Information to Users

Total Page:16

File Type:pdf, Size:1020Kb

Information to Users INFORMATION TO USERS This manuscript has been reproduced from the microfihn master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 COMPARATIVE ANALYSIS OF PSEUDOMONAS AERUGINOSA LASA AND LASD DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Sukjoon Park, B. S. ***** The Ohio State University 1996 Dissertation Committee: Approved by Dr. Darrell R. Galloway Dr. Charles J. Daniels Dr. Donald H. Dean Advisor Graduate Program in Molecular, Dr. Gary E. Means Cellular and Developmental Biology ÜMX Number: 9710640 UMI Microform 9710640 Copyright 1997, by UMI Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 ABSTRACT Pseudomonas aeruginosa is widely known as an opportunistic pathogen. The organism produces many virulence factors including both proteolytic and non- proteolytic enzymes. Among the proteolytic virulence factors, pseudolysin (elastase) has long been considered to be of major significance due to its ability to digest elastin tissues. However, LasA has been the focus of research for the past several years particularly due to its ability to enhance the elastolytic activity of pseudolysin. In addition, LasA was characterized as a staphylolytic enzyme; LasA causes lysis of Gram-positive organisms such as Staphylococcus aureus. In this study, another protease, LasD, was purified and characterized from various strains of P. aeruginosa. LasD is a 23 kDa protease which shares many of the enzymatic properties of LasA, including the ability to lyse heat-killed staphylococci and hydrolyzing synthetic peptides such as pentaglycine. However, LasD is distinct from the 22 kDa LasA for the following reasons: (i) the N-terminal sequence of LasD shares no homology with LasA or the LasA precursor sequences; (ii) P. aeruginosa LasA negative mutant strains AD 1825 and FRD2I28 do not produce LasA yet produce LasD, and (iii) specific antibodies to each protease do not exhibit any cross-reactivity. Furthermore, the purified LasD shows strong u staphylolytic activity only under alkaline pH conditions, while LasA exhibits staphylolytic activity over a broad pH range. The staphylolytic activity of both LasA and LasD may be related to hydrolysis of the pentaglycine bridge in the Gram- positive cell wall. To verify this possibility, various synthetic peptides containing glycine residues were analyzed and the results show that both LasA and LasD cleave peptides with internal diglycine, and the minimum size of the peptide is a tetramer such as tetraglycine. In addition to the study on the substrate specificity of LasA and LasD, kinetic analysis of both proteases was also performed using acetylated pentaglycine as a substrate. The results indicate that the acetylated pentaglycine is better substrate for LasA than LasD, thereby indicating another difference between LasA and LasD. LasD cuts the acetylated pentaglycine more efficiently at higher pH consistent with the observation made using heat-killed S. aureus cells as a substrate. Finally, the processing events of LasA from an inactive 41 kDa precursor form to an active 22 kDa form was studied primarily to elicit possible roles of other proteases, including LasD, in the processing event. Surprisingly, LasD was found to be involved in the processing of LasA in vitro, indicating LasA and LasD work together for greater efficiency. However, the fact that LasA negative strains still produce active LasD suggests that the possible processing event for activation of LasD is independent of LasA. m Dedicated to my parents IV ACKNOWLEDGMENTS I express my sincere appreciation to Dr. Darrell R. Galloway for his advice and guidance throughout these years. Without his support, it would not have been possible to come this far. I also thank Mrs. Galloway for inviting me to every holiday celebration for the last six years; I appreciate her willingness to make me a part of the Galloway family. Additional thanks is given to the other members of my committee: Drs. Charles Daniels, Donald Dean, and Gary Means for their encouragement. I would also like to thank Dr. John Lowbridge at the Ohio State University Biochemical Instrumentation Center for his advise on HPLC. My sincere thanks to the former and present members of the Galloway Lab: Dr. John Peters, Dr. Christine Sauer, Dr. Leena Hiremath, Dr. Scotty Walker, Dr. Christine Besson, Dr. Xiang-Yang Han, Dr. Pil-Jung Kang, Monte Kendricks, Todd Kelly, Madhura Pradhan, Kimberly Denis-Mize, and Susan Meyer. I especially thank Kimberly Denis-Mize for patiently proofreading my draft over and over again. Most of all, I would like to thank my parents and my wife without whom I could not finish my long journey as a graduate student. Dad, you will never know how grateful I am that you encouraged and supported me for so long. VTTA February 27,1964 ................................. Bom - Seoul, Korea 1990...................................................... B.S. Botany, Ohio University, Athens, Ohio 1990-96..................................................Graduate Teaching and Research Associate, Ohio State University, Columbus, Ohio PUBLICATIONS 1. Sulqoon Park and D. R. Galloway (1995). “Purification and characterization of LasD: a second staphylolytic proteinase produced by Pseudomonas aeruginosa.'' Molecular Microbiology 16: 263-270. 