ICELAND 2Nd Summer Workshop 2019

Total Page:16

File Type:pdf, Size:1020Kb

ICELAND 2Nd Summer Workshop 2019 ICELAND MIDNIGHT SUN WORKSHOP . 14 JUN - 22 JUN 2019 9 d a y s l a n d s c a p e p h o t o g r a p h y. w o r k s h o p Price 10,500 AED For early bookings until (01/04/2019) 12,000 AED For bookings from (02/04/2019) onwards (price based on single person in a twin sharing room with the same gender . for single room supplement extra cost will be applied ) Price include the campsites fees (not camping gear) Group Size 4-8 Experience From beginner to Pro level of photography and for those who want to see the Midnight Sun & explore some of the highlands locations in Iceland Workshop Includes Landscape photography and shooting in unforgettable wild locations professional photographers & guides who know the area Transport around Iceland and to and from all of our shooting locations Post-processing workshops in Lightroom and Photoshop All accommodation in local hotels, homes, apartments and Campsites fees (camping gear not included) All entrance fees to specific locations Airport pick up and drop of Free wifi ( Portable ) Guide and Transportation through out the Trip Workshop excludes International airlines ticket Visa fees Meals Camping gear ON MAP WHAT WE WILL COVER ITINERARY We tour the country basing ourselves at three locations, and while the dates that we’ll be in the bases are fixed, our time at each is flexible so we can decide which locations to visit while we’re there depending on the local weather and conditions. We will however ensure that we visit all of the locations in each area. At this time of year the golden hour starts around 22h00 and sunset around midnight. There’s then a period of twilight and blue hour before sunrise at around 3h, so to make sure that participants get the best conditions for shooting, we’ll concentrate our shooting in one long session between around 21h30 and 3h30. Shooting at this time also means we have even the more popular locations pretty much to ourselves outside of the main tourist hours. After the shooting session has finished we’ll head back to the accommodation and sleep, and to ensure people have plenty of time to rest and stay as fresh as possible throughout the course of the workshop there won’t be anything timetabled until brunch/lunch at 13h, and then in the afternoon we’ll have post processing workshops or travel to the next location. DAY BY DAY Day 1 : Arrival to Keflavik We will pick you up from the airport between 02:00pm-05:00pm (Local Time) and will head directly to our stay near the airport so everyone can have a rest from the flight and prepare for our rich and strong start. If we had time before 6pm then we will be heading to the Hypermarket so everyone buys their Snacks and needs for the coming few days. PS: we can assist you when choosing the best flight route and timing. For more details, please check the important info section. Day 2 : Waterfalls ( The Golden Circle ) After having our first breakfast, we will pack our luggages and start our adventure by heading to the Golden Circle to most of the locations below: ⁃ Bruarfoss (The Blue Waterfall) if they reopened it again ⁃ The Famous GYSIR where we will have our lunch for the day ⁃ Quick stop at the enormous waterfall “Gullfoss” After that, we will be basing our stay near the Highlands entrance from the golden circle so we can start our adventure the next day⁃ Day 3: Discovering the Highlands In those two days we will be moving according to the weather and may end up crossing the highlands reaching near the north and back. It will be an amazing adventure to discover few of the least visited areas and locations that majority of people visiting Iceland do not reach or shoot! We might end up having some locations only to ourselves! Yes :) Having this part without a clear location plan is the best part here, so you wouldn’t actually know what to expect and be amazed of how awesome this part of Iceland actually is .. We will end up our highlands adventure by visiting the famous Seljalandfoss and staying around that beautiful area. Day 4 : Skogafoss, Black sand beach We start our day by having our breakfast then heading directly toward the Famous Skogafoss, the iconic waterfall of Iceland and practice some photography techniques and ideas. Then we will move towards vik and get our lunch then move head to a very beautiful and unique highlands location in that part. This location is one of my favorite locations in