AN INTRODUCTION TO INDUCTIVE STATISTICAL INFERENCE FROM PARAMETER ESTIMATION TO DECISION-MAKING Lecture notes for a quantitative–methodological module at the Master degree (M.Sc.) level HENK VAN ELST August 30, 2020 parcIT GmbH Erftstraße 15 50672 Köln Germany ORCID iD: 0000-0003-3331-9547 E–Mail:
[email protected] arXiv:1808.10173v2 [stat.AP] 30 Aug 2020 E–Print: arXiv:1808.10173v2 [stat.AP] © 2016–2020 Henk van Elst Dedicated to the good people at Karlshochschule Abstract These lecture notes aim at a post-Bachelor audience with a background at an introductory level in Applied Mathematics and Applied Statistics. They discuss the logic and methodology of the Bayes–Laplace ap- proach to inductive statistical inference that places common sense and the guiding lines of the scientific method at the heart of systematic analyses of quantitative–empirical data. Following an exposition of ex- actly solvable cases of single- and two-parameter estimation problems, the main focus is laid on Markov Chain Monte Carlo (MCMC) simulations on the basis of Hamiltonian Monte Carlo sampling of poste- rior joint probability distributions for regression parameters occurring in generalised linear models for a univariate outcome variable. The modelling of fixed effects as well as of correlated varying effects via multi-level models in non-centred parametrisation is considered. The simulation of posterior predictive distributions is outlined. The assessment of a model’s relative out-of-sample posterior predictive accuracy with information entropy-based criteria WAIC and LOOIC and model comparison with Bayes factors are addressed. Concluding, a conceptual link to the behavioural subjective expected utility representation of a single decision-maker’s choice behaviour in static one-shot decision problems is established.