PM Tues PM 03.55 Damato

Total Page:16

File Type:pdf, Size:1020Kb

PM Tues PM 03.55 Damato DISTRIBUTED WASTEWATER MANAGEMENT FOR SMALL NORTH CAROLINA COMMUNITIES Victor D’Amato, PE, Tetra Tech, Inc., PO Box 14409, Research Triangle Park, NC 27709. (919) 485-2070. [email protected] ABSTRACT Distributed wastewater management relies on the optimum combination of decentralized and centralized system components for addressing the wastewater management of a service area. Many rural and exurban North Carolina communities rely on individual subsurface soil absorption systems (septic systems) for the bulk of their wastewater treatment needs. These septic systems have sometimes been implicated as reasons for water quality degradation and a historical lack of proactive management has sometimes resulted in system malfunctions, creating financial hardships – as well as potential health hazards – for homeowners. A distributed approach to wastewater management looks at the full complement of options for serving a community. In many small communities, lot density is not sufficient to make centralized sewering financially feasible. This presentation will report on the results of several recent studies looking at the use of decentralized alternatives where more traditional centralized service options were considered. These decentralized alternatives include cluster systems with advanced treatment, enhanced management of individual system and traditional water/sewer utility managed systems. The results of a recent Water Environment Research Foundation project that evaluated 20 case studies will be presented along with a more local example where a small disadvantaged community in Northeastern North Carolina is pursuing affordable decentralized systems for meeting the needs of their residents. Keywords: wastewater, decentralized, distributed, small community, water reuse. INTRODUCTION The manner in which the collection, treatment, and product management components of a wastewater system are arranged within a given service area is sometimes called the system architecture. System architecture has a profound but largely overlooked impact on system performance across a range metrics of importance to small communities, including capital and recurring monetary costs. Traditional system architectures, particularly in urban and suburban areas, rely on expansive wastewater collection and conveyance systems feeding a centralized treatment facility. Alternative architectures are developing for more efficient and effective wastewater management. These architectures combine traditional centralized and new uses of decentralized system infrastructure in an approach termed distributed management. Distributed water infrastructure systems are emerging in rural, suburban, and urban communities across the United States and abroad. Communities are recognizing that these strategies—which integrate water management at the individual site scale, to residential neighborhoods and small communities, to an entire watershed or region—are more efficient and effective across a triple bottom line of environmental, social, and economic considerations. The research project, When to Consider Distributed Systems in an Urban and Suburban Context, analyzed 20 case studies where distributed approaches are being used to provide integrated water services across a range of community-specific situations and management frameworks in the United States and Australia. This project was sponsored by the Water Environment Research Foundation (WERF) and the National Decentralized Wastewater Resource Capacity Development Project (NDWRCDP) to help planners, utility managers, engineers, developers, regulators and other decision-makers determine whether they should consider using a distributed approach in areas where users might normally be served by centralized systems. DISTRIBUTED WASTEWATER MANAGEMENT Distributed Wastewater Management for Small North Carolina Communities Managed distributed infrastructure incorporates both decentralized and centralized elements to most efficiently provide water-related services to users. The concept of distributed infrastructure as a key element of sustainable water management has been embraced in the stormwater sector, where control – and often beneficial reuse – are implemented close to the source using low impact design principles and various best management practices. For wastewater systems, distributed management uses smaller-scale systems within more centralized management frameworks. This involves integrating a range of system scales from onsite or onlot to cluster to regional to centralized (Figure 1). Figure 1. Distributed Wastewater Management Continuum. An obvious advantage of decentralization is the proximity of systems to wastewater sources and reuse areas (Figure 2) which minimizes or precludes energy inputs for conveyance. Distributed management has particular advantages for small communities in North Carolina, where more densely developed “main street” and crossroads areas lend themselves well to large cluster and semi-centralized systems while less dense areas can rely on small