Iceland and you will know why once we start our drive to it :) .. then we will head back to the black sand beach where we will be preparing our sunset shot and studying the angles and best directions. we will target 4 main locations: • Skogafoss waterfall • Vik city • Secret Highland Location • Black sand beach After that we will set our tents in a nearby campsite and have a good rest so we can start our adventure for the next day.. Day 5 : Ice World ( The Famous Glacier Lake and Diamond Beach) We start our day by having our breakfast then heading directly toward the Famous Jokulsarlon Lake where we will see the otherworldly glaciers floating and shoot them. In that area we will target 3 main locations: - Jokulsarlon Lake - Diamond Beach - Fjalsarlon Lake For our sunset shooting, we will be targeting Jokulsarlon as it should have the best direction of light to shoot After that, we will be shifting to either Diamond beach or the Fjalsarlon according the light we agree to capture. Then we will head to our Camp stay near Skaftafell National Park to rest for the next day. Day 6 : Vestrahorn & the Viking Village We start our day by having our breakfast then heading directly toward our home stay near horn, we will drop our stuff and rest for few hours then go get our lunch and head for the Famous Vestrahorn Mountain in Stokkness.. we will have an interesting visit to one of the viking villages used to shoot some movies and wonder inside and snap few shots then we will head directly inside one of the most amazing areas to shoot the mountain where the ocean meets the black sands and the area is covered with a unique plants that grows mostly in that area to use it as an epic foreground in our photos. This place is really worth spending our time planning and exciting our shots. After shooting the sunset we will head back to our accommodation and get rest as we will need it for our long drive the next day.. Day 7 : Skaftafel, Svartifoss & Dryholay + Fjaðrárgljúfur We start our day by having our breakfast then heading directly toward Skaftafell national park and go through one of the easiest and most beautiful hikes in that area to see the volcanic Svatrifoss waterfall. After that we will head to get our lunch in one of the amazing local restaurants on the road then if we have extra time then we might visit the famous Fjaðrárgljúfur for a quick stop then we move again all the way to vik and plan our sunset shooting in Dryholay. An amazing cliff view over the black sand beach. Then we will then set our camp in the area and rest for the day so we can wake up early as usual. Day 8 : South to the Capital (Blue Lagoon Optional) This is going to be our last day of adventure in this beautiful country and we will be stopping to see one of the unknown waterfalls while heading towards the capital. We will then visit the down town and have a quick tour inside so we can try the nice local ice cream they are famous making and eat our Dinner there so we can have the option to visit either the Blue lagoon or head to one of the amazing locations near Keflavik to shoot the sunset and call it a day. We will head to our stay so everyone can prepare their stuff and get ready for early departure the next day. DAY 9 : DEPARTURE ( EARLY DEPARTURE ) We will wake up very early and should reach the airport around 5:00am so that everyone will have the time to catch their departure flights which usually depart around 7:00am onwards. Some of the Locations we may encounter in our trip WHAT WE DO (AND WHAT WE WANT YOU TO GET FROM OUR WORKSHOPS) Our aim is to take you to beautiful locations and give you every Having a number of fantastic locations all very close to each of our opportunity to get great images and live the experience while four bases means we can adapt to the weather and go to where improving your technique over the course of the workshop. From the conditions are best for shooting. Also, having three bases from the beginning of your time with us we’ll aim to identify your which we can access these locations means we spend less time photographic level and what you’d like to focus on, which checking into and out of accommodation and avoids the stress of combined with having small to medium groups allows us to tailor constantly moving on to a new hotel every day. the workshop to your precise needs and provide each participant with plenty of one-to-one tuition both in the field and in the post This adaptability also extends to the post processing sessions.