2. Peters, J. E., S. J. Park, A. Darzins, L. C. Freck, J. M. Saulnier, J.M. Wallach and D. R. Galloway (1992). “Further studies on Pseudomonas aeruginosa LasA: analysis of specificity.” Molecular Microbiologv 6: 1155-1162. FIELDS OF STUDY Major Field: Molecular, Cellular and Developmental Biology Minor Field: Biochemistry VI TABLE OF CONTENTS Page Abstract.................................................................................................................. ü Dedication ............................................................................................................. iv Acknowledgments .................................................................................................... v Vita.......................................................................................................................... vi List of Tables ........................................................................................................... xi List of Figures ........................................................................................................xiii List of Abbreviations ........................................................................................... xvi Chapters; 1. Literature Review ........................................................................................ 1 A. Classification of proteases ................................................................. 1 1. Serine proteases ....................................................................... 4 2. Cysteine proteases ....................................................................8 3. Aspartic proteases .................................................................. 11 4. Metallopro teases ....................................................................12 B. Pseudomonas aeruginosa as an opportunistic pathogen ....................19 C. Non-proteolytic Pseudomonas aeruginosa virulence factors ............. 22 1. Exotoxin A ............................................................................ 22 2. Exoenzyme S ....................................................................... 24 3. Phospholipase C .................................................................. 24 D. Pseudomonas aeruginosa proteases .................................................. 25 1. Pseudolysin ............................................................................25 2. LasA...................................................................................... 31 vii 3. Alkaline protease ....................................................................34 4. Lysine-specific protease ......................................................... 35 E. Regulation of Pseudomonas aeruginosa proteases
Recommended publications
  • Proteases, Mucus, and Mucosal Immunity in Chronic Lung Disease
    International Journal of Molecular Sciences Review Proteases, Mucus, and Mucosal Immunity in Chronic Lung Disease Michael C. McKelvey 1 , Ryan Brown 1, Sinéad Ryan 1, Marcus A. Mall 2,3,4 , Sinéad Weldon 1 and Clifford C. Taggart 1,* 1 Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; [email protected] (M.C.M.); [email protected] (R.B.); [email protected] (S.R.); [email protected] (S.W.) 2 Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; [email protected] 3 Berlin Institute of Health (BIH), 10178 Berlin, Germany 4 German Center for Lung Research (DZL), 35392 Gießen, Germany * Correspondence: [email protected]; Tel.: +44-289097-6383 Abstract: Dysregulated protease activity has long been implicated in the pathogenesis of chronic lung diseases and especially in conditions that display mucus obstruction, such as chronic obstructive pulmonary disease, cystic fibrosis, and non-cystic fibrosis bronchiectasis. However, our appreciation of the roles of proteases in various aspects of such diseases continues to grow. Patients with muco- obstructive lung disease experience progressive spirals of inflammation, mucostasis, airway infection and lung function decline. Some therapies exist for the treatment of these symptoms, but they are unable to halt disease progression and patients may benefit from novel adjunct therapies. In this review, we highlight how proteases act as multifunctional enzymes that are vital for normal Citation: McKelvey, M.C.; Brown, R.; airway homeostasis but, when their activity becomes immoderate, also directly contribute to airway Ryan, S.; Mall, M.A.; Weldon, S.; dysfunction, and impair the processes that could resolve disease.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Activation of Human Pro-Urokinase by Unrelated Proteases Secreted By