clusters and managed individual onsite systems. Benefits of distributed wastewater management include affordability and the ability to phase in system capacity as funding becomes available, the potential for water reuse and resource recovery, and energy efficiency. Figure 2. Distributed Management Versus Traditional Sewer Extension. Infrastructure Funding Traditional infrastructure projects are often characterized by large sunk costs. The financing and debt service associated with these projects can be crippling to communities, particularly if projected revenues are not realized, because, for example, an economic downturn slows or stops growth. The use of a distributed infrastructure approach, by contrast, allows for a variety of adaptive funding approaches, such as systems funded by developers that then turn them over to a utility for operation. Underserved communities can phase the installation of systems, prioritizing the areas of greatest need as grant funding or slowly developing revenue streams become available. Rapidly growing communities can increase treatment capacity by adding treatment modules to existing systems or new cluster systems as demand increases. State and federal clean water funding specifically Distributed Wastewater Management for Small North Carolina Communities recognizes and includes decentralized wastewater systems in the 20% Green Project Reserve which is set aside for environmentally superior projects. Resource Recovery Source control – for example, the separate management of graywater, blackwater, and even yellow-water or urine – is more viable at decentralized scales, helps conserve energy associated with treatment, and facilitates resource recovery and reuse. Distributed approaches help leverage the connections and synergies between land use and water management and to close the loop on waste-related resource cycles. Rural communities can use one of their greatest resources – land – for wastewater treatment, rather than costly mechanical treatment plants. Doing so recharges aquifers rather than discharging to surface waters and helps restore the natural water cycle and heal degraded hydrologic function. Recycling nutrients in wastes can support agriculture and food production while recovering energy from waste helps offset imported sources. Efficiency Distributed systems can provide great efficiency advantages over traditional approaches. First and foremost - treatment closer to the source and/or reuse area requires less energy for conveyance. Properly implemented, decentralized reuse technologies can be very efficient as well. Table 1 provides power requirements for common unit processes used in decentralized wastewater treatment and reuse systems. Table 2 presents operational power requirements for various types of decentralized reuse systems based on the data in Table 1. The model decentralized systems range from standard aquifer recharge systems to advanced attached growth-disinfection systems capable of meeting stringent effluent quality requirements for unrestricted reuses. These power requirements compare favorably with power requirements for traditional centralized systems. For comparison, energy requirements for wastewater collection, treatment and discharge/recycling in California have been estimated to range from 1,500 to 5,800 kWh/MG treated (CEC, 2005). The model decentralized systems benefit from relatively short conveyance distances, requiring little or no energy, along with low-energy treatment systems; for example, highly effective recirculating filters and soil dispersal systems generally require no forced aeration to effectively treat regular-strength wastewater to reclaimed water quality. Embedded and secondary energy impacts of decentralized reclamation and reuse approaches, while highly context specific, are believed to have significant advantages over centralized approaches, although no robust evaluations have yet been conducted to our knowledge. Table 1. Electrical Energy Demand for Unit Processes in 5,000 Gallon per Day Decentralized Reuse Systems (does not include energy requirements for maintenance activities or incidentals, e.g., lighting). Unit Process Power Units Notes Gravity Sewer 0.0 kWh/d Septic Tank 0.0 kWh/d Does not include periodic solids removal Pump Stations 1.0 kWh/d 1 hp pump on 1 hr/d, 100 gpm @ 30' TDH (60% efficiency) Filter Pumps 1.6 kWh/d 1/2-hp recirc. pump on 4 hr/d, 60 gpm @ 20' TDH (60% efficiency) Recirculating Filter 0.0 kWh/d Passive aeration; all energy associated
Recommended publications
  • Inclusive Business Models for Wastewater Treatment