Recommended publications
  • Consecutive Midnight Shifts
    Fatigue and Shiftwork: Consecutive Midnight Shifts Why is it so hard to work midnight shifts (“Mids”)? In a 24/7 operation, mids are unavoidable. It is what it is. The challenge is that you have to be alert when your circadian clock (internal body clock) is programmed to sleep. To prepare for a mid, you need to sleep in the daytime when your body clock is on alarm (resisting sleep). Working mids disrupts your sleep pattern which may lead to an increase in sleep debt (accumulation of getting less sleep than you need). Performance and alertness levels decrease with each passing day of shortened sleep. But what about consecutive mids? Are consecutive mids more fatiguing than working a single mid? Yes, because the more mids in a row, the larger the sleep debt, and the tougher the recovery. With one mid, sleep debt is acute and recovery (making up sleep by sleeping more on days off) is possible. With consecutive mids, sleep debt becomes chronic and recovery may require multiple full nights of recuperative sleep. Does working consecutive mid shifts affect performance and alertness? Yes. If you work a schedule associated with reduced opportunities for night time recovery sleep, that loss increases the likelihood of decrements in both work performance and alertness. These decrements are exponential during early morning hours when your body clock is at its lowest (around 0300-0500) and you naturally have the urge to sleep. It is scientifically proven that: • Incident/accident risk increases significantly on the 3rd and 4th consecutive mid shift
    [Show full text]
  • Morphology and Dynamics of the Venus Atmosphere at the Cloud Top Level As Observed by the Venus Monitoring Camera
    Morphology and dynamics of the Venus atmosphere at the cloud top level as observed by the Venus Monitoring Camera Von der Fakultät für Elektrotechnik, Informationstechnik, Physik der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr.rer.nat.) genehmigte Dissertation von Richard Moissl aus Grünstadt Bibliografische Information Der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar. 1. Referentin oder Referent: Prof. Dr. Jürgen Blum 2. Referentin oder Referent: Dr. Horst-Uwe Keller eingereicht am: 24. April 2008 mündliche Prüfung (Disputation) am: 9. Juli 2008 ISBN 978-3-936586-86-2 Copernicus Publications, Katlenburg-Lindau Druck: Schaltungsdienst Lange, Berlin Printed in Germany Contents Summary 7 1 Introduction 9 1.1 Historical observations of Venus . .9 1.2 The atmosphere and climate of Venus . .9 1.2.1 Basic composition and structure of the Venus atmosphere . .9 1.2.2 The clouds of Venus . 11 1.2.3 Atmospheric dynamics at the cloud level . 12 1.3 Venus Express . 16 1.4 Goals and structure of the thesis . 19 2 The Venus Monitoring Camera experiment 21 2.1 Scientific objectives of the VMC in the context of this thesis . 21 2.1.1 UV Channel . 21 2.1.1.1 Morphology of the unknown UV absorber . 21 2.1.1.2 Atmospheric dynamics of the cloud tops . 21 2.1.2 The two IR channels . 22 2.1.2.1 Water vapor abundance and cloud opacity . 22 2.1.2.2 Surface and lower atmosphere .
    [Show full text]
  • Flex Parking the Less You Park, the Less You Pay
    Flex Parking The less you park, the less you pay. PARKING PAYMENT EXAMPLES How It Works • You pay the rate in effect at the time you arrive. If your parking session bridges two different rate periods, you begin under the rate of the period that you arrived and pay that rate for either the first four hours (if you arrive within four hours BEFORE the rate changes) OR the first hour (if you arrive more than four hours BEFORE the rate changes). • Hours are counted from the minute that you arrive (for example 9:12am to 10:12am). • Parking is charged by the hour, there is no prorated amount for periods of less than an hour. You cannot pay for a portion of an hour. • Those who start parking M-F at 4:30pm or after (or anytime on Sat/Sun) will pay no more than $3.75. • Those who start parking M-F at 4:29pm or before will pay no more than $8. Examples 1. You arrive at 4:29pm and remain parked until midnight (or after). In the example below neither the daytime limit ($8) nor the nighttime limit ($3.75) are reached. Number Cumulative Time Period Rate in Effect of Hours Charge 4:29 to 8:29pm 4 $4 under daytime rate trip charge $4 8:29 to 11:29pm 3 $0.75 per hour for 3 hours under $6.25 nighttime rate (total $2.25) 11:29pm to 31 $0.75 for the portion of an hour parked $7 midnight minutes TOTAL CHARGE 7.5 $7 ($4 under daytime rate and $3 under $7 evening rate) 2.
    [Show full text]
  • Summer Midnight Sun
    NATIONAL WILDLIFE FEDERATION ARCTIC Summer Midnight Sun Summary ✔ Copies of student worksheets year, as the earth makes its orbit Students build a three- around the sun, the tilt produces dimensional model of the variable day lengths, and the rotation of the earth to change of seasons. When the appreciate the extremes of Background arctic is tilted away from the sun, daylight hours at different The Earth’s axis is an imaginary in the winter months, it gets little months of the year, and make line through its core, connecting or no sunlight. The sun appears connections between available the North and South poles. The to be at a very low angle on the sunlight and the growth and earth revolves around this axis, horizon, which also means less behavior of plants of the arctic. one full revolution per day. The intense light reaching the arctic. earth rotates so that during the On the other hand, when the Grade Level arctic is tilted toward the sun, in 5-8; 3-4 day we face the sun, and at night the summer months, it gets more Time Estimate we face away from the sun. one to two class periods. Because the earth is round, parts intense sunlight almost around the clock. Subjects: of it are closer to the sun than math, physics, geography, others. Parts that are closer Sunlight is critical to photosyn- science (nearer to the equator, lower lati- thesis, the process by which Skills: tude) experience more intense plants produce their own food. analysis, application, sunlight than parts that are Plants need water and sunlight in comparison, problem- further, such as the arctic at high order to photosynthesize.
