Photopills User Guide

Total Page:16

File Type:pdf, Size:1020Kb

Photopills User Guide PhotoPills User Guide www.photopills.com Feel free to share this eBook © PhotoPills April 2019 2 Never Stop Learning The Definitive Guide to Shoo- ting Hypnotic Star Trails How To Shoot Truly Conta- gious Milky Way Pictures Understanding Golden Hour, Blue Hour and Twilights 7 Tips to Make the Next Su- permoon Shine in Your Pho- tos MORE TUTORIALS AT PHOTOPILLS.COM/ACADEMY Understanding How To Plan the Azimuth and Milky Way Using Elevation The Augmented Reality How to find moon- How To Plan The rises and moon- Next Full Moon sets PhotoPills Awards Get your photos featured and win $6,600 in cash prizes Learn more+ Join PhotoPillers from around the world for a 7 fun-filled days of learning and adventure in the island of light! Learn More (Updated to iOS v2.10, Android v1.5) Welcome to PhotoPills! It all began in 2013 with an iPhone app, but after developing the Android version and cre- ating a tribe of over 300,000 PhotoPillers across the world, PhotoPills is turning into some- thing different, something more exciting... A movement of photographers that share the same vision: “To always be at the right place at the right time to capture the scenes we imagine...” PhotoPills is our crystal ball, our lightsaber... The tool that allows us to let our imagination fly and do all the planning to capture the photos we dream of. Imagine. Plan. Shoot! We created PhotoPills to help you go from ideas to real photos. 6 To help you: • Imagine, get inspired, be more creative, come up with different photo ideas with the Sun, the Moon, the Milky Way, Star Trails, Eclipses... • Plan them, find the right shooting spot and right shooting date and time the scenes you imagine actually happen... • So you can go and Shoot them, capture your own photo ideas. To achieve it, PhotoPills includes all you need: from sources of inspiration and learning to advanced planning tools and photography calculators. All of this will become clear as you read through this guide. Ready? “A goal without a plan is just a wish.” - Antoine de Saint-Exupéry 7 Contents 1 Getting Started 12 The first thing you should do when downloading PhotoPills: Enable the Widgets! . 13 How to approach PhotoPills? Set a goal first! ...................... 15 The three PhotoPills Menus (My Stuff, Pills and Academy) . 16 Tell us your pain and we’ll tell you the Pill to take (problem vs. solution) . 20 2 Planner - Introduction 27 Introduction to planning .................................. 28 The 4 parts of the Planner ................................. 30 3 Planner - Top Panels 34 Panel 1: Shadow length calculator ............................. 35 Panel 2: Pin to pin geodetic info (Black Pin) ....................... 37 Panel 3: Sun/Moon position (azimuth and elevation) . 40 Panel 4: Sun/Moon rise and set times ........................... 42 Panel 5: Twilights ...................................... 44 Panel 6: Golden hour and blue hour ............................ 46 Panel 7: Galactic Center visibility (Milky Way) ...................... 47 Panel 8: Milky Way quality and position ......................... 49 Panel 9: Eclipse selector and info ............................. 51 Panel 10: Eclipse phase times ............................... 53 4 Planner - Map 55 Red Pin ............................................ 57 Black Pin ........................................... 58 Map buttons: (+) Map button and Map settings button . 59 Map tools (Field of View, Depth of Field, Sun/Moon) ................... 59 Map info: Sun, Moon, Milky Way, Twilights, Shadows and Eclipses . 59 5 Planner - (+) Map button (toolbar) 60 6 Planner - Map Settings button 64 Planner modes: Camera mode and Drone mode ..................... 66 Map type button ...................................... 67 Map tool overview ...................................... 68 Field of View tool ...................................... 70 Depth of Field tool ..................................... 72 Sun/Moon tool ........................................ 74 Map layers overview .................................... 76 Sun layer ........................................... 78 Moon layer .......................................... 84 Milky Way layer ....................................... 91 8 Twilights layer ........................................ 93 Shadow layer ........................................ 94 Eclipse layer ......................................... 95 Reset Map layers ...................................... 99 7 Planner - Time Bar 100 How to change date and time with the Time Bar . 101 8 Planner - Bottom options 103 Find ............................................. 104 AR (Augmented Reality) .................................. 115 Night AR ........................................... 117 Load ............................................. 120 Save ............................................. 121 More > Date ......................................... 122 More > Altitudes ....................................... 124 More > Horizon ....................................... 126 More > Action ........................................ 128 9 Sun 130 Info .............................................. 131 Calendar ........................................... 134 Augmented Reality (AR) .................................. 135 Seasons ........................................... 137 Action ............................................ 138 10 Moon 139 Info .............................................. 140 Calendar ........................................... 