    Activation of human pro-urokinase by unrelated proteases secreted by Pseudomonas aeruginosa Nathalie Beaufort, Paulina Seweryn, Sophie de Bentzmann, Aihua Tang, Josef Kellermann, Nicolai Grebenchtchikov, Manfred Schmitt, Christian Sommerhoff, Dominique Pidard, Viktor Magdolen To cite this version: Nathalie Beaufort, Paulina Seweryn, Sophie de Bentzmann, Aihua Tang, Josef Kellermann, et al.. Activation of human pro-urokinase by unrelated proteases secreted by Pseudomonas aeruginosa: LasB and protease IV activate human pro-urokinase. Biochemical Journal, Portland Press, 2010, 428 (3), pp.473-482. 10.1042/BJ20091806. hal-00486859 HAL Id: hal-00486859 https://hal.archives-ouvertes.fr/hal-00486859 Submitted on 27 May 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biochemical Journal Immediate Publication. Published on 25 Mar 2010 as manuscript BJ20091806 ACTIVATION OF HUMAN PRO-UROKINASE BY UNRELATED PROTEASES SECRETED BY PSEUDOMONAS AERUGINOSA Nathalie Beaufort*,†,1, Paulina Seweryn*, Sophie de Bentzmann‡, Aihua Tang§, Josef Kellermannll, Nicolai
    [Show full text]
  • Recent Advances in Surface Nanoengineering for Biofilm
    nanomaterials Review Recent Advances in Surface Nanoengineering for Biofilm Prevention and Control. Part II: Active, Combined Active and Passive, and Smart Bacteria-Responsive Antibiofilm Nanocoatings 1, 2, , Paul Cătălin Balaure y and Alexandru Mihai Grumezescu * y 1 “Costin Nenitzescu” Department of Organic Chemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, G. Polizu Street 1–7, 011061 Bucharest, Romania; [email protected] 2 Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, G. Polizu Street 1–7, 011061 Bucharest, Romania * Correspondence: [email protected]; Tel.: +40-21-402-39-97 These authors contributed equally to this work. y Received: 28 June 2020; Accepted: 28 July 2020; Published: 4 August 2020 Abstract: The second part of our review describing new achievements in the field of biofilm prevention and control, begins with a discussion of the active antibiofilm nanocoatings. We present the antibiofilm strategies based on antimicrobial agents that kill pathogens, inhibit their growth, or disrupt the molecular mechanisms of biofilm-associated increase in resistance and tolerance. These agents of various chemical structures act through a plethora of mechanisms targeting vital bacterial metabolic pathways or cellular structures like cell walls and cell membranes or interfering with the processes that underlie different stages of the biofilm life cycle. We illustrate the latter
    [Show full text]
  • Highly Sensitive Quenched Fluorescent Substrate of Legionella
    Supplemental Material can be found at: http://www.jbc.org/content/suppl/2012/04/23/M111.334334.DC1.html THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 287, NO. 24, pp. 20221–20230, June 8, 2012 © 2012 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A. Highly Sensitive Quenched Fluorescent Substrate of Legionella Major Secretory Protein (Msp) Based on Its Structural Analysis*□S Received for publication, December 22, 2011, and in revised form, April 12, 2012 Published, JBC Papers in Press, April 23, 2012, DOI 10.1074/jbc.M111.334334 Hervé Poras‡1, Sophie Duquesnoy‡, Emilie Dange‡, Anthony Pinon§, Michèle Vialette§, Marie-Claude Fournié-Zaluski‡, and Tanja Ouimet‡ From ‡Pharmaleads, Paris BioPark, 11 Rue Watt 75013 Paris and the §Institut Pasteur Lille, Unité de Sécurité Microbiologique, 1 Rue du Professeur Calmette, 59019 Lille Cedex, France Background: Legionella pneumophila secretes a protease without known specific substrate and three-dimensional structure. Results: Analysis of a quenched peptide library identified a lead substrate, ameliorated by rational design, using an Msp structural model obtained by the x-ray structure of pseudolysin. Conclusion: The study identifies the first selective substrate for Msp. Significance: This substrate could be useful for Legionella detection. Downloaded from Legionella pneumophila has been shown to secrete a protease (phosphatase, phospholipase C, proteases, and kinases), and termed major secretory protein (Msp). This protease belongs to the Mip gene product (1). the M4 family of metalloproteases and shares 62.9% sequence Among the proteases, one exotoxin, abundantly secreted by similarity with pseudolysin (EC 3.4.24.26). With the aim of different strains of L.