    [Show full text]
  • The Transterminator Ion Flow at Venus at Solar Minimum
    EPSC Abstracts Vol. 5, EPSC2010-561, 2010 European Planetary Science Congress 2010 c Author(s) 2010 The transterminator ion flow at Venus at Solar Minimum A. G. Wood (1), S. E. Pryse (1), M. Grande (1) and the ASPERA team (1) Institute of Mathematics and Physics, Aberystwyth University, Aberystwyth, UK ([email protected] / Fax: +44- 1970-622826) Abstract The transterminator ion flow in the Venusian ionosphere is primarily driven by a pressure gradient which is caused by photoionisation [1]. At solar maximum this antisunward flow is the principle source of the nightside ionosphere [2]. Around solar minimum the ionopause is located at a lower altitude and it has been suggested that this would severely inhibit the transport process [3,4]. However, it is only within the last few years that extensive in-situ observations of ionospheric plasma under these solar conditions have been conducted. Observations of ions of ionospheric origin conducted by Venus Express throughout one Venus year sampled all local time sectors twice and flew through these sectors in opposing directions half a Venus year apart. These observations, conducted at high latitudes close to the solar terminator, showed asymmetries in both the dawn-dusk and noon-midnight planes. In the dawn- dusk direction greater numbers of ions were observed on the dusk side than on the dawn side. In the noon- midnight plane greater numbers of ions were observed on the dayside, although significant numbers of ions were seen nightward of the terminator. Collectively these observations suggest a nightward ion flow with the dawn-dusk asymmetry resulting from variations in the plasma density in the dayside ionosphere.
    [Show full text]
  • SPQ Module 18 – Sleeping Under the Midnight Sun
    SPQ Module 18 – Sleeping under the Midnight Sun There is twenty-four hour sunlight in Antarctica now, and on December 21 – the summer solstice - the sun will trace a perfect circle around the South Pole. How are Ray, Richard and Kevin responding to having to sleep in perpetual daylight, in a small tent that allows bright light to penetrate? Is the light interfering with their sleep? Scientists believe that prolonged lack of sleep may decrease length of life. Some believe this may shed some light on the fate of the Scott expedition. When Scott and his men set out for the South Pole in December 1911, they chose to march at ‘night’ and sleep during the ‘day’. Although the sun was up for the entire 24 hours, it was higher during the midday hours and lower during the midnight hours. Due to this differential height over the course of the day there was a similar difference in temperature, and the snow was firmer for marching during the cooler midnight hours, and it was warmer for sleeping during the midday hours. There have been many theories about what led to Robert Did You Know? Falcon Scott and his men’s death. One novel hypothesis is that profound sleep deprivation The world record precipitated their demise. In the surviving journals for sleeplessness from the expedition reference is made by the British is 264 hours team to the difficulties they were having getting proper (eleven days), set sleep. Their insomnia was likely attributable to the by an 18 year old sodden or frozen sleeping bags in which they slept, as American in 1965.