144 Augmented Reality (AR) .................................. 145 Distances .......................................... 147 Action ............................................ 149 11 Exposure 150 Long exposure calculator (ND filters, Star Trails, low light and at night) . 151 Exposure values ....................................... 153 Timer ............................................. 154 Share ............................................. 155 12 Depth of field (DoF) 156 Classic depth of field calculator .............................. 157 Inverse ............................................ 159 Advanced .......................................... 161 To field of view (FoV) .................................... 163 Augmented Reality (AR) .................................. 164 9 Share ............................................. 165 13 Depth of field Table 166 Depth of field Table ..................................... 167 Visual ............................................ 169 Augmented Reality (AR) .................................. 170 Share ............................................. 171 14 Hyperfocal Table 172 Hyperfocal table ...................................... 173 Visual ............................................ 174 Augmented Reality (AR) .................................. 175 Share ............................................. 176 15 Field of View (FoV) 177 Classic field of view calculator .............................. 178 Inverse ............................................ 180 Augmented Reality (AR) .................................. 182 To depth of field (DoF) ................................... 183 Share ............................................. 184 16 Subject distance 185 Subject distance calculator ................................ 186 To depth of field (DoF) ................................... 187 To field of view (FoV) .................................... 188 Augmented Reality (AR) .................................. 189 Share ............................................. 190 17 Focal Length Match 191 Focal length match calculator ............................... 192 Share ............................................. 193 18 Night Augmented Reality (AR) 194 Night Augmented Reality (AR) ............................... 195 Settings (change location, date and time) ........................ 197 Visual calibration ...................................... 198 Action ............................................ 199 19 Star Trails 200 Star Trails calculator .................................... 201 Timer ............................................. 202 Share ............................................. 203 20Spot Stars 204 Spot Stars calculator .................................... 205 Augmented Reality (AR) .................................. 207 10 Timer ............................................. 208 Share ............................................. 209 21 Time lapse 210 Time lapse calculator .................................... 211 Interval table ........................................ 213 Timer ............................................. 214 Share ............................................. 215 22Timer 216 Timer ............................................. 217 23My Stuff (Menu) 218 Awards ............................................ 219 Plans ............................................. 221 Points of Interest ...................................... 223 Backup ............................................ 225 Settings ........................................... 226 24Academy (Menu) 229 User Guide .......................................... 230 Video tutorials ....................................... 230 “How To” articles ...................................... 231 T-Shirts ........................................... 231 The Team .......................................... 232 Rate the app ......................................... 232 Feedback .......................................... 232 Glossary ........................................... 232 25This is just the beginning 233 What’s next? ........................................
Recommended publications
  • Starry Starry Night Part 1
    Starry Starry Night Part 1 DO NOT WRITE ON THIS PORTION OF THE TEST 1. If a lunar eclipse occurs tonight, when is the soonest a solar eclipse can occur? A) Tomorrow B) In two weeks C) In six months D) In one year 2. The visible surface of the Sun is called its A) corona B) photosphere C) chromosphere D) atmosphere 3. Which moon in the Solar System has lakes and rivers on it: A) Triton B) Charon C) Titan D) Europa 4. The sixth planet from the Sun is: A) Mars B) Jupiter C) Saturn D) Uranus 5. The orbits of the planets and dwarf planets around the Sun are in the shape of: A) An eclipse B) A circle C) An ellipse D) None of the above 6. True or False: During the summer and winter solstices, nighttime and daytime are of equal length. 7. The diameter of the observable universe is estimated to be A) 93 billion miles B) 93 billion astronomical units C) 93 billion light years D) 93 trillion miles 8. Asteroids in the same orbit as Jupiter -- in front and behind it -- are called: A) Greeks B) Centaurs C) Trojans D) Kuiper Belt Objects 9. Saturn's rings are made mostly of: A) Methane ice B) Water ice C) Ammonia ice D) Ice cream 10. The highest volcano in the Solar System is on: A) Earth B) Venus C) Mars D) Io 11. The area in the Solar System just beyond the orbit of Neptune populated by icy bodies is called A) The asteroid belt B) The Oort cloud C) The Kuiper Belt D) None of the above 12.