    INCLUSIVE INNOVATIONS Inclusive Business Models for Wastewater Treatment Enterprises have developed integrated, affordable wastewater treatment solutions for industries and households to encourage reuse or safe disposal HIGHLIGHTS • Wastewater treatment enterprises treat water before disposal or recycle the water so that it can be reused. • Enterprises provide household wastewater treatment systems that are modular, have low operating costs in terms of electricity and maintenance, have silent operation and less odor and offer quick returns on investment. • Enterprises focusing on industrial wastewater treatment solutions offer efficiency and cost effectiveness. They are quickly commissioned, fully automatic, have remote monitoring, require minimal hazardous chemicals, and treat water for reuse. Summary Wastewater sources include domestic wastewater—pertaining to liquid outflow from toilets, bathrooms, basins, laundry, kitchen sinks and floor washing, and industrial wastewater—effluent water that is discharged during manufacturing processes in factories or by-products from chemical reactions. There are significant operational and financial challenges associated with wastewater treatment in marginalized residential communities, where domestic wastewater does not get treated at source, but instead is discharged to local municipal facilities or directly into water bodies. Similarly, industrial wastewater is heavily contaminated and leads to pollution and diseases, if disposed without treatment. It may also contain metals that have high market value and could potentially be recovered. Social enterprises have introduced unique technologies and integrated solutions to treat such wastewater either for safe disposal or for reuse. These solutions aim to be efficient, affordable and convenient. There are two major types of wastewater treatment plants—household (residential) systems and industrial systems. This series on Inclusive Innovations explores business models that improve the lives of those living in extreme poverty.
    [Show full text]
  • Biosolids Management at South East Water
    BIOSOLIDS MANAGEMENT AT SOUTH EAST WATER Aravind Surapaneni 22 February 2012 OVERVIEW • South East Water • Biosolids Management • Biosolids HACCP • Challenges 2 SOUTH EAST WATER • Commenced operation in 1995 • Provides water, sewerage and recycled water services in the south-east region of Melbourne • One of 3 water retailers in the Melbourne metropolitan area • 1.5 million people served in a 3640 square kilometre area • 8 STPs 3 SOUTH EAST WATER PRODUCTS • Drinking Water • Recycled Water • Biosolids • Effluent for environmental discharge • Sewage (as an ingredient of recycled water) • IWMS products (eg. Sewer mining, Storm water) SOUTH EAST WATER PRODUCT QUALITY OBJECTIVES 1.That our products be safe, sustainable and satisfy customer need. 2. That our products are backed by quality systems that emphasise optimal performance and accountability. SOUTH EAST WATER QUALITY SYSTEM BUSINESS WIDE ISO9000 ISO14000 AS4801 HACCP & ISO22000 PRODUCTS Drinking Water – IWMS (alternative sources) Raw Sewage – Discharge Effluent – Recycled Water – Biosolids 6 South East Water Sewage Treatment Plants Eastern Treatment Port Phillip Plant Bay Pakenham Longwarry Blind Bight Koo Wee Rup Lang Lang Mt Martha Western Port Somers Melbourne Water Boneo Sewage Treatment Plant South East Water Sewage Treatment Plant 2010-11 ESC REPORTING DATA (tDS) South East Water STP Sludge Produced Sludge Stored Biosolids Used Boneo 529 5150 789 Somers 225 2367 835 Mt Martha 665 2198 349 Pakenham 433 3608 194 Blind Bight 29 225 0 Koo Wee Rup 27 261 0 Longwarry 33 467 0 Lang Lang
    [Show full text]
  • Community Decision Making for Decentralized Wastewater Systems Rocky Mountain Institute Snowmass, Colorado
    National Decentralized Water Resources Capacity Development Project Case Studies of Economic Analysis and Community Decision Making for Decentralized Wastewater Systems Rocky Mountain Institute Snowmass, Colorado December 2004 Case Studies of Economic Analysis and Community Decision Making for Decentralized Wastewater Systems Submitted by Rocky Mountain Institute Snowmass, Colorado NDWRCDP Project Number: WU-HT-02-03 National Decentralized Water Resources Capacity Development Project (NDWRCDP) Research Project Final Report, December 2004 NDWRCDP, Washington University, Campus Box 1150 One Brookings Drive, Cupples 2, Rm. 11, St. Louis, MO 63130-4899 DISCLAIMER This work was supported by the National Decentralized Water Resources Capacity Development Project (NDWRCDP) with funding provided by the U.S. Environmental Protection Agency through a Cooperative Agreement (EPA No. CR827881-01-0) with Washington University in St. Louis. This report has not been reviewed by the U.S. Environmental Protection Agency. This report has been reviewed by a panel of experts selected by the NDWRCDP. The contents of this report do not necessarily reflect the views and policies of the NDWRCDP, Washington University, or the U.S. Environmental Protection Agency, nor does the mention of trade names or commercial products constitute endorsement or recommendation for use. CITATIONS This report was prepared by Richard Pinkham Booz Allen Hamilton Jeremy Magliaro Michael Kinsley Rocky Mountain Institute 1739 Snowmass Creek Road Snowmass, CO 80002 The final report was edited and produced by ProWrite Inc., Reynoldsburg, OH. This report is available online at www.ndwrcdp.org. This report is also available through the National Small Flows Clearinghouse P.O. Box 6064 Morgantown, WV 26506-6065 Tel: (800) 624-8301 WWCDCS25 This report should be cited in the following manner: Pinkham, R.