    [Show full text]
  • Identification of Pseudolysin (Lasb)
    nature publishing group ORIGINAL CONTRIBUTIONS 1 see related editorial on page x Identifi cation of Pseudolysin (lasB) as an Aciduric Gluten-Degrading Enzyme with High Therapeutic Potential for Celiac Disease Guoxian Wei , DDS, MS, PhD 1 , Na Tian , DDS, MS, PhD 1 , Adriana C. Valery , DDS1 , Yi Zhong , DDS 1 , Detlef Schuppan , MD, PhD 2 , 3 and Eva J. Helmerhorst , MS, PhD1 OBJECTIVES: Immunogenic gluten proteins implicated in celiac disease (CD) largely resist degradation by human digestive enzymes. Here we pursued the isolation of gluten-degrading organisms from human feces, aiming at bacteria that would digest gluten under acidic conditions, as prevails in the stomach. COLON/SMALL BOWEL METHODS: Bacteria with gluten-degrading activities were isolated using selective gluten agar plates at pH 4.0 and 7.0. Proteins in concentrated bacterial cell sonicates were separated by diethylaminoethanol chromatography. Enzyme activity was monitored with chromogenic substrates and gliadin zymography. Elimination of major immunogenic gluten epitopes was studied with R5 and G12 enzyme-linked immunosorbent assays. RESULTS: Gliadin-degrading enzyme activities were observed for 43 fecal isolates, displaying activities in the ~150–200 and <50 kDa regions. The active strains were identifi ed as Pseudomonas aeruginosa . Gliadin degradation in gel was observed from pH 2.0 to 7.0. Liquid chromatography–electrospray ionization–tandem mass spectrometry analysis identifi ed the enzyme as pseudolysin (lasB), a metalloprotease belonging to the thermolysin (M4) family proteases. Its electrophoretic mobility in SDS–polyacrylamide gel electrophoresis and gliadin zymogram gels was similar to that of a commercial lasB preparation, with tendency of oligomerization. Pseudolysin eliminated epitopes recognized by the R5 antibody, while those detected by the G12 antibody remained intact, despite destruction of the nearby major T-cell epitope QPQLPY.