    [Show full text]
  • It Happened at Midnight
    Dr Maurice M. Mizrahi B”H D’var Torah on Pessaḥ It Happened at Midnight On the first night of Passover, after the seder meal, Jews traditionally recite -Vayehi Ba וַיְהִ י בַחֲצִ י הַלַיְלָה) ”a poem, a piyyut, called “It Happened at Midnight ḥatzi Ha-laylah). It was written in the 6th century by Yannai, who lived in Eretz Yisrael. The verses recount many miracles that happened in Jewish history at midnight, on the first night of Pessah. The most important one is the Exodus from Egypt, which explains why it is included in the seder. Indeed, the Torah says the process for the Exodus started at midnight: וַיֹֹּ֣אמֶרמֹשֶֶׁ֔ה כֹֹּ֖ ה אָמַֹּ֣ר יְהוָָ֑ה כַחֲצֹֹּ֣ ת הַלֶַׁ֔ יְלָה אֲנִִ֥י יֹוצ ֹּ֖א בְתִֹ֥וְך מִצְרָָֽ יִם Moses said, “Thus says the Lord: About midnight I will go forth among the Egyptians.” [Exodus 11:4] וַיְהִֹּ֣י׀ בַחֲצִֹּ֣ י הַלַַּ֗ יְלָהוַָֽיהוָה֮ הִכָֹּ֣ה כָל־בְ כֹור֮ בְאֶֹּ֣רֶץ מִצְרַ יִם In the middle of the night the Lord struck down all the first-born in the land of Egypt. [Exodus 12:29] First, it must be noted that in Judaism, midnight is not necessarily 12am but is literally the midpoint of the night, halfway between sunset and sunrise. That point is called chatzot. In winter, when nights are long, midnight is after 12am; in summer, when nights are short, it is after 12am. It varies every day. In all, thirteen miracles are listed in the poem, all happening on the first night of Pessah at midnight. We will first list them, then try to answer the question: What is so special about midnight? The other twelve miracles are as follows: -God allows Abraham to defeat the four kings who kidnapped his nephew Lot: וַיחָל ֵ֨ ק עֲל יהֶֶ֧ם׀ לַַ֛יְלָה הִ֥ ּואוַעֲבָדָֹּ֖יו וַיַכ ָ֑ם At night, [Abraham] and his servants fought against them and defeated them.
    [Show full text]
  • The Length of Days 1
    MODELLING EXERCISES The length of days 1 (by Alan Champneys) Have you ever thought about what a graph of the number of hours of daylight throughout the year might look like? Clearly it depends on lattitude. Here is a graph for Bristol which has an angle of lattitude φ = 51◦ (north). Looks like a sine wave, doesn’t it? But is it exactly a sine wave? and how would we prove it? Think about what exactly causes the length of the days to change. Discuss in your group. For the rest of this exercise we are going to try to look test a formula for the daylength anywhere on the Earth. MEI / AMSP & BRISTOL ENGINEERING MATHS DEGREE PROGRAMME asmp.org.uk — www.bristol.ac.uk/engmaths MODELLING EXERCISES Solution Daylight hours depend on the tilt of the Earth as it goes on its orbit around the sun. In the northern hemisphere Summer the earth is tilted so that the sun is over the northern tropic (of Cancer) which has an angle of latitude φ = 23:45◦N. In winter it is over the southern tropic (of Capricorn ) at φ = −23:45◦S. This causes days to be longer in northern latitudes during Summer. But how much longer? Clearly a sine wave would be a good first guess as a function for the length of the days. But there is a problem. This function is no use when we get towards the poles. For example, the northern Russian city of Murmusk is inside the arctic circle, and its graph of daylight hours is highly non-sinusoidal.
    [Show full text]
  • Sunrise, Sunset…Or Not?
    Sunrise, Sunset…or Not? Sunrise, Sunset…or Not? Sunrise, sunset. It’s nice to know we can rely on the sun to come up in the morning and go down at night. The sun is a wonderful thing. It is a star, and its light shines onto our planet. It is the ultimate source of energy. It heats our planet and makes life on Earth possible. Without the sun, trees and plants wouldn’t get the light energy they need to grow. Without this light, we humans would have a hard time finding enough food to eat. Without the sun, life as we know it would be very different. We can always rely on the sun. Sunrise, sunset. Summer days may be longer than winter days, but the sun always seems to do the same thing: it goes down at night and comes up for the day. But that’s not always true. In some parts of the world, the sun can be up in the sky for the entire day. During the summer, the Earth is tilted to the sun so much that the sun in northern Alaska never goes below the horizon. In Barrow, Alaska, the sun doesn’t even set for almost three months! This phenomenon is called midnight sun. Try sleeping through that! During the winter, the Earth is tilted in such a way that the sun doesn’t come over the horizon in northern Alaska for over two months. Northern Alaska is located in the Arctic Circle, an area at the top of the earth.