    [Show full text]
  • International Comparative Research on Iot-Based Supply Chain Risk Management
    International Comparative Research on IoT-based Supply Chain Risk Management A/Prof. Yu Cui Graduate School of Business Administration and Economics, Otemon Gakuin University, Osaka, Japan Email: [email protected] Prof. Hiroki Idota Faculty of Economics, Kindai University Prof. Masaharu Ota Graduate School of Business, Osaka City University International Comparative Research on IoT-based Supply Chain Risk Management ABSTRACT In this paper, we firstly discuss current status and problems of food supply chain, which has been attached more importance in supply chain studies in recent years. And then, a review and analysis of the research on traceability systems for IoT-based food supply chains will be conducted. In the latter part, we introduce and explain the establishment of food supply chains in Thailand and China and their respective traceability systems with case studies. Moreover, we conduct a systematic analysis regarding the changes and effects the blockchain made on supply chains. Furthermore, through a case analysis of Japan, explicit speculation and forecast would be made on how blockchain affects the development of traceability systems of IoT- based food supply chain. Keywords: Food Supply Chain, Risk Management, IoT-based Traceability System, Blockchain INTRODUCTION In 2011, Thailand suffered a severe flooding which occurs once in 50 years. Its traditional industrial base - Ayutthaya Industrial Park was flooded and nearly 200 factories were closed down. In the same year, Japan’s 311 Kanto Earthquake also caused serious losses to the manufacturing industry and numerous supply chain companies in Japan. And recently, scandals involving data falsification in automotive, steel and carbon fiber have caused great impact on a large number of related supply chain companies and they are faced with the dilemma of supply chain disruption.
    [Show full text]
  • Onsite Wastewater Treatment System (OWTS) Management in Humboldt County
    Table of Contents INTRODUCTION ................................................................................................................................... 1 ELIGIBILITY ................................................................................................................................................... 1 PROHIBITIONS .............................................................................................................................................. 2 VARIANCE PROHIBITION AREAS ....................................................................................................................... 2 PART 1 ‐SITE EVALUATION ................................................................................................................... 4 1.1 SOIL PROFILES ...................................................................................................................................... 4 1.2 SOIL TESTING ....................................................................................................................................... 5 1.3 DEPTH TO GROUNDWATER DETERMINATIONS ........................................................................................... 6 1.4 REPORTING OF DATA............................................................................................................................. 8 1.5 DEH RESPONSIBILITIES FOR MONITORING WELL NOTIFICATIONS .................................................................... 8 PART 2 ‐DESIGN ..................................................................................................................................