    [Show full text]
  • Conspicuity of High-Visibility Safety Apparel During Civil Twilight
    UMTRI-2006-13 JUNE 2006 CONSPICUITY OF HIGH-VISIBILITY SAFETY APPAREL DURING CIVIL TWILIGHT JAMES R. SAYER MARY LYNN MEFFORD CONSPICUITY OF HIGH-VISIBILITY SAFETY APPAREL DURING CIVIL TWILIGHT James R. Sayer Mary Lynn Mefford The University of Michigan Transportation Research Institute Ann Arbor, MI 48109-2150 U.S.A. Report No. UMTRI-2006-13 June 2006 Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. UMTRI-2006-13 4. Title and Subtitle 5. Report Date Conspicuity of High-Visibility Safety Apparel During Civil June 2006 Twilight 6. Performing Organization Code 302753 7. Author(s) 8. Performing Organization Report No. Sayer, J.R. and Mefford, M.L. UMTRI-2006-13 9. Performing Organization Name and Address 10. Work Unit no. (TRAIS) The University of Michigan Transportation Research Institute 11. Contract or Grant No. 2901 Baxter Road Ann Arbor, Michigan 48109-2150 U.S.A. 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered The University of Michigan Industry Affiliation Program for 14. Sponsoring Agency Code Human Factors in Transportation Safety 15. Supplementary Notes The Affiliation Program currently includes Alps Automotive/Alpine Electronics, Autoliv, Avery Dennison, Bendix, BMW, Bosch, Com-Corp Industries, DaimlerChrysler, DBM Reflex, Decoma Autosystems, Denso, Federal-Mogul, Ford, GE, General Motors, Gentex, Grote Industries, Guide Corporation, Hella, Honda, Ichikoh Industries, Koito Manufacturing, Lang- Mekra North America, Magna Donnelly, Muth, Nissan, North American Lighting, Northrop Grumman, OSRAM Sylvania, Philips Lighting, Renault, Schefenacker International, Sisecam, SL Corporation, Stanley Electric, Toyota Technical Center, USA, Truck-Lite, Valeo, Visteon, 3M Personal Safety Products and 3M Traffic Safety Systems Information about the Affiliation Program is available at: http://www.umich.edu/~industry 16.
    [Show full text]
  • Dark Model Adaptation: Semantic Image Segmentation from Daytime to Nighttime
    Dark Model Adaptation: Semantic Image Segmentation from Daytime to Nighttime Dengxin Dai1 and Luc Van Gool1;2 Abstract— This work addresses the problem of semantic also under these adverse conditions. In this work, we focus image segmentation of nighttime scenes. Although considerable on semantic object recognition for nighttime driving scenes. progress has been made in semantic image segmentation, it Robust object recognition using visible light cameras is mainly related to daytime scenarios. This paper proposes a novel method to progressive adapt the semantic models trained remains a difficult problem. This is because the structural, on daytime scenes, along with large-scale annotations therein, textural and/or color features needed for object recognition to nighttime scenes via the bridge of twilight time — the time sometimes do not exist or highly disbursed by artificial lights, between dawn and sunrise, or between sunset and dusk. The to the point where it is difficult to recognize the objects goal of the method is to alleviate the cost of human annotation even for human. The problem is further compounded by for nighttime images by transferring knowledge from standard daytime conditions. In addition to the method, a new dataset camera noise [32] and motion blur. Due to this reason, of road scenes is compiled; it consists of 35,000 images ranging there are systems using far-infrared (FIR) cameras instead from daytime to twilight time and to nighttime. Also, a subset of the widely used visible light cameras for nighttime scene of the nighttime images are densely annotated for method understanding [31], [11]. Far-infrared (FIR) cameras can be evaluation.
