. Tour lhe greal public and privale gardens in and around Roslon, including Ute Arnold Arborelum and Garden in Ute Woods. Meet lhe winners of AIlS's 1999 naHonJ awards for excellence in horHcullure. @ tor more informaHon, call1he conference regislrar al (800) 777-7931 ext 10. co n t e n t s Volume 78, Number 1 • '.I " Commentary 4 Hellebores 22 Members' Forum 5 by C. Colston Burrell Staghorn fern) ethical plant collecting) orchids. These early-blooming pennnials are riding the crest of a wave ofpopularity) and hybridizers are News from AHS 7 busy working to meet the demand. Oklahoma Horticultural Society) Richard Lighty) Robert E. Lyons) Grecian foxglove. David Douglas 30 by Susan Davis Price Focus 9 Many familiar plants in cultivation today New plants for 1999. are improved selections of North American species Offshoots 14 found by this 19th-century Scottish expLorer. Waiting for spring in Vermont. Bold Plants 37 Gardeners Information Service 15 by Pam Baggett Houseplants) transplanting a ginkgo tree) Incorporating a few plants with height) imposing starting trees from seed) propagating grape vines. foliage) or striking blossoms can make a dramatic difference in any landscape design. Mail-Order Explorer 16 Heirloom flowers and vegetables.
    [Show full text]
  • New Phytologist SI Template
    Supporting Information Article title: Pore constrictions in intervessel pit membranes reduce the risk of embolism spreading in angiosperm xylem Authors: Lucian Kaack, Matthias Weber, Emilie Isasa, Zohreh Karimi, Shan Li, Luciano Pereira, Christophe Trabi, Ya Zhang, H. Jochen Schenk, Bernhard Schuldt, Volker Schmidt, Steven Jansen The following Supporting Information is available for this article: Fig. S1 Frequency distribution of the number of intervessel pits per average vessel. Fig. S2 TEM images of intervessel pit membranes of different thickness. Fig. S3 Results of Model 1, Scenario 2; relation of TPM and pore constriction size. Fig. S4 Three-dimensional graph based on the risky scenario of Model 2, with 0.5 probability of having a large pore in a single pit membrane layer. Fig. S5 Two-dimensional graph based on Model 2 showing the probability of a large pore in a vessel of up 400,000 pits per vessel. Table S1 Dataset of the 31 angiosperm species studied, with reference to the anatomical and hydraulic traits measured. Methods S1 R script of Model 3 Methods S2 Protocols: plant material, xylem embolism resistance, transmission electron microscopy, vessel and pit dimensions Fig. S1 Frequency distribution of the number of intervessel pits per average vessel for 72 angiosperm tree species of 16 families, which varied asymmetrically from 510 to 370,755, and was calculated by dividing the total intervessel pit membrane area per vessel by the average area of intervessel pit membranes. Data are based on multiple data sets (Wheeler et al., 2005; Jansen et al., 2011; Lens et al., 2011; Nardini et al., 2012; Scholz et al., 2013; Klepsch et al., 2016; and original data).