    [Show full text]
  • Wastewater-Based Resource Recovery Technologies Across Scale a Review
    Resources, Conservation & Recycling 145 (2019) 94–112 Contents lists available at ScienceDirect Resources, Conservation & Recycling journal homepage: www.elsevier.com/locate/resconrec Wastewater-based resource recovery technologies across scale: A review T ⁎ Nancy Diaz-Elsayed, Nader Rezaei, Tianjiao Guo1, Shima Mohebbi2, Qiong Zhang Department of Civil and Environmental Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, 33620, USA ARTICLE INFO ABSTRACT Keywords: Over the past few decades, wastewater has been evolving from a waste to a valuable resource. Wastewater can Water reuse not only dampen the effects of water shortages by means of water reclamation, but it also provides themedium Energy recovery for energy and nutrient recovery to further offset the extraction of precious resources. Since identifying viable Nutrient recovery resource recovery technologies can be challenging, this article offers a review of technologies for water, energy, Wastewater treatment and nutrient recovery from domestic and municipal wastewater through the lens of the scale of implementation. System scale The system scales were classified as follows: small scale (design flows3 of17m /day or less), medium scale (8 to 20,000 m3/day), and large scale (3800 m3/day or more). The widespread implementation of non-potable reuse (NPR) projects across all scales highlighted the ease of implementation associated with lower water quality requirements and treatment schemes that resembled conventional wastewater treatment. Although energy re- covery was mostly achieved in large-scale plants from biosolids management or hydraulic head loss, the highest potential for concentrated nutrient recovery occurred in small-scale systems using urine source separating technologies. Small-scale systems offered benefits such as the ability for onsite resource recovery and reusethat lowered distribution and transportation costs and energy consumption, while larger scales benefited from lower per unit costs and energy consumption for treatment.
    [Show full text]
  • The Role of Water Reclamation in Water Resources Management in the 21St Century
    THE ROLE OF WATER RECLAMATION IN WATER RESOURCES MANAGEMENT IN THE 21ST CENTURY K. Esposito1*, R. Tsuchihashi2, J. Anderson1, J. Selstrom3 1*: Metcalf & Eddy, 60 East 42nd Street, 43rd Floor, New York, NY 10165 2: Metcalf & Eddy, 719 2nd Street, Suite 11, Davis, CA 95616 3: Metcalf & Eddy, 2751 Prosperity Ave Suite 200, Fairfax, VA 22031 ABSTRACT In recognition of the existing and impending stress to traditional water supply, water planners must look beyond structural developments and interbasin water transfers to secure supply into the future. In this process, it is becoming evident that various issues related to water must be integrated into a whole system approach, including water supply, water use, wastewater treatment, stormwater management, and management of surrounding water environment. In bringing disparate water assets together, alternatives to traditional water supply should arise. Integrated water resources management can provide a realistic framework for examining the feasibility of water reuse. This paper evaluates how water reuse can become a strategic alternative in water resources management. The key challenges that limit water reclamation as one of the key elements in integrated water resources management scheme are discussed, including limitations with typical centralized wastewater treatment systems and public health protection, particularly the implications of trace contaminants. The key considerations to address these challenges are presented including (1) selection of appropriate treatment processes and reuse applications, (2) scientific and engineering solutions to emerging concerns, (3) consideration for cost effective and sustainable system, and (4) public acceptance. Recent water reclamation projects are presented to illustrate the response of the engineering community to the challenges of making water reclamation and reuse a real and sustainable solution to water supply system management planning.