    [Show full text]
  • Daytime and Nighttime Polar Cloud and Snow Identification Using MODIS Data Qing Trepte SAIC, Hampton, VA USA Patrick Minnis Atmo
    Daytime and Nighttime Polar Cloud and Snow Identification Using MODIS Data Qing Trepte SAIC, Hampton, VA USA Patrick Minnis Atmospheric Sciences, NASA Langley Research Center, Hampton, VA USA Robert F. Arduini SAIC, Hampton, VA USA Extended Abstract for SPIE 3rd International Asia-Pacific Environmental Remote Sensing Symposium 2002: Remote Sensing of the Atmosphere, Ocean, Environment, and Space Hangzhou, China October 23-27, 2002 Daytime and nighttime polar cloud and snow identification using MODIS data Qing Z. Trepte*a, Patrick Minnisb, Robert F. Arduinia aScience Applications International Corp.; bAtmospheric Sciences, NASA Langley Research Center ABSTRACT The Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra, with its high horizontal resolution and frequent sampling over Arctic and Antarctic regions, provides unique data sets to study clouds and the surface energy balance over snow and ice surfaces. This paper describes a polar cloud mask using MODIS data. The daytime cloud and snow identification methods were developed using theoretical snow bi-directional reflectance models for the MODIS 1.6 and 3.75-µm channels. The model-based polar cloud mask minimizes the need for empirically adjusting the thresholds for a given set of conditions and reduces the error accrued from using single-value thresholds. During night, the MODIS brightness temperature differences (BTD) for 3.75 - 11, 3.75 - 12, 8.55 - 11, and 6.7 - 11 µm are used to detect clouds while snow and ice maps are used to determine snow and ice surfaces. At twilight, the combination of the 1.6-µm reflectance and the 3.75 - 11-µm BTD are used to detect clouds.
    [Show full text]
  • Consecutive Midnight Shifts
    Fatigue and Shiftwork: Consecutive Midnight Shifts Why is it so hard to work midnight shifts (“Mids”)? In a 24/7 operation, mids are unavoidable. It is what it is. The challenge is that you have to be alert when your circadian clock (internal body clock) is programmed to sleep. To prepare for a mid, you need to sleep in the daytime when your body clock is on alarm (resisting sleep). Working mids disrupts your sleep pattern which may lead to an increase in sleep debt (accumulation of getting less sleep than you need). Performance and alertness levels decrease with each passing day of shortened sleep. But what about consecutive mids? Are consecutive mids more fatiguing than working a single mid? Yes, because the more mids in a row, the larger the sleep debt, and the tougher the recovery. With one mid, sleep debt is acute and recovery (making up sleep by sleeping more on days off) is possible. With consecutive mids, sleep debt becomes chronic and recovery may require multiple full nights of recuperative sleep. Does working consecutive mid shifts affect performance and alertness? Yes. If you work a schedule associated with reduced opportunities for night time recovery sleep, that loss increases the likelihood of decrements in both work performance and alertness. These decrements are exponential during early morning hours when your body clock is at its lowest (around 0300-0500) and you naturally have the urge to sleep. It is scientifically proven that: • Incident/accident risk increases significantly on the 3rd and 4th consecutive mid shift
    [Show full text]
  • Morphology and Dynamics of the Venus Atmosphere at the Cloud Top Level As Observed by the Venus Monitoring Camera
    Morphology and dynamics of the Venus atmosphere at the cloud top level as observed by the Venus Monitoring Camera Von der Fakultät für Elektrotechnik, Informationstechnik, Physik der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr.rer.nat.) genehmigte Dissertation von Richard Moissl aus Grünstadt Bibliografische Information Der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar. 1. Referentin oder Referent: Prof. Dr. Jürgen Blum 2. Referentin oder Referent: Dr. Horst-Uwe Keller eingereicht am: 24. April 2008 mündliche Prüfung (Disputation) am: 9. Juli 2008 ISBN 978-3-936586-86-2 Copernicus Publications, Katlenburg-Lindau Druck: Schaltungsdienst Lange, Berlin Printed in Germany Contents Summary 7 1 Introduction 9 1.1 Historical observations of Venus . .9 1.2 The atmosphere and climate of Venus . .9 1.2.1 Basic composition and structure of the Venus atmosphere . .9 1.2.2 The clouds of Venus . 11 1.2.3 Atmospheric dynamics at the cloud level . 12 1.3 Venus Express . 16 1.4 Goals and structure of the thesis . 19 2 The Venus Monitoring Camera experiment 21 2.1 Scientific objectives of the VMC in the context of this thesis . 21 2.1.1 UV Channel . 21 2.1.1.1 Morphology of the unknown UV absorber . 21 2.1.1.2 Atmospheric dynamics of the cloud tops . 21 2.1.2 The two IR channels . 22 2.1.2.1 Water vapor abundance and cloud opacity . 22 2.1.2.2 Surface and lower atmosphere .