    [Show full text]
  • Carpinus Caroliniana Family: Betulaceae American Hornbeam
    Carpinus caroliniana Family: Betulaceae American Hornbeam The genus Carpinus is represented by about 30 species that grow in the New World [1] and Eurasia [30]. Carpinus is the classical Latin name. Carpinus betulus: European Hornbeam—Avenbok, Carpe, Carpe Blanco, Carpen, Carpino Biannco, Charme, Charme Commun, Charme Comun, Charrlle, Charrlle Commun, Common Hornbeam, Dyed Hornbeam, Gemeine-weib-buche, Gem Weissbuche, Gewone Haagbeuk, Grab, Gyertyan, Haagbeuk, Habr Obecny, Hagabuche, Hage-buche, Hain-buche, Hojaranzo, Hornbaum, Hornbeam, Horn-buche, Steinbuch, Vitavenbok, Vit-bok, Weissbuche, Witch Elm Carpinus caroliniana: American Hornbeam—Blue Beech, Broomwood, Hophornbeam, Ironwood, Musclewood, O-tan-tahr-te-weh, Smoothbark Ironwood, Water Beech Carpinus carpinoides: Hornbeam, Kuma-shide Carpinus caucasia: Caucasian Hornbeam Carpinus cordata: Ggachibagdal, Russian Hornbeam, Sawashiba Carpinus distegocarpus: Kuma-shide Carpinus hebestroma: Taroko-sidi Carpinus japonica: Kuma-shide, Soya Carpinus laxiflora: Aka-shide, Hornbeam, Seo-namu, Soro Shide Carpinus orientalis: Oriental Hornbeam—Carpinella, Charme d’Orient, Eastern Hornbeam, Hojaranzo, Oosterse Haagbeuk, Orientalisk Avenbok Carpinus polyneura: Chinese Hornbeam Carpinus pubescens: Giau Do Carpinus rankanensis: Rankan-side Carpinus schuschaensis: Iran Hornbeam Carpinus seki: Taiwan-akashide Carpinus tschonoskii: Gaeseo-namu, Inu-shide, Korean Hornbeam Distribution North America, from central Maine to southern Quebec, southern Ontario, northern Iowa, Missouri, eastern Oklahoma and eastern Texas, east to central Florida. Northeastern Mexico (Tamaulipas) and from southern Mexico to Guatemala and Honduras. The Tree The American Hornbeam is a small tree that grows in mixed deciduous forests in the shade of taller hardwoods in bottom lands and river margins. It grows in association with oaks, sweetgum, hickories, maple and basswood. The tree grows slowly and is short lived.
    [Show full text]
  • Garden Wise Non-Invasive Plants for Your Garden
    Garden Wise Non-Invasive Plants for Your Garden Western Washington Guide Voluntary codes of conduct For the gardening public (annotated): In an effort to reduce the spread of invasive plants used for horticultural purposes, experts have created the “Voluntary Codes of Conduct,” a series of steps that nursery professionals, landscape architects, gardeners, and others can take to help curb the spread of invasive horticultural plants. ◊ Ask for only non-invasive species when you acquire plants. Plant only environmentally safe species in your gardens. Work towards and promote new landscape design that is friendly to regional ecosystems. ◊ Seek information on which species are invasive in your area. Sources could include botanical gardens, horticulturists, conservationists, and government agencies. Remove invasive species from your land and replace them with non-invasive species suited to your site and needs. ◊ Do not trade plants with other gardeners if you know they are species with invasive characteristics. ◊ Request that botanical gardens and nurseries promote, display, and sell only non-invasive species. ◊ Help educate your community and other gardeners in your area through personal contact and in such settings as garden clubs and other civic groups. For the full Gardening Codes of Conduct, or to learn about the Codes of Conduct for Government, Nursery Professionals, Landscape Architects, and Botanic Gardens and Arboreta, please go to the Invasive.org, TNC’s Global Invasive Species Team webpage: www.invasive.org/gist/horticulture/using-codes.html. Garden Wise is dedicated to Ann Lennartz Garden Wise Non-Invasive Plants for Your Garden While most exotic plants are not problematic, a few have become invasive in Washington State.
    [Show full text]
  • Appendix B: Natural Heritage
    IBI GROUP BIRCH AVENUE: SCHEDULE B MUNICIPAL CLASS ENVIRONMENTAL ASSESSMENT Prepared for City of Hamilton Appendix B: Natural Heritage Natural Heritage Report BIRCH AVENUE IMPROVEMENTS FROM BARTON STREET TO BURLINGTON STREET HAMILTON, ONTARIO prepared for: prepared by: JANUARY 2020 BIRCH AVENUE IMPROVEMENTS FROM BARTON STREET TO BURLINGTON STREET HAMILTON, ONTARIO NATURAL HERITAGE REPORT prepared by: Lisa Catcher Heather Polan Anna Jose Hons. B.A. M.Sc., R.P. Bio. M.Env.Sc. Botanist/ISA Certified Wildlife Biologist GIS Specialist Arborist reviewed by: Grant N. Kauffman, M.E.S. Vice President, Ontario Region LGL Limited environmental research associates 22 Fisher Street, P.O. Box 280 King City, Ontario CANADA L7B 1A6 Tel: (905) 833-1244 Fax: (905) 833-1255 Email: [email protected] URL: www.lgl.com JANUARY 2020 Birch Avenue Improvements from Barton Street to Burlington Street, Hamilton, Ontario Natural Heritage Report Page i TABLE OF CONTENTS 1.0 INTRODUCTION ............................................................................................. 1 2.0 SITE DESCRIPTION ....................................................................................... 3 2.1 PHYSIOGRAPHY, BEDROCK AND QUATERNARY GEOLOGY ..................................... 3 2.2 FISHERIES ......................................................................................................... 3 2.3 VEGETATION ..................................................................................................... 5 2.3.1 Purpose ..........................................................................................................