    [Show full text]
  • Anticoagulant Property of Metalloprotease Produced by Pseudomonas Fluorescens Migula B426
    Research Article Annals of Genetics and Genetic Disorders Published: 27 Sep, 2018 Anticoagulant Property of Metalloprotease Produced by Pseudomonas fluorescens Migula B426 Usharani Brammacharry1 and Muthuraj Muthaiah2* 1Department of Biomedical Genetics, University of Madras, India 2State TB Training and Demonstration Centre, Intermediate Reference Laboratory, India Abstract In this study we endeavoured for the production, purification and characterization of anticoagulant property of metalloprotease enzyme from Pseudomonas fluorescens Migula B426 strain. Shake flask fermentation was performed to produce the enzyme and the fibrinolytic activities of the enzyme of this isolate. These were estimated to range across 40 to 5000 IU/mL of urokinase through the standard curve using the thrombolytic area on the fibrin plate. Purification of crude enzyme was done through Sephadex S-300 gel filtration and its activity was 2474 IU/mL.Enzyme activity was enhanced bydivalent cations Mg2+ and Ca2+ in the presence of Ethylene Diamine Tetra Acetic acid (EDTA), a metal-chelating agent and two metalloprotease inhibitors, 2, 2′-bipyridine and o-phenanthroline, repressed the enzymatic activity significantly. Amino acids of N-terminal sequence have great similarity with those of metalloprotease from various Pseudomonas strains and have consensus sequence, HEXXH zinc binding motif. These results strongly suggest that the extracellular protease enzyme of P.fluorescens Migula B426 strain is a novel zinc metalloprotease and is based on its N-terminal amino acid sequence, effect of protease inhibitors and its fibrinolytic activity. It can be further developed as a potential candidate for thrombolytic therapy. Keywords: Fibrin; Metalloprotease; Pseudomonas fluorescens; Zinc binding motif Introduction OPEN ACCESS Extracellular proteases have great commercial value and find multiple applications in various *Correspondence: industrial sectors.
    [Show full text]
  • Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases
    Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases Alan J. Barrett Neil D. Rawlings J. Fred Woessner Editor biographies xxi Contributors xxiii Preface xxxi Introduction ' Abbreviations xxxvii ASPARTIC PEPTIDASES Introduction 1 Aspartic peptidases and their clans 3 2 Catalytic pathway of aspartic peptidases 12 Clan AA Family Al 3 Pepsin A 19 4 Pepsin B 28 5 Chymosin 29 6 Cathepsin E 33 7 Gastricsin 38 8 Cathepsin D 43 9 Napsin A 52 10 Renin 54 11 Mouse submandibular renin 62 12 Memapsin 1 64 13 Memapsin 2 66 14 Plasmepsins 70 15 Plasmepsin II 73 16 Tick heme-binding aspartic proteinase 76 17 Phytepsin 77 18 Nepenthesin 85 19 Saccharopepsin 87 20 Neurosporapepsin 90 21 Acrocylindropepsin 9 1 22 Aspergillopepsin I 92 23 Penicillopepsin 99 24 Endothiapepsin 104 25 Rhizopuspepsin 108 26 Mucorpepsin 11 1 27 Polyporopepsin 113 28 Candidapepsin 115 29 Candiparapsin 120 30 Canditropsin 123 31 Syncephapepsin 125 32 Barrierpepsin 126 33 Yapsin 1 128 34 Yapsin 2 132 35 Yapsin A 133 36 Pregnancy-associated glycoproteins 135 37 Pepsin F 137 38 Rhodotorulapepsin 139 39 Cladosporopepsin 140 40 Pycnoporopepsin 141 Family A2 and others 41 Human immunodeficiency virus 1 retropepsin 144 42 Human immunodeficiency virus 2 retropepsin 154 43 Simian immunodeficiency virus retropepsin 158 44 Equine infectious anemia virus retropepsin 160 45 Rous sarcoma virus retropepsin and avian myeloblastosis virus retropepsin 163 46 Human T-cell leukemia virus type I (HTLV-I) retropepsin 166 47 Bovine leukemia virus retropepsin 169 48