    [Show full text]
  • CHAPTER 15 Small Alternative Wastewater Systems
    CHAPTER 15 Small Alternative Wastewater Systems 15.1 Preface 15.2 General Considerations 15.2.1 – Ownership 15.2.2 – Planning 15.3 Design Basis 15.3.1 – Hydraulic Loading 15.3.2 – Engineering Report 15.3.3 – Pollutant Loading 15.4 Preliminary Treatment 15.4.1 – Septic Tank Effluent Pumped (STEP) and Septic Tank Effluent Gravity (STEG) 15.4.1.1 –STEP Tanks 15.4.1.2 – STEG Tanks 15.4.2 – Grinder Pumps 15.4.3 – Grease and Oil 15.5 Secondary Treatment Design 15.5.1 Fixed Media Biological Reactors 15.5.1.1 – Granular Media Reactor 15.5.1.2 – Other Fixed Media Reactors 15.5.1.3 – Distribution and Underdrain System 15.5.1.3.1 – Spacing 15.5.1.3.2 – Sizing of Lines 15.5.1.4 – Recirculation Tank and Pump System 15.5.1.5 – Flow Splitter 15.5.1.6 – Dosing Chamber 15.6 Disinfection and Fencing 15.7 Oxidation Ponds and Artificial Wetlands 15.7.1 Oxidation Ponds) 15.7.2 Basis of Wetland Design 15.8 Lagoons 15.9 Package Activated Sludge Plants APPENDIX Appendix 15 Recirculation Tank / Pump System Example Calculation February 2016 15-1 Design Criteria Ch. 15 DECENTRALIZED DOMESTIC WASTEWATER TREATMENT SYSTEMS 15.1 Preface This chapter presents the method to determine the proper design for decentralized wastewater treatment systems (DWWTS). DWWTS are systems that are not the traditional, centralized/regionalized wastewater treatment systems. DWWTS treat domestic, commercial and industrial wastewater using water tight collection, biological treatment, filtration and disinfection. These systems typically will utilize land application with either surface or subsurface effluent dispersal.
    [Show full text]
  • Toxicity Reduction Evaluation Guidance for Municipal Wastewater Treatment Plants EPA/833B-99/002 August 1999
    United States Office of Wastewater EPA/833B-99/002 Environmental Protection Management August 1999 Agency Washington DC 20460 Toxicity Reduction Evaluation Guidance for Municipal Wastewater Treatment Plants EPA/833B-99/002 August 1999 Toxicity Reduction Evaluation Guidance for Municipal Wastewater Treatment Plants Office of Wastewater Management U.S. Environmental Protection Agency Washington, D.C. 20460 Notice and Disclaimer The U.S. Environmental Protection Agency, through its Office of Water, has funded, managed, and collaborated in the development of this guidance, which was prepared under order 7W-1235-NASX to Aquatic Sciences Consulting; order 5W-2260-NASA to EA Engineering, Science and Technology, Inc.; and contracts 68-03-3431, 68-C8-002, and 68-C2-0102 to Parsons Engineering Science, Inc. It has been subjected to the Agency's peer and administrative review and has been approved for publication. The statements in this document are intended solely as guidance. This document is not intended, nor can it be relied on, to create any rights enforceable by any party in litigation with the United States. EPA and State officials may decide to follow the guidance provided in this document, or to act at variance with the guidance, based on an analysis of site-specific circumstances. This guidance may be revised without public notice to reflect changes in EPA policy. ii Foreword This document is intended to provide guidance to permittees, permit writers, and consultants on the general approach and procedures for conducting toxicity reduction evaluations (TREs) at municipal wastewater treatment plants. TREs are important tools for Publicly Owned Treatment Works (POTWs) to use to identify and reduce or eliminate toxicity in a wastewater discharge.
    [Show full text]
  • Modeling the Effects of Sewer Mining on Odour and Corrosion in Sewer Systems
    20th International Congress on Modelling and Simulation, Adelaide, Australia, 1–6 December 2013 www.mssanz.org.au/modsim2013 Modeling the Effects of Sewer Mining on Odour and Corrosion in Sewer Systems N. Marleni a, S. Gray b, A. Sharma c, S. Burn c and N. Muttil a a College of Engineering and Science, Victoria University, Melbourne b Institute of Sustainability and Innovation (ISI), Victoria University, Melbourne c Commonwealth of Scientific, Industrial and Research Organization (CSIRO) Email: [email protected] Abstract: Increasing demand has led to shortage of potable water in many countries. The use of alternative water sources is one of the solutions undertaken to overcome this issue. Alternative water sources can be derived from either collected rainwater, treated greywater or treated wastewater. Sewer Mining is known as an efficient technology which can reduce the cost of wastewater infrastructure required to transport wastewater because the Sewer Mining facility is usually installed close to the site that is using the treated wastewater. The treated water from Sewer Mining has been used as one of the sources of alternative water, particularly to supply water for public open spaces, garden irrigation and toilet flushing. It is conducted by extracting the sewage from sewer pipes and most of the times, disposing the sludge back to sewer pipes. The sewage extraction and sludge disposal back to sewer network is suspected to trigger sewer problems such as blockages. Several applications of Sewer Mining facility have proved to contribute to the increase of blockages in sewer pipes. Furthermore, the changes in the sewage composition after the sewage extraction and sludge disposal location lead to alteration of the sewage biochemical transformation processes, which finally were suspected to change the state of hydrogen sulphide build up.