    [Show full text]
  • The Identity of Ligularia Emeiensis (Asteraceae, Senecioneae), a Name Overlooked Since Its Publication
    Phytotaxa 299 (2): 297–299 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2017 Magnolia Press Correspondence ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.299.2.17 The identity of Ligularia emeiensis (Asteraceae, Senecioneae), a name overlooked since its publication LONG WANG1, 2, CHEN REN1 & QIN-ER YANG1* 1Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sci- ences, Guangzhou 510650, Guangdong, China 2University of Chinese Academy of Sciences, Beijing 100049, China *Author for correspondence: e-mail: [email protected] Ligularia emeiensis (Asteraceae, Senecioneae), which was described in 1991 from Emei Shan, Sichuan, China, has been overlooked and not treated even in the account of the genus Ligularia in the Flora of China published in 2011. It is found to be identical with L. dentata subsp. sutchuenensis and is thus synonymized herein. Key words: Compositae, Sichuan, synonymy, taxonomy Introduction Ligularia emeiensis Kitamura (1991: 148) was described on the basis of three gatherings, J. Murata 11571 (KYO; Fig. 1A), W.P. Fang 15048 (KUN, KYO, PE, SZ; Fig. 1B, C) and C.L. Chow 6943 (KYO, SZ; Fig. 1D), all from Emei Shan, Sichuan, China, with the first designated as the holotype. In the protologue, the author gave only a full Latin description for his new species, not noting its affinity. Since its publication L. emeiensis has been totally overlooked by later authors. Even in their account of the genus Ligularia Cassini (1816: 198) for the Flora of China, Liu & Illarionova (2011) did not treat it.
    [Show full text]
  • LID Manual Cover-Color.Indd
    Puget Sound Action Team • Washington State University Pierce County Extension LOW IMPACT DEVELOPMENT TECHNICAL GUIDANCE MANUAL FOR PUGET SOUND JANUARY 2005 P.O. Box 40900 3049 S. 36th St., Suite 300 Olympia, WA 98504-0900 Tacoma, WA 98409-5701 (360) 725-5444 / (800) 54-SOUND (253) 798-7180 www.psat.wa.gov www.pierce.wsu.edu Author: Curtis Hinman Project lead and editor: Bruce Wulkan Research assistant: Colleen Owen Design and layout: Toni Weyman Droscher Illustrations: AHBL Civil and Structural Engineers and Planners, except where noted Additional editorial assistance/proofreading: Harriet Beale and TC Christian Cover art, clockwise from top of page: Green street concept (AHBL). Vegetated roof, Multnomah County building in Portland, Oregon (Erica Guttman). Permeable concrete walkway and parking area, Whidbey Island (Greg McKinnon). Permeable paver detail (Gary Anderson). Bioretention swale, Seattle (Seattle Public Utilities). PIN pier section (Rick Gagliano). Publication No. PSAT 05-03 To obtain this publication in an alternative format, contact the Action Team’s ADA Coordinator at (360) 725-5444. The Action Team’s TDD number is (800) 833-6388. C Printed on recycled paper using vegetable-based inks. Representatives from the following groups serve on the Puget Sound Action Team: Local Government City of Burien, representing Puget Sound cities Whatcom County, representing Puget Sound counties Washington State Government, directors of the following agencies Community, Trade, and Economic Development Conservation Commission Department of Agriculture Department of Ecology Department of Fish & Wildlife Department of Health Department of Natural Resources Department of Transportation Interagency Committee for Outdoor Recreation Parks and Recreation Commission Tribal Government Tulalip Tribes, representing Puget Sound Tribes Federal Government (Ex-officio) NOAA Fisheries U.S.