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,561,811 B2 Bluchel Et Al
    USOO8561811 B2 (12) United States Patent (10) Patent No.: US 8,561,811 B2 Bluchel et al. (45) Date of Patent: Oct. 22, 2013 (54) SUBSTRATE FOR IMMOBILIZING (56) References Cited FUNCTIONAL SUBSTANCES AND METHOD FOR PREPARING THE SAME U.S. PATENT DOCUMENTS 3,952,053 A 4, 1976 Brown, Jr. et al. (71) Applicants: Christian Gert Bluchel, Singapore 4.415,663 A 1 1/1983 Symon et al. (SG); Yanmei Wang, Singapore (SG) 4,576,928 A 3, 1986 Tani et al. 4.915,839 A 4, 1990 Marinaccio et al. (72) Inventors: Christian Gert Bluchel, Singapore 6,946,527 B2 9, 2005 Lemke et al. (SG); Yanmei Wang, Singapore (SG) FOREIGN PATENT DOCUMENTS (73) Assignee: Temasek Polytechnic, Singapore (SG) CN 101596422 A 12/2009 JP 2253813 A 10, 1990 (*) Notice: Subject to any disclaimer, the term of this JP 2258006 A 10, 1990 patent is extended or adjusted under 35 WO O2O2585 A2 1, 2002 U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS (21) Appl. No.: 13/837,254 Inaternational Search Report for PCT/SG2011/000069 mailing date (22) Filed: Mar 15, 2013 of Apr. 12, 2011. Suen, Shing-Yi, et al. “Comparison of Ligand Density and Protein (65) Prior Publication Data Adsorption on Dye Affinity Membranes Using Difference Spacer Arms'. Separation Science and Technology, 35:1 (2000), pp. 69-87. US 2013/0210111A1 Aug. 15, 2013 Related U.S. Application Data Primary Examiner — Chester Barry (62) Division of application No. 13/580,055, filed as (74) Attorney, Agent, or Firm — Cantor Colburn LLP application No.
    [Show full text]
  • DEN180014 Summary
    EVALUATION OF AUTOMATIC CLASS III DESIGNATION FOR WOUNDCHEK Bacterial Status DECISION SUMMARY A. De Novo Number: DEN180014 B. Purpose for Submission: De Novo request for evaluation of automatic class III designation for the WOUNDCHEK Bacterial Status C. Measurand: Bacterial Proteases D. Type of Test: Lateral flow chromatographic assay E. Applicant: Alere Scarborough, Inc. F. Proprietary and Established Names: WOUNDCHEK Bacterial Status WCBS G. Regulatory Information: 1. Regulation section: 21 CFR 866.3231 2. Classification: Class II 1 3. Product code(s): QFA 4. Panel: Microbiology (83) H. Indications For Use: 1. Indication(s) for use: WOUNDCHEK Bacterial Status (WCBS) is an in vitro diagnostic chromatographic test for the qualitative detection of bacterial protease activity directly from wound fluid samples collected with a swab. The WCBS test is intended for use in adult patients as an aid in assessing the risk for non-healing of chronic venous, diabetic foot, and pressure ulcers associated with wounds where there are no signs of wound infection and where patients are asymptomatic for clinical signs of infection. The test is intended for use with chronic wounds that are between 21 days and < 6 months of age and chronic wounds that are ≥ 6 months of age that are < 1cm2 in size. This test is indicated for use solely by health care professionals whose clinical practice primarily or routinely involves the assessment and treatment of chronic wounds. WCBS results are intended for use in conjunction with the assessment of other known risk factors for wound healing that significantly contribute to the assessment of risk for non- healing chronic wounds such as wound age, wound size, and vascular status.