    [Show full text]
  • Design Issues in Distributed Management Information Systems
    DESIGN ISSUES IN DISTRIBUTED MANAGEMENT INFORMATION SYSTEMS by JACOB AKOKA B.S., Faculte des Sciences-Paris (1970) S.M., University of Paris VI (1971) Doctorat 3eme Cycle, University of Paris VI (1975) SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE .OF DOCTOR OF PHILOSOPHY at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 4, 1978 Signature of Author .................................................. Sloan School of Management, May 4, 1978 Certified by ......................................................... Thesis Supervisor Accepted by ......................................................... Chairman, Department Committee DESIGN ISSUES IN DISTRIBUTED MANAGEMENT INFORMATION SYSTEMS by Jacob Akoka Submitted to the Department of Management on May 4, 1978 in partial fulfillment of the requirements for the Degree of Doctor of Philosophy ABSTRACT Due to the advances in computer network technology and the steadily decreasing cost of hardware, distributed information systems have become a potential alternative to centralized information systems.' This thesis analyzes issues related to the design of distributed information systems. Most of the research done in the past can be characterized by a piece- meal approach since it tends to consider the computer network design issue and the distributed data base design issue separately. The critical survey presented in Chapter 2 points out the need to integrate both issues in an overall design approach. In an attempt to incorporate most of the factors that compose distributed information systems, we present a global model in which network topology, communication channels capacity, size of computer hardware, pricing schemes, and routing dis- ciplines are interrelated in an optimal design. In addition, we show how to derive from the global model a design model for distributed database systems.
    [Show full text]
  • Self-Management for Large-Scale Distributed Systems
    Self-Management for Large-Scale Distributed Systems AHMAD AL-SHISHTAWY PhD Thesis Stockholm, Sweden 2012 TRITA-ICT/ECS AVH 12:04 KTH School of Information and ISSN 1653-6363 Communication Technology ISRN KTH/ICT/ECS/AVH-12/04-SE SE-164 40 Kista ISBN 978-91-7501-437-1 SWEDEN Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till offentlig granskning för avläggande av teknologie doktorsexamen i elektronik och datorsystem onsdagen den 26 september 2012 klockan 14.00 i sal E i Forum IT-Universitetet, Kungl Tekniska högskolan, Isajordsgatan 39, Kista. Swedish Institute of Computer Science SICS Dissertation Series 57 ISRN SICS-D–57–SE ISSN 1101-1335. © Ahmad Al-Shishtawy, September 2012 Tryck: Universitetsservice US AB iii Abstract Autonomic computing aims at making computing systems self-managing by using autonomic managers in order to reduce obstacles caused by manage- ment complexity. This thesis presents results of research on self-management for large-scale distributed systems. This research was motivated by the in- creasing complexity of computing systems and their management. In the first part, we present our platform, called Niche, for program- ming self-managing component-based distributed applications. In our work on Niche, we have faced and addressed the following four challenges in achiev- ing self-management in a dynamic environment characterized by volatile re- sources and high churn: resource discovery, robust and efficient sensing and actuation, management bottleneck, and scale. We present results of our re- search on addressing the above challenges. Niche implements the autonomic computing architecture, proposed by IBM, in a fully decentralized way.
    [Show full text]