    [Show full text]
  • (Carpinus Turczaninovii) Based on Nuclear Ribosomal ITS Sequence
    African Journal of Biotechnology Vol. 10(76), pp. 17435-17442, 30 November, 2011 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB11.1337 ISSN 1684–5315 © 2011 Academic Journals Full Length Research Paper Phylogeny of Korean Hornbeam ( Carpinus turczaninovii ) based on nuclear ribosomal ITS sequence Sun, Y. L. 1, Wang, D. 1, Lee, H. B.2, Park, W. G. 2, Kwon, O. W. 3 and Hong, S. K.1,4 * 1Department of Bio-Health Technology, Kangwon National University, Chuncheon, Kangwon-Do, 200-701, Korea. 2Department of Forest Resources, Kangwon National University, Chuncheon, Kangwon-Do, 200-701, Korea. 3Korea Forest Seed and Variety Center, Suanbo, Chungju, Chungcheongbuk-Do, 380-941, Korea. 4Division of Biomedical Technology, College of Biomedical Science, Chuncheon, Kangwon-Do, 200-701, Korea. Accepted 25 July, 2011 The genus Carpinus belonging to Coryloideae, Betulaceae, has significant economic and ornamental importance. This study was undertaken with the aim to understand the genetic diversity among eighteen isolates of Carpinus turczaninovii collected from different geographical regions of Korea, using ribosomal RNA (rRNA) internal transcribed spacer (ITS) sequences, to compare the infraspecific- phylogenetic relationships among C. turczaninovii in Korea, and some known Carpinus plants. The size variation of sequenced rRNA ITS regions was not seen, with 215, 162, 222 bp of ITS1 region, 5.8S rRNA gene, ITS2 region, respectively. However, some certain nucleotide variations resulted in genetic diversity. In the genus Carpinus , C. turczaninovii closely genetic with Castanopsis kawakamii , Carpinus orientalis , Carpinus monbeigiana , and Calyptranthes polynenra formed one monophyletic clade, while Carpinus betulus and Carpinus laxiflora, respectively formed one monophyletic clade.
    [Show full text]
  • A Critical Taxonomic Checklist of Carpinus and Ostrya (Coryloideae, Betulaceae)
    European Journal of Taxonomy 375: 1–52 ISSN 2118-9773 https://doi.org/10.5852/ejt.2017.375 www.europeanjournaloftaxonomy.eu 2017 · Holstein N. & Weigend M. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph No taxon left behind? – a critical taxonomic checklist of Carpinus and Ostrya (Coryloideae, Betulaceae) Norbert HOLSTEIN 1,* & Maximilian WEIGEND 2 1,2 Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Nordrhein-Westfalen, Germany. * Corresponding author: [email protected] 2 Email: [email protected] Abstract. Hornbeams (Carpinus) and hop-hornbeams (Ostrya) are trees or large shrubs from the northern hemisphere. Currently, 43 species of Carpinus (58 taxa including subdivisions) and 8 species of Ostrya (9 taxa including sudivisions) are recognized. These are based on 175 (plus 16 Latin basionyms of cultivars) and 21 legitimate basionyms, respectively. We present an updated checklist with publication details and type information for all accepted names and the vast majority of synonyms of Carpinus and Ostrya, including the designation of 54 lectotypes and two neotypes. Cultivars are listed if validly described under the rules of the ICN. Furthermore, we consider Carpinus hwai Hu & W.C.Cheng to be a synonym of Carpinus fargesiana var. ovalifolia (H.J.P.Winkl.) Holstein & Weigend comb. nov. During the course of our work, we found 30 legitimate basionyms of non-cultivars that have been consistently overlooked since their original descriptions, when compared with the latest checklists and fl oristic treatments. As regional fl oras are highly important for taxonomic practice, we investigated the number of overlooked names and found that 78 basionyms were omitted at least once in the eight regional treatments surveyed.
    [Show full text]