    [Show full text]
  • Kinetic and Docking Studies of Inhibitors Targeting the Catalytic Zinc in MA Clan Enzymes
    FACULTY OF HEALTH SCIENCE DEPARTMENT OF MEDICAL BIOLOGY TUMOUR BIOLOGY RESEARCH GROUP Kinetic and docking studies of inhibitors targeting the catalytic zinc in MA clan enzymes Stian Sjøli A dissertation for the degree of Philosophiae Doctor October 2011 Table of Contents Acknowledgements…………………………………………………… i List of manuscripts………………………………………………….... iv List of abbreviations………………………………………………….. v Preface………………………………………………………………… vi Aim of Study………………………………………………………….. 1 Introduction …………………………………………………………... 2 1. Enzymes…………………………………………………………... 2 1.1. Kinetics of Catalysis ………………………………………… 3 1.2. Thermodynamics of catalysis ……………………………….. 6 1.3. Breaking peptide bonds with water………………………….. 9 1.4. Binding substrates……………………………………………. 11 1.5. Substrate specificity………………………………………….. 11 1.5.1. Catalytic chamber…………………………………….. 14 1.5.2. Triple helical hydrolysis………………………………. 15 1.6. Families of Metalloprotease………………………………….. 16 1.6.1. Activation mechanism ……………………………….. 17 1.6.2. M4 the Thermolysin family…………………………... 20 Thermolysin………………………………………………. 20 Pseudolysin……………………………………………….. 21 1.6.3. M10A the MMP-1 family…………………………….. 22 Gelatinases ……………………………………………….. 23 MMP-2……………………………………………………. 23 MMP-9……………………………………………………. 24 MMP-14…………………………………………………... 24 1.6.4. M13 the Neprilysin family……………………………. 25 2. Pathological roles for MePs………………………………………. 26 2.1. Tumor metastasis…………………………………………….. 26 2.2. Bacterial invasion and sepsis………………………………… 28 2.3. Extracellular matrix degradation…………………………….. 29 2.4. Blood vessel regulation ………………………………………
    [Show full text]
  • Peptide Sequence
    Peptide Sequence Annotation AADHDG CAS-L1 AAEAISDA M10.005-stromelysin 1 (MMP-3) AAEHDG CAS-L2 AAEYGAEA A01.009-cathepsin D AAGAMFLE M10.007-stromelysin 3 (MMP-11) AAQNASMW A06.001-nodavirus endopeptidase AASGFASP M04.003-vibriolysin ADAHDG CAS-L3 ADAPKGGG M02.006-angiotensin-converting enzyme 2 ADATDG CAS-L5 ADAVMDNP A01.009-cathepsin D ADDPDG CAS-21 ADEPDG CAS-L11 ADETDG CAS-22 ADEVDG CAS-23 ADGKKPSS S01.233-plasmin AEALERMF A01.009-cathepsin D AEEQGVTD C03.007-rhinovirus picornain 3C AETFYVDG A02.001-HIV-1 retropepsin AETWYIDG A02.007-feline immunodeficiency virus retropepsin AFAHDG CAS-L24 AFATDG CAS-25 AFDHDG CAS-L26 AFDTDG CAS-27 AFEHDG CAS-28 AFETDG CAS-29 AFGHDG CAS-30 AFGTDG CAS-31 AFQHDG CAS-32 AFQTDG CAS-33 AFSHDG CAS-L34 AFSTDG CAS-35 AFTHDG CAS-L36 AGERGFFY Insulin B-chain AGLQRGGG M14.004-carboxypeptidase N AGSHLVEA Insulin B-chain AIDIDG CAS-L37 AIDPDG CAS-38 AIDTDG CAS-39 AIDVDG CAS-L40 AIEHDG CAS-L41 AIEIDG CAS-L42 AIENDG CAS-43 AIEPDG CAS-44 AIEQDG CAS-45 AIESDG CAS-46 AIETDG CAS-47 AIEVDG CAS-48 AIFQGPID C03.007-rhinovirus picornain 3C AIGHDG CAS-49 AIGNDG CAS-L50 AIGPDG CAS-L51 AIGQDG CAS-52 AIGSDG CAS-53 AIGTDG CAS-54 AIPMSIPP M10.051-serralysin AISHDG CAS-L55 AISNDG CAS-L56 AISPDG CAS-57 AISQDG CAS-58 AISSDG CAS-59 AISTDG CAS-L60 AKQRAKRD S08.071-furin AKRQGLPV C03.007-rhinovirus picornain 3C AKRRAKRD S08.071-furin AKRRTKRD S08.071-furin ALAALAKK M11.001-gametolysin ALDIDG CAS-L61 ALDPDG CAS-62 ALDTDG CAS-63 ALDVDG CAS-L64 ALEIDG CAS-L65 ALEPDG CAS-L66 ALETDG CAS-67 ALEVDG CAS-68 ALFQGPLQ C03.001-poliovirus-type picornain
    [Show full text]