    [Show full text]
  • Federal Communications Commission § 73.1730
    Federal Communications Commission § 73.1730 writing, is signed by the licensees of ing daytime and until local sunset if the stations affected thereby and filed located west of the Class A station on in triplicate by each licensee with the the channel, or until local sunset at FCC in Washington, DC prior to the the Class A station if located east of time of the time of the proposed that station. Operation is also per- change. If time is of the essence, the mitted during nighttime hours not actual departure in operating schedule used by the Class A station or other may precede the actual filing of writ- stations on the channel. ten agreement, provided appropriate (b) No authorization will be granted notice is sent to the FCC. for: (d) If the license of an AM station au- (1) A new limited time station; thorized to share time does not specify (2) A limited time station operating the hours of operation, the station may on a changed frequency; be operated for the transmission of reg- (3) A limited time station with a new ular programs during the experimental transmitter site materially closer to period provided an agreement thereto the 0.1 mV/m contour of a co-channel is reached with the other stations with U.S. Class A station; or which the broadcast day is shared: And (4) Modification of the operating fa- further provided, Such operation is not cilities of a limited time station result- in conflict with § 73.72 (Operating dur- ing in increased radiation toward any ing the experimental period).
    [Show full text]
  • Flex Parking the Less You Park, the Less You Pay
    Flex Parking The less you park, the less you pay. PARKING PAYMENT EXAMPLES How It Works • You pay the rate in effect at the time you arrive. If your parking session bridges two different rate periods, you begin under the rate of the period that you arrived and pay that rate for either the first four hours (if you arrive within four hours BEFORE the rate changes) OR the first hour (if you arrive more than four hours BEFORE the rate changes). • Hours are counted from the minute that you arrive (for example 9:12am to 10:12am). • Parking is charged by the hour, there is no prorated amount for periods of less than an hour. You cannot pay for a portion of an hour. • Those who start parking M-F at 4:30pm or after (or anytime on Sat/Sun) will pay no more than $3.75. • Those who start parking M-F at 4:29pm or before will pay no more than $8. Examples 1. You arrive at 4:29pm and remain parked until midnight (or after). In the example below neither the daytime limit ($8) nor the nighttime limit ($3.75) are reached. Number Cumulative Time Period Rate in Effect of Hours Charge 4:29 to 8:29pm 4 $4 under daytime rate trip charge $4 8:29 to 11:29pm 3 $0.75 per hour for 3 hours under $6.25 nighttime rate (total $2.25) 11:29pm to 31 $0.75 for the portion of an hour parked $7 midnight minutes TOTAL CHARGE 7.5 $7 ($4 under daytime rate and $3 under $7 evening rate) 2.
    [Show full text]
  • The Effectiveness of Daytime Running Lights for Passenger Vehicles
    DOT HS 811 029 September 2008 The Effectiveness of Daytime Running Lights For Passenger Vehicles This report is free of charge from the NHTSA Web site at www.nhtsa.dot.gov This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its content or use thereof. If trade or manufacturers’ names or products are mentioned, it is because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers. Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. DOT HS 811 029 4. Title and Subtitle 5. Report Date The Effectiveness of Daytime Running Lights for Passenger Vehicles September 2008 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Jing-Shiarn Wang 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Office of Regulatory Analysis and Evaluation 11. Contract or Grant No. National Center for Statistics and Analysis National Highway Traffic Safety Administration Washington, DC 20590 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Department of Transportation National Highway Traffic Safety Administration NHTSA Technical Report 1200 New Jersey Avenue SE. 14. Sponsoring Agency Code Washington, DC 20590 15.