    [Show full text]
  • The Solar System Questions KEY.Pdf
    THE SOLAR SYSTEM 1. The atmosphere of Venus is composed primarily of A hydrogen and helium B carbon dioxide C methane D ammonia Base your answers to questions 2 through 6 on the diagram below, which shows a portion of the solar system. 2. Which graph best represents the relationship between a planet's average distance from the Sun and the time the planet takes to revolve around the Sun? A B C D 3. Which of the following planets has the lowest average density? A Mercury B Venus C Earth D Mars 4. The actual orbits of the planets are A elliptical, with Earth at one of the foci B elliptical, with the Sun at one of the foci C circular, with Earth at the center D circular, with the Sun at the center 5. Which scale diagram best compares the size of Earth with the size of Venus? A B C D 6. Mercury and Venus are the only planets that show phases when viewed from Earth because both Mercury and Venus A revolve around the Sun inside Earth's orbit B rotate more slowly than Earth does C are eclipsed by Earth's shadow D pass behind the Sun in their orbit 7. Which event takes the most time? A one revolution of Earth around the Sun B one revolution of Venus around the Sun C one rotation of the Moon on its axis D one rotation of Venus on its axis 8. When the distance between the foci of an ellipse is increased, the eccentricity of the ellipse will A decrease B increase C remain the same 9.
    [Show full text]
  • The Transterminator Ion Flow at Venus at Solar Minimum
    The transterminator ion flow at Venus at Solar Minimum A. G. Wood[1, 2], S. E. Pryse[1], M. Grande[1], I. C. Whittaker[1, 3], A. J. Coates[4], K. Husband[4], W. Baumjohann[5], T. Zhang[5], C. Mazelle[6], E. Kallio[7], M. Fränz[8], S. McKenna-Lawlor[9] and P. Wurz[10] [1] Institute of Mathematics and Physics, Aberystwyth University, Aberystwyth, Wales, UK [2] School of Engineering, University of Liverpool, Liverpool, UK [3] University of St. Andrews, St Andrews, Scotland, UK [4] Mullard Space Science Laboratory, University College London, UK [5] Space Research Institute, Austrian Academy of Sciences, Graz, Austria [6] Institut de Recherche en Astrophysique et Planétologie, Toulouse, France [7] Finnish Meteorological Institute, Helsinki, Finland [8] Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau, Germany [9] Space technology Ltd., National University of Ireland, Ireland [10] University of Bern, Physikalisches Institut, Switzerland Abstract The transterminator ion flow in the Venusian ionosphere is observed at solar minimum for the first time. This antisunward flow, which transports ions from the day to the nightside, is primarily driven by a pressure gradient caused by photoionisation. Although such a flow was been observed previously around solar maximum, at solar minimum the transport process is severely inhibited by the lower altitude of the ionopause. Observations of ionospheric plasma at solar minimum are routinely made by ASPERA-4 onboard the Venus Express spacecraft and constitute the first extensive in-situ measurements of this plasma under these solar conditions. Observations of ions of ionospheric origin showed asymmetries in both the dawn- Page 1 dusk and noon-midnight planes for ions of ionospheric origin.
    [Show full text]
  • Midnight in Broad Daylight
    MIDNIGHT IN BROAD DAYLIGHT Midnight_Final_464_1002_CL.indd 1 10/2/15 2:33 PM MIDNIGHT IN BROAD DAYLIGHT A J A P A NESE A MERIC A N F A MILY C A UGHT B ETWEEN T WO W ORLDS Pamela Rotner Sakamoto Midnight_Final_464_1002_CL.indd 2 10/2/15 2:33 PM MIDNIGHT IN BROAD DAYLIGHT A J A P A NESE A MERIC A N F A MILY C A UGHT B ETWEEN T WO W ORLDS Pamela Rotner Sakamoto HARPER An Imprint of HarperCollinsPublishers Midnight_Final_464_1002_CL.indd 3 10/2/15 2:33 PM Copyright midnight in broad daylight. Copyright © 2016 by Pamela Rotner Saka- moto. All rights reserved. Printed in the United States of America. No part of this book may be used or reproduced in any manner whatsoever without written permission except in the case of brief quotations embodied in critical articles and reviews. For information, address Harper Collins Publishers, 195 Broadway, New York, NY 10007. Harper Collins books may be purchased for educational, business, or sales pro- motional use. For information, please e- mail the Special Markets Department at [email protected]. first edition Designed by Michael Correy Library of Congress Cataloging-in-Publication Data Sakamoto, Pamela Rotner Midnight in broad daylight : a Japanese American family caught between two worlds / Pamela Rotner Sakamoto. — First edition. pages cm Includes bibliographical references and index. ISBN 978-0-06-235193-7 1. Fukuhara, Harry K., 1920–2015. 2. Fukuhara, Pierce, 1922–2008. 3. Fukuhara, Frank, 1924–2015. 4. World War, 1939–1945—Japanese Americans. 5. Japanese American families—Washington—Seattle.
    [Show full text]