    [Show full text]
  • Digital Daylight Observations of the Planets with Small Telescopes
    EPSC Abstracts Vol. 8, EPSC2013-795, 2013 European Planetary Science Congress 2013 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2013 Digital daylight observations of the planets with small telescopes Emmanouel (Manos) I. Kardasis (1) (1) Hellenic Amateur Astronomy Association , Athens-Greece [email protected] / Tel.00306945335808 ) Abstract the planetary imaging methodology with the sun above the horizon and some observational results. Planetary atmospheres are extremely dynamical, showing a variety of phenomena at different spatial 2. Methodology and temporal scales, therefore continuous monitoring is required. Amateur astronomers have The basic steps of digital planetary observations are provided a great amount of observations in the presented at [6]. Though, there are some special astronomical community. Some of which are difficulties in DDO, which will be presented along unique made under difficult observational with some solutions: conditions. When the planets are close to the sun, observations can only be made either in twilight or 1. Telescope base alignment. in broad daylight. The use of digital technology in recent years has made feasible daytime planetary 2. Filters observing programs. In this work we present the methodology and some results of digital daylight 3. Position of the planet in the sky observations (DDO) of planets obtained with a small telescope (11inches, 0.28 m). This work may 4. Finding the planet motivate more observers to digitally observe the planets during the day especially when this can be 5. Planetary viewing on the pc screen / important and unique. Focusing 1. Introduction 6. Camera settings Amateur astronomers worldwide continuously 7. Reflections & Thermal heating capturing many interesting hi-resolution images of the ever changing planetary atmospheres.
    [Show full text]
  • On the Controls of Daytime Precipitation in the Amazonian Dry Season
    BNL-113652-2017-JA On the Controls of Daytime Precipitation in the Amazonian Dry Season Virendra P. Ghate and Pavlos Kollias Accepted for publication in Journal of Hydrometeorology December 2016 Environmental & Climate Science Dept. Brookhaven National Laboratory U.S. Department of Energy USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23) Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
    [Show full text]
  • IJEST Template
    Research & Reviews: Journal of Space Science & Technology ISSN: 2321-2837 (Online), ISSN: 2321-6506 V(Print) Volume 6, Issue 2 www.stmjournals.com Diurnal Variation of VLF Radio Wave Signal Strength at 19.8 and 24 kHz Received at Khatav India (16o46ʹN, 75o53ʹE) A.K. Sharma1, C.T. More2,* 1Department of Physics, Shivaji University, Kolhapur, Maharashtra, India 2Department of Physics, Miraj Mahavidyalaya, Miraj, Maharashtra, India Abstract The period from August 2009 to July 2010 was considered as a solar minimum period. In this period, solar activity like solar X-ray flares, solar wind, coronal mass ejections were at minimum level. In this research, it is focused on detailed study of diurnal behavior of VLF field strength of the waves transmitted by VLF station NWC Australia (19.8 kHz) and VLF station NAA, America (24 kHz). This research was carried out by using VLF Field strength Monitoring System located at Khatav India (16o46ʹN, 75o53ʹE) during the period August 2009 to July 2010. This study explores how the ionosphere and VLF radio waves react to the solar radiation. In case of NWC (19.8 kHz), the signal strength recording shows diurnal variation which depends on illumination of the propagation path by the sunlight. This also shows that the signal strength varies according to the solar zenith angle during daytime. In case of VLF signal transmitted by NAA at 24 kHz, the number of sunrises and sunsets are observed in VLF signal strength due to the variations of illumination of the D-region during daytime. In both the cases, the signal strength is more stable during daytime and fluctuating during nighttime due to the presence and absence of D-region during daytime and nighttime respectively.
    